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Intro: Machine Learning @ CMS
• Growing number of applications of  

machine learning techniques in CMS 

- increasingly more sophisticated exploiting 
advances from non-scientific domains 

- include also co-existing effort of expanding 
central software and hardware infrastructures 
to enable inference and training at scale 

- the CMS ML group at the border between 
computing and physics — coordinating and 
overseeing technical and innovation aspects 
across the experiment
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Check CMS news page!

https://cms.cern/search/node?keys=machine+learning


Intro: Machine Learning @ CMS
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ML for classification: 

heavy jet tagging 
heavy flavour jet tagging 

exotic jets 
tau leptons 

event-level (also unsupervised)

ML beyond classification: 

mass and energy regression 
background estimation 
detector faults detection 

reconstruction & simulation 
triggering

Computing software & hardware for ML: 
optimized inference in central software for CPU/GPU 
GPU hardware on-site for software trigger system & grid sites 
more powerful chips in hardware trigger system & development of portable tools* 
ML-friendly central data format (NanoAOD) and scalable processing tools (Coffea)

DISCLAIMERS: 
a lot ongoing that cannot be covered today 

for more info contact CMS ML group conveners!
* see Javier’s talk

http://cms-conveners-ml@cern.ch
https://indico.fnal.gov/event/21471/contributions/259113/


ML for classification



Heavy jet tagging
• Identification of jets arising from hadronization of boosted  

W/Z/H/top is a key task in LHC physics: 

- new physics searches, standard model measurements, higgs sector 

- unique signature from hadrons merging in single jet  
with substructure 

- exploit to suppress overwhelming background from multijet  
processes in most sensitive all-hadronic and semi-leptonic  
channels 

• A topic of interest in both theory and experiment communities  
since ~ 30 years 

• Recent years advancement in ML enabled more powerful algorithms
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ex: Graviton or Radion 
production

Figure 1. Pictorial representations of different jet substructures at the LHC. Left: jets originating
from quarks or gluons produce one cluster of particles, approximately cone-shaped, developing
along the flight direction of the particle starting the shower. Center: when produced with large
transverse momentum, a heavy boson decaying to quarks would result into a single jet, made of 2
particle clusters (usually referred to as sub-jets). Right: In its full decay chain, a high-momentum
t ! Wb ! qqb results into a jet composed of three sub-jets.

In this work, we compare the typical performances of some of these approaches to what
is achievable with a jet identification algorithm based on an IN (JEDI-net). Interaction
networks [5] (INs) have been introduced to predict the evolution of physical systems under
the influence of forces, e.g. gravitational force, springs, etc. This is achieved by constructing
a graph network representing the system and learning the interaction between the nodes of
the graph. This results into a post-interaction representation of the system, which is used
to predict the evolution of the system. In our case, we are interested to INs as a tool to
learn a fixed-size jet representation, that is used to train a jet classifier. In this respect,
INs are interesting because the can learn a sparse representation with an architecture that
(at least in principle) is similar to the 2 ! 1 recombination procedure that is followed to
cluster jets. To a certain extent, INs (and graph networks in general) seem to be more
QCD-compliant than other network architectures. For instance (see section 4), INs process
jet-constituent four-momenta in pairs and can potentially learn the metrics typically used
for jet clustering, such as the anti-kt [3], kt [2], or Cambridge-Aachen [1] jet algorithms. In
this paper, we investigate if this structural affinity to jet clustering algorithms translates
into a better tagging performance.

This paper is structured as follows: we provide in section 2 a list of related works. We
describe in section 3 the utilized dataset. The structure of the JEDI-net model is discussed
in section 4. Section 5 briefly introduces alternative benchmark models, based on other
DL architectures, whose design and optimization are discussed in Appendix A. Results are
shown in section 6. We conclude with a discussion and outlooks of this work in section 8.
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• A variety of ML algorithms developed and deployed in CMS since beginning of Run 2 

• SOA: ParticleNet — first graph-based tagger at LHC ! 

- jet raw representation based on  
point cloud formed by its constituents 

- a dynamic graph CNN architecture used to  
fully exploit inherent permutation invariance of the  
representation (“EdgeConv” block)

Heavy jet tagging @ CMS
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EdgeConv block Stacked blocks

H. Qu et al.: Phys. Rev. D 101, 056019 (2020)

CMS DP-2020/002
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DeepAK8: 
Conv1D architecture 
on jet constituents 
[CMS-JME-18-002]

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019
https://cds.cern.ch/record/2707946/
http://cms-results.web.cern.ch/cms-results/public-results/publications/JME-18-002/


Heavy flavour jet tagging @ CMS
• Also heavy flavour (b/c) jet tagging allows to access a variety of rare physics processes 

• Unique signature due to sizeable lifetime of B/C hadrons [c𝜏 = O(mm)]  
resulting in displaced tracks and secondary vertices 

• We have built classifiers based on ML for HF jets 
at the LHC since Run 1 

- successful in reducing time to discovery!
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H→bb discovery in VH production

PRL 121, 121801 (2018)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.121801


Heavy flavour jet tagging @ CMS
• Also heavy flavour (b/c) jet tagging allows to access a variety of rare physics processes 

• Unique signature due to sizeable lifetime of B/C hadrons [c𝜏 = O(mm)]  
resulting in displaced tracks and secondary vertices 

• We have built classifiers based on ML for HF jets 
at the LHC since Run 1 

- successful in reducing time to discovery! 

• Application of more powerful ML architectures 
allowed recently setting the most stringent  
constraints on HH production!
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PRL 129, 081802 (2022)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.081802


Heavy flavour jet tagging @ CMS
• Brand new development in CMS uses particle-based transformers — learn which 

neighbour particles are relevant through attention mechanism 

- input embedding of both single particle and pair-wise features information 

- the pair-wise features encode physics principles → modifiers of standard dot-product 
attention weights in Particle Attention Block
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Particle Attention Block

H. Qu et al.: arXiv.2202.03772 CMS-DP-2022/050

https://arxiv.org/abs/2202.03772
https://cds.cern.ch/record/2839920/


Heavy flavour jet tagging @ CMS
• Recent development in CMS uses particle-based transformers — learn which neighbour 

particles are relevant through attention mechanism 

- input embedding of both single particle and pair-wise features information 

- the pair-wise features encode physics principles → modifiers of standard dot-product 
attention weights in Particle Attention Block 

- Class Attention Block: compute the attention between a global class and all the particles via 
standard Multi-Head Attention (MHA)
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Class Attention Block

CMS-DP-2022-050

https://cds.cern.ch/record/2839920/


Heavy flavour jet tagging @ CMS
• Comparison with current default CMS algo 

DeepJet based on 1D CNN architecture on 
per-particle plus b-tagging features 

• Known challenges in tagging high pT jets 
— worse reconstruction of key features like 
impact parameter and secondary vertices 

• Introduction of pair-wise features mitigate 
performance loss thanks to increased 
expressivity 
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Finalising integration in CMS software… 
Looking forward for deployment in Run 3  
analyses — first attention-based tagger at LHC!

CMS-DP-2022-050

https://iopscience.iop.org/article/10.1088/1748-0221/15/12/P12012
https://cds.cern.ch/record/2839920/


ML beyond classification



• Recent exciting CMS results reporting observation of the rare 4 top quarks production 
process at 4σ for combination of multiple final states [CMS-TOP-21-005 — Submitted to PLB]

ML for background estimation
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OBSERVATION JUST REPORTED LAST WEEK AT MORIOND!

http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-21-005/


ML for background estimation
• Recent exciting CMS results reporting evidence for the rare 4 top quarks production 

process at 4σ for combination of multiple final states [CMS-TOP-21-005 — Submitted to PLB] 

• Analysis of data in the challenging all-hadronic final state performed for the first time 

- after multijet preselection a BDT  
is trained to separate signal vs +QCD background  
→ final discriminating observable 

- multiple signal categories using  
tagged resolved tops (NRT),  
tagged boosted tops (NBT) and HT 

- background estimation with  
Neural Autoregressive Flows novel in CMS!

tt̄
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Baseline selections: 
N(leptons) = 0, N(jets) ≥ 9, N(b-jets) ≥ 3, HT ≥ 700 GeV

http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-21-005/


ML for background estimation
• Start with defining 5 CRs as in “extended” ABCD method 

 (i.e. number of CRs > 3) 

• Main idea: for each CR learn transformation 
 using NAF as universal approximator  

of bijective transformation with sigmoidal function 
τ : 𝒫 → 𝒫′ 

σ
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𝒫′ ( x ′ | c ′ ) = τ( x ′ ; x | c ′ ; c ) ⊗ 𝒫( x | c )

•  : +QCD background = data - (  + minor MC backgrounds) 

•  :  simulation 

•  : input variables 

•  : output variables 

•  : conditions, including control variables N(Jets) and N(bJets)  
plus preceding inputs 

• loss function: maximum-mean-discrepancy 

• activation function: sigmoid

𝒫′ tt̄ tt̄tt̄

𝒫 tt̄

x

y

c

BDT and HT shapes}



ML for background estimation
• After training in the 5 CRs, the transformation between  

MC and data is applied to  simulation in the SR 
→ morphed to predict the shape  
of the +QCD multijet background in the SR 

• Extensive closure checks in validation region: 
identical to SR but with N(jets) = 8 

• Uncertainties derived from discrepancies in the VR 
and applied to corresponding SR

tt̄

tt̄
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[CMS-TOP-21-005 
Submitted to PLB]

VR VR

http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-21-005/
http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-21-005/


ML for detector health monitoring
• The online data quality monitoring (DQM) of CMS aims at detecting faults almost  

in real-time — O(s) 

- initiate reaction from detector experts to promptly  
identify and fix problems 

- minimize downtime, maximize time for physics! 

• Standard workflow: set of histograms that are  
populated with a set of events seen by the detector 

• Challenge: anomalies come in all shapes and sizes 
→ impossible to anticipate all possible failure modes 

• Why ML can help? 

- provides robust anomaly detection and localization 
(via semi/unsupervised learning) 

- eliminate the need for hand coded rules for every possible fault 

- automated adaptivity to changing running conditions and experimental setup
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Ex: CMS ECAL barrel



ML for detector health monitoring
• First development using an autoencoder in production since 2017 for Drift Tubes 

subsystem in muon detectors → first example of ML for online DQM at LHC! 

• More parallel efforts now ongoing mostly based on autoencoders under or planned 
commissioning in Run 3 data taking: 

- Resistive Plate Chambers subsystem of muon detectors [ACAT ‘22] 

- Electromagnetic and Hadronic Calorimeters subsystems [CMS-DP-2022-043, IML workshop] 

- Pixel Silicon Tracker subsystem [CMS-DP-2022-013]
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Electromagnetic Calorimeter example: 

- Training set of certified GOOD  
occupancy map images 

- Test set of both synthetic and real  
Run 2 & 3 anomalies 

- Autoencoder model: ResNet for both 
encoding and decoding  

- Preprocessing to take into account  
variable spatial response and  
time-dependent nature of faults

Metric: False Discovery Rate (FDR)  
at 99% anomaly detection 

(i.e. what fractions of shifter calls will be false alarm?) 

https://indico.cern.ch/event/1106990/contributions/4991222/
https://cds.cern.ch/record/2839738?ln=en
https://indico.cern.ch/event/1078970/contributions/4833337/
https://cds.cern.ch/record/2812026?ln=en


ML for detector health monitoring
• First development using an autoencoder in production since 2017 for Drift Tubes 

subsystem in muon detectors → first example of ML for online DQM at LHC! 

• More parallel efforts now ongoing mostly based on autoencoders under or planned 
commissioning in Run 3 data taking: 
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Electromagnetic Calorimeter example: 

- Training set of certified GOOD  
occupancy map images 

- Test set of both synthetic and real  
Run 2 & 3 anomalies 

- Autoencoder model: ResNet for both 
encoding and decoding  

- Preprocessing to take into account  
variable spatial response and  
time-dependent nature of faults

Successful commissioning tests 
 from last year run!

https://indico.cern.ch/event/1106990/contributions/4991222/
https://cds.cern.ch/record/2839738?ln=en
https://indico.cern.ch/event/1078970/contributions/4833337/
https://cds.cern.ch/record/2812026?ln=en


Computing aspects



ML for particle flow reconstruction
• General effort in the experimental community to replace standard rule-based 

reconstruction algorithms with more computationally efficient and scalable ML models 
in view of future increased challenges 

• One example in CMS is the Particle flow (PF) algorithm:  
it combines information from all subdetector  
to reconstruct particles and thus improve the resolution 

- ex. track + hadronic energy 
= charged hadron 

- ex. no track + electromagnetic energy 
= photon 

• It starts from calorimeter clusters & tracks  
and outputs particle candidates  
→ replace with ML model
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ML for particle flow reconstruction
• Model based on dynamic graph CNN 

generating on the fly multiple internal  
kNN graphs based on embedded features 

• Per-particle loss function to simultaneously  
perform multi-classification  
and regression tasks 

• First version target baseline particle flow  
reconstruction → does not allow to do  
better than that 

• Second version target generator-level 
information → can one improve response versus baseline?
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ML for particle flow reconstruction
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• Overall, a good particle-level 
agreement is observed 
between PF and MLPF algos 

• Missing transverse energy 
mismodelling under 
investigation 

• Using gen-level information 
gives similar performance

ACAT ‘21

Eur. Phys. J. C (2021) 81: 381

ACAT ‘22

https://arxiv.org/abs/2203.00330
https://link.springer.com/article/10.1140/epjc/s10052-021-09158-w
https://indico.cern.ch/event/1106990/contributions/4998026/


Computing infrastructure
• A crucial metric when developing ML models is the computational efficiency 

• Cannot exploit full ML power without extensive work to support and optimize ML 
inference in the CMS software 

- continuous improvements in supporting 
direct inference on local GPU/CPU 

- promising effort in supporting inference 
as a service on cloud resources
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First results from MLPF in standalone setup promising: 
TENSORFLOW implementation and exported to ONNX

See CHEP 2023 this May for full results 
in CMS software stack!

Current CMS software support for ML

https://www.jlab.org/conference/CHEP2023


ML for triggering
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HL-LHC EVENT PROCESSING 5

1 ns 1 μs 1 s1 ms

Compute 
Latency

FPGAs CPUs CPUs

High-Level 
Trigger

7.5 kHz 
1 MB/evt

40 MHz
L1 Trigger

750 kHz

Offline

Challenges:  
Each collision produces O(103) particles 
The detectors have O(108) sensors  
Extreme data rates of O(100 TB/s)

ASICs

Exabyte-scale 
datasets

GPUsGPUs

FPGAs

Focus of this talk From Javier’s talk on Tuesday

Thanks to advances in computing 
tools/infrastructures DL possible in 
CMS HLT since Run 2 & SOA models 
like graph-based tagger possible in 
Run 3 data taking!

https://indico.fnal.gov/event/21471/contributions/259113/


ML for triggering
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HL-LHC EVENT PROCESSING 5
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Extreme data rates of O(100 TB/s)

ASICs
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Focus of this talk From Javier’s talk on Tuesday

Thanks to advances in computing 
tools/infrastructures DL possible in 
CMS HLT since Run 2 & SOA models 
like graph-based tagger possible in 
Run 3 data taking!

Development of tool to port ML models to FPGAs 
made CMS first in deploying AI at 40 MHz in Run 3: 
few models currently in commissioning including 
anomaly detection! 

Effort also ongoing for Phase 2 developments where 
increased L1T system capabilities will allow to do 
even more!

https://indico.fnal.gov/event/21471/contributions/259113/


The CMS ML group

Computing software & hardware for ML

Conclusions
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ML for classification ML beyond classification

Goal: enable, support,  
guide and foster ML developments in CMS   
computing, physics objects and physics analyses groups 

Three subgroups coordinating multiple efforts  
to achieve the goal!

cms-conveners-ml@cern.ch

Continuous innovation in CMS on both algorithms and system side  
exploiting modern Deep Learning techniques 

Push developments today and use acquired expertise in the future at HL-LHC

http://cms-conveners-ml@cern.ch


Thank you!


