Status and future prospects of the Light Dark Matter eXperiment

Cristina Mantilla Suarez (Fermilab)

Aspen Center for Physics March 28th, 2023

Dark Sectors

SM-neutral forces

with small couplings

portals

Thermal dark matter production: clear milestones in mass and coupling

Complementary accelerator approaches for detecting dark matter production

Complementary accelerator approaches for detecting dark matter production

 \blacktriangleright Cross section scales as ϵ^2 (instead of ϵ^4) Uses missing momentum technique: handle to reject backgrounds ► Can FULLY explore all thermal targets @ MeV-GeV

LMDX: Missing X kinematics experiment

Semi-Visible Search

Dark Matter Excited State χ'

+	

+	
	_

High precision electron source: LDMX beamline @ FY2025

Tagging individual electrons

~1.1 meters

* Tag filled bunches: missing energy trigger < 1 kHzarrays of 48 scintillator bars

+ Precise electron tagging: $\sigma_{0} \sim 50 \text{ MeV}$ @ E = 4 GeV 7 double-strip layers

* Measure recoil p_T: $\sigma_{pT_{p}} \sim 1-4 \text{ MeV} @ p_T < 1.2 \text{ GeV}$ 4 double-strip layers + 2 axial-only

Recoil

 e^-

'**≁**X

 $\star \chi$

8

8

 Fully contain EM showers: Trigger on missing energy Veto Brem. photons / e⁺e⁻ 32 Si/W Layers ~ 40 X₀ absorber depth

 Veto photo-nuclear (PN) production hadrons / muons

Rate: 1 in 10⁵ - 10⁶ incident electrons High Granularity with large dynamic range

+ Fully contain EM showers: Trigger on missing energy Veto Brem. photons / e⁺e⁻ 32 Si/W Layers ~ 40 X₀ absorber depth

+ Veto photo-nuclear (PN) production hadrons / muons Rate: 1 in 10⁵ - 10⁶ incident electrons High Granularity with large dynamic range

Veto rare showers: escape Ecal and/or anomalous energy deposits Rate: 1 in 10⁸ - 10¹¹ incident electrons Ecal Shower Features + Hcal depth Neutron ID: 0.1 - 10 GeV

The LDMX experimental design and status

R&D funding from DOE DMNI Magnet @ SLAC to be refurbished

Cristina Mantilla Suarez (Fermilab)

Synergy from existent technologies: ► Tracker modules (HPS Silicon Tracker) Hcal scintillators (Mu2e Cosmic Ray Veto) ► ECal (CMS HGCAL) ► ECal + HCal readout (CMS HGROC)

Sub-detector prototypes beam test

More results to come...

Cristina Mantilla Suarez (Fermilab)

(1) Missing energy trigger: electron loses 62.5% of its energy

(2) Discriminating EM showers: signal vs photo-nuclear production

Reject 99.9% PN events with 85-99% signal efficiency

(3) Veto on rare processes: near zero-background

Bremsstrahlung + energy fluctuations

Rare reactions

Irreducible missing energy

	Photo-nuclear		Muon conversion	
	Target-area	ECal	Target-area	ECal
EoT equivalent	4×10^{14}	2.1×10^{14}	$8.2 imes 10^{14}$	2.4×10^{15}
Total events simulated	8.8×10^{11}	4.65×10^{11}	6.27×10^8	8×10^{10}
Trigger, ECal total energy $< 1.5~{\rm GeV}$	1×10^{8}	$2.63 imes 10^8$	$1.6 imes 10^7$	$1.6 imes 10^8$
Single track with $p < 1.2 \mathrm{GeV}$	2×10^{7}	2.34×10^8	$3.1 imes 10^4$	$1.5 imes 10^8$
ECal BDT (> 0.99)	$9.4 imes 10^5$	$1.32 imes 10^5$	< 1	< 1
HCal max $PE < 5$	< 1	10	< 1	< 1
ECal MIP tracks $= 0$	< 1	< 1	< 1	< 1

Cristina Mantilla Suarez (Fermilab)

Background-free with 30-50% signal efficiency@ 4x10¹⁴ EOT

(4) Sensitivity to dark matter mass scale

Cristina Mantilla Suarez (Fermilab)

Final handle: e⁻ p_T measurement

- Used for extra background discrimination
- OR, to set DM mass scale within a factor of 2 at 95% CL.

LDMX is uniquely sensitive to MeV-GeV DM production

Sensitivity assuming: 0.5 background events

LDMX is uniquely sensitive to MeV-GeV DM production

Sensitivity assuming: 0.5 background events

LDMX physics reach to other dark sectors

 ϵ

Short baseline for visible displaced decays of dark photons (requires new trigger)

LDMX physics reach to other dark sectors

Berlin et. al. PRD 99, 075001 (2019)

LDMX physics reach beyond dark sectors

LDMX physics reach beyond dark sectors

LDMX physics reach beyond dark sectors

- LDMX is a neat and simple idea: electron recoils against dark matter, measure electron p_{T.}
 - ✓ clean and intense electron beam: LESA construction underway at SLAC
 - ✓ detector technologies proven by other HEP experiments
- LDMX will deliver world-leading sensitivity to sub-GeV DM.
- The experiment is ready to build!
- ► LDMX could be taking data in 2-3 years after establishing the funding profile.

Thanks!

Cristina Mantilla Suarez (Fermilab)

References:

- Light Dark Matter eXperiment (LDMX) (1808.05219)
- Dark Matter, Millicharges, Axion and Scalar Particles, Gauge Bosons, and Other New Physics with LDMX (1807.01730)
- A High Efficiency Photon Veto for the Light Dark Matter eXperiment (1912.05535)
- Lepton-Nucleus Cross Section Measurements for DUNE with the LDMX Detector (1912.06140)
- Characterizing Dark Matter Signals with Missing Momentum Experiments (2010.03577)

Backup

10¹⁴ sensitivity

Accelerators can access all thermal targets

Compact range for exploring relativistic DM production! $O(10^2)$

