

baryons to NNLO

We also provide the formalism to obtain properties of generic $SU(N_c)$ bound states

Compared QCD binding energies and mass spectra to lattice data as well as dark meson/ baryon binding, spectra and color scaling Next: Properties of states not yet obtained by lattice e.g. exotics, deuteron. Compute matrix elements for composite dark matter processes

Composite states in the Standard Model and beyond

Benoît Assi (Fermilab)

Based on: (2112.15132, 2211.02211) with co-authors: Michael Wagman and Bogdan Dobrescu

1 10 100 Confinement Scale, Λ [TeV] Image credit: [7]

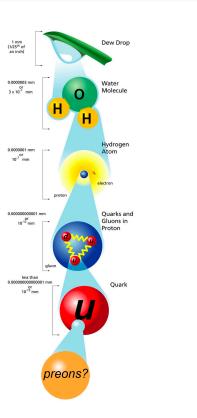
----`(- *m*_{DM}[TeV]`

 $\Omega_{\rm DM} < \Omega_{\rm obs}$

[4] N. Brambilla et. al. (2010), hep-ph/0911.3541 [5] S. Meinel (2010), hep-lat/1008.3154 [6] Y. Jia (2006), hep-ph/0607290.

[7] P. Asadi et. al. (2021), hep-ph/2103.09822

This work is supported by Fermi Research Alliance, LLC under Contract DE-AC02-07CH11359 with the U.S. Department of Energy.


What if quarks and leptons are composite?

Quark and lepton compositeness

Can we write down such a model?

Fermions in SM chiral \Rightarrow chiral composite dynamics

A spectrum of light bound states can arise

UV model to composite EFT

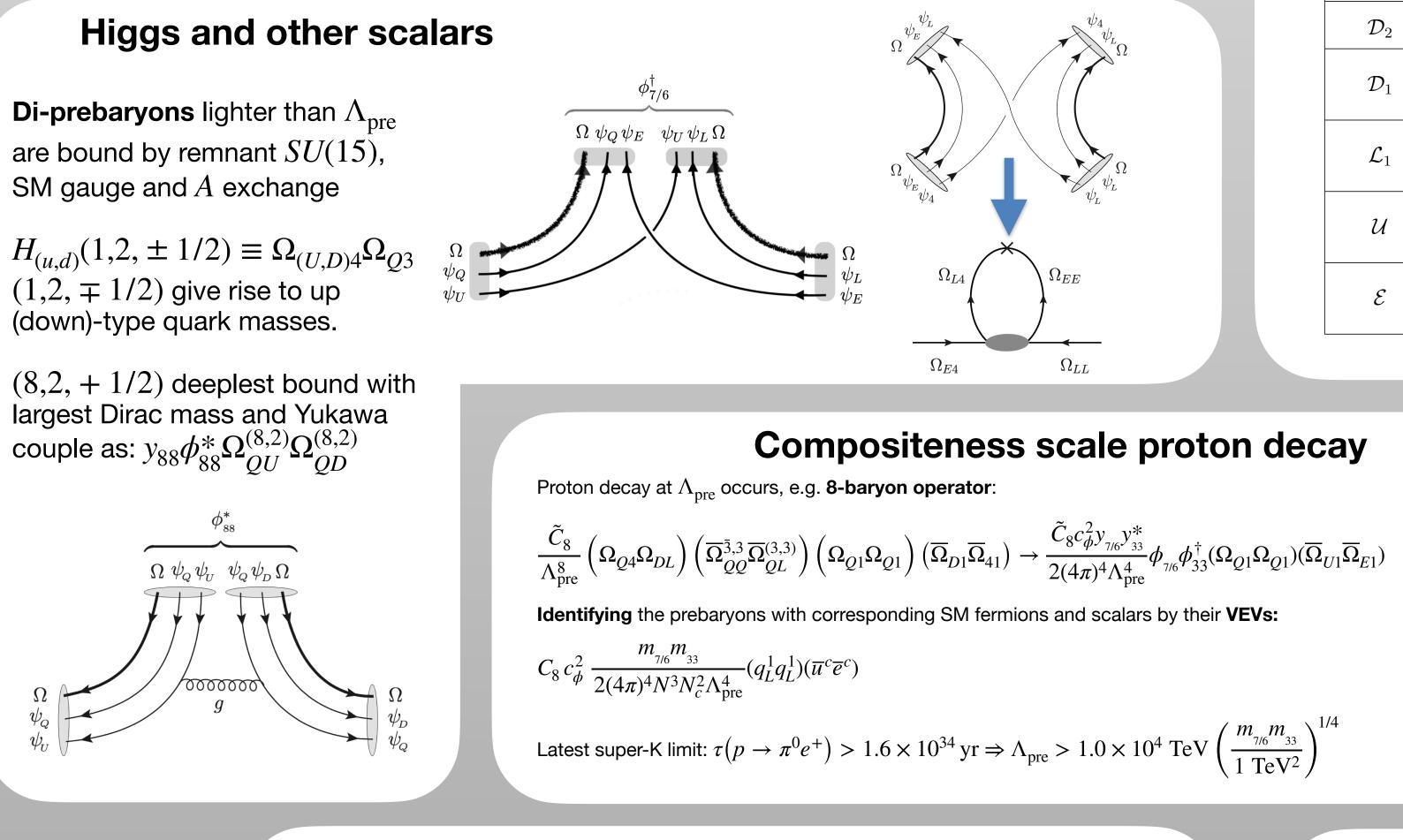
Above GUT scale: massless chiral fermions $(\Psi, \psi_{2,3,4}, \Omega)$ charged under $SU(15)_n \times SO(10)$

Below GUT scale: scalars break flavor and SO(10) symmetry at Λ_{GUT} and preons are charged under $SU(15)_p \times SM$

Below confinement scale: confining $SU(15)_n$ interactions give rise composite chiral prehadrons below $\Lambda_{\rm pre}$

field	spin	$SU(15)_{\rm p}$	SO(10)	comments		Fermion	$SU(15)_{\rm p}$	$SU(3)_c \times SU(2)_W$	$U(1)_Y$
Ψ	1/2	15	16	<pre>} massless preons</pre>		ψ_Q	15	(3, 2)	+1/6
ψ_2,ψ_3,ψ_4	1/2	15	1			ψ_U	15	$(\overline{3},1)$	-2/3
Ω	1/2	120	1			ψ_D	15	$(\overline{3},1)$	+1/3
\mathcal{A}	0	105	1	flavor-dependent couplings		ψ_L	15	(1,2)	-1/2
\mathcal{S}_{a}	0	1	45	$\left. \right\} SO(10) \text{ breaking VEVs}$		ψ_E	15	(1, 1)	+1
\mathcal{S}_s	0	1	16			$\psi_1,,\psi_4$	15	(1, 1)	0
\mathcal{B}_+ , \mathcal{B}	1/2	15 , $\overline{15}$	1	Dirac mass $> \Lambda_{10}$		Ω	120	(1,1)	0

Formalism and bound states


SU(N) gauge theory, with (N+4)fundamental has **anomaly cancelled** by single symmetric representation

SO(10) symmetry breaking ψ_{4-19} and relabelling according to SM charges $\Psi \rightarrow \psi_{U,O,E,D,1}$ where SM-singlet LH fermion $\psi_1 \leftrightarrow \psi_N$ is conjugate of RH neutrino

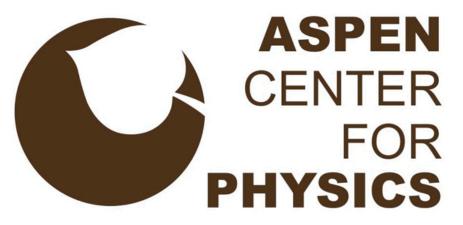
 $SU(15)_p$ interactions give rise to composite chiral prebaryons: $(\Psi \Omega \Psi, \Psi \Omega \psi_i, \psi_i \Omega \psi_i)$

Bound states: SM fermions $(\Omega_{Oi}, \Omega_{Li}, \Omega_{U,i}, \Omega_{D,i}, \Omega_{Ei})$ and 12 vectolrike fermions under SM gauge group.

Additionally: 6 gauge singlet Weil fermions $(\Omega_{ii}, \Omega_{Ni})$ and premesons $(\Psi \sigma^{\mu} \Psi, \Psi \sigma^{\mu} \psi_i, \psi_i \sigma^{\mu} \psi_i)$

Novel baryon-number violating signatures

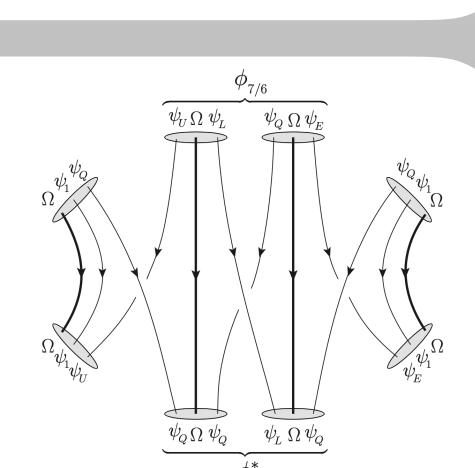
Neutral Ω_{ii} **RH neutrinos** may be lighter than the proton \Rightarrow **exotic** decay modes: $\bar{\mathbf{v}}_{0}$ + $\bar{\mathbf{v}}_{0}$ z+ $\overline{\mathbf{v}}$

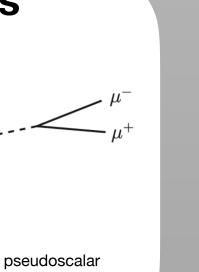

$$p \to N^0 \pi^+, p \to N^0 K^+, n \to N^0 \pi^0$$

Dominant decay: $p \rightarrow \bar{N}^0 \pi^+$ mode for a wide range of m_N with D = 6 operator:

 $\frac{C_N}{\Lambda_{QQ}^8} \left(\Omega_{Q4} \Omega_{DL} \right) \left(\overline{\Omega}_{QQ}^{\bar{3},3} \overline{\Omega}_{QL}^{(3,3)} \right) \left(\Omega_{Q1} \Omega_{Q1} \right) \left(\overline{\Omega}_{D1} \overline{\Omega}_{41} \right)$

Decay of $p \to \bar{N}^0 \pi^+$ followed by the decay $\bar{N}^0 \equiv \Omega_{41}$ to a light pseudoscalar


Model in a nutshell


Preons bind into prehadrons under SU(15)

Prebaryons include all 3 SM generations of matter and heavy vector-like states

Higgs doublets are di-prebaryon bound states analogous to deuteron in QCD

vectorlike fermion	component LH , RH	$SU(3) \times SU(2) \times U(1)$
$\Omega_{8,2}$	$\Omega_{QU}^{(8,2)}$, $\overline{\Omega}_{QD}^{(8,2)}$	(8, 2, -1/2)
$\Omega_{6,1}$	$\Omega_{QQ}^{(6,1)}$, $\overline{\Omega}_{UD}^{(\overline{6},1)}$	(6, 1, +1/3)
$\Omega_{3,3}$	$\Omega_{QL}^{(3,3)}$, $\overline{\Omega}_{QQ}^{(\overline{3},3)}$	(3, 3, -1/3)
$\Omega_{3,2}$	$\Omega_{QE} \ , \ \overline{\Omega}_{UL}$	(3, 2, +7/6)
\mathcal{L}_2	$\Omega_{QU}^{(1,2)}$, $\overline{\Omega}_{QD}^{(1,2)}$	(1, 2, -1/2)
$\Omega_{3,1}$	$\Omega_{UU} , \overline{\Omega}_{DE}$	(3, 1, -4/3)
Q	$\Omega_{Q4} \ , \ \overline{\Omega}_{DL}$	(3, 2, +1/6)
\mathcal{D}_2	$\Omega_{QL}^{(3,1)} \ , \ \overline{\Omega}_{UE}$	(3, 1, -1/3)
\mathcal{D}_1	$\Omega_{UD}^{(3,1)} \ , \ \overline{\Omega}_{D4}$	(3, 1, -1/3)
\mathcal{L}_1	$\Omega_{L4} \ , \ \overline{\Omega}_{LE}$	(1, 2, -1/2)
U	Ω_{DD} , $\overline{\Omega}_{U4}$	(3, 1, +2/3)
E	$\Omega_{E4} \ , \ \overline{\Omega}_{LL}$	(1, 1, +1)

Outlook and summary

A chiral preonic SU(15) gauge theory was proposed in which preon confinement leads to exactly 3 generations of SM fermions.

Proton decay by confinement scale fields can lead to **novel signatures** which can be searched for at DUNE and other future experiments