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Intro: Machine Learning @ CMS

e Growing number of applications of USING Alpl® MEASURE WHAT

machine learning techniques in CMS WAS ONCE THOUGHT
IMPOSSIBLE

- increasingly more sophisticated exploiting

g . USING MACHINE LEARNING T:0
advances from non-scientific domains
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. - : NEW PHYSIES IN WHE
- include also co-existing effort of expanding e e el e Rl

central software and hardware infrastructures = W
to enable inference and training at scale

USING ARGIFICIAL
INTELLIGENCE TOWSEARCH “FOR
NEW EXOTIC PARTLELES

- the CMS ML group at the border between
computing and physics — coordinating and
overseeing technical and innovation aspects
across the experiment
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https://cms.cern/search/node?keys=machine+learning

Intro: Machine Learning @ CMS

ML for classification: ML beyond classification:

heavy jet tagging mass and energy regression
heavy flavour jet tagging background estimation
exotic jets detector faults detection

tau leptons reconstruction & simulation
event-level (also unsupervised) triggering

Computing software & hardware for ML:
optimized inference in central software for CPU/GPU
GPU hardware on-site for software trigger system & grid sites

more powerful chips in hardware trigger system & development of portable tools*
ML-friendly central data format (NanoAOD) and scalable processing tools (Coffea)

DISCLAIMERS:

a lot ongoing that cannot be covered today

§ ., for more info contact CMS ML group conveners!
see Javier’s talk o



http://cms-conveners-ml@cern.ch
https://indico.fnal.gov/event/21471/contributions/259113/
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Heavy jet tagging

e Identification of jets arising from hadronization of boosted
W/Z/H/top is a key task in LHC physics:

- new physics searches, standard model measurements, higgs sector
ex: Graviton or Radion

- unique signature from hadrons merging in single jet production q
with substructure

- exploit to suppress overwhelming background from multijet
processes in most sensitive all-hadronic and semi-leptonic
channels

e A topic of interest in both theory and experiment communities q
since ~ 30 years

* Recent years advancement in ML enabled more powerful algorithms

SIGNAL JETS

BACKGROUND JET s

(single q/g) VS

t—-UJg—qgQqq




Heavy jet tagging @ CMS

e A variety of ML algorithms developed and deployed in CMS since beginning of Run 2

e SOA: ParticleNet — first graph-based tagger at LHC !

- [ O x @ .X/"" o x 0. ¢ S, .x”-’
jet raw representation b.ased on. o e IS ey 3N 0
point cloud formed by its constituents . // T .//'\. . .®
jid é i1 jig é i = @ ®

- a dynamic graph CNN architecture used to
fully exploit inherent permutation invariance of the H. Ou ef al.: Phys. Rev. D 101. 056019 (2020)
representation (“EdgeConv” block)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019
https://cds.cern.ch/record/2707946/
http://cms-results.web.cern.ch/cms-results/public-results/publications/JME-18-002/

Heavy flavour jet tagging @ CMS

e Also heavy flavour (b/c) jet tagging allows to access a variety of rare physics processes

* Unique signature due to sizeable lifetime of B/C hadrons [c7 = O(mm)]
resulting in displaced tracks and secondary vertices

b jet
* We have built classifiers based on ML for HF jets \
at the I_HC Since Run 1 —————— impact
parameter
- successful in reducing time to discovery! Y- ondary
vertex
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.121801

Heavy flavour jet tagging @ CMS

e Also heavy flavour (b/c) jet tagging allows to access a variety of rare physics processes

* Unique signature due to sizeable lifetime of B/C hadrons [c7 = O(mm)]
resulting in displaced tracks and secondary vertices

b jet
e We have built classifiers based on ML for HF jets - b hadror \
at the LHC since Run1 impact
parameter
- successful in reducing time to discovery! Y- ondary
vertex
e Application of more powerful ML architectures b}
. . @ - primary vertex
allowed recently setting the most stringent

constraints on HH production!

CMS
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.081802

Heavy flavour jet tagging @ CMS

* Brand new development in CMS uses particle-based transformers — learn which
neighbour particles are relevant through attention mechanism

- input embedding of both single particle and pair-wise features information

- the pair-wise features encode physics principles = modifiers of standard dot-product
attention weights in Particle Attention Block

L blocks Class token i
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Interactions —» :§ ........

é (a) Particle Transformer

Particle Attention Block

P-MHA(Q, K, V) = SoftMax(QK”/ Vdx + U )V
|
- I —
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(b) Particle Attention Block H. Ou et al.: 8.I'X1V220203772 CMS-DP-2 02 2/050



https://arxiv.org/abs/2202.03772
https://cds.cern.ch/record/2839920/

Heavy flavour jet tagging @ CMS

e Recent development in CMS uses particle-based transformers — learn which neighbour
particles are relevant through attention mechanism

- input embedding of both single particle and pair-wise features information

- the pair-wise features encode physics principles = modifiers of standard dot-product
attention weights in Particle Attention Block

- Class Attention Block: compute the attention between a global class and all the particles via
standard Multi-Head Attention (MHA)

L blocks Class token i
AL
rd N\
Particle Particle Particle At(tllais
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x° Block x! Block Block | 0¢
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Class
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(a) Particle Transformer

MHAcC( Qe , Kc , Vo ) = SoftMax( QcK(w/ Vdrc )V

K\J\L/’Xv/\

Qc = WycTalass + bgc Kc = Wikez + brc Ve = Wycz + by drc: dimension of K¢

concat

~
Zz = [mclassa xL]

Xclass

CMS-DP-2022-050 (c) Class Attention Block 10



https://cds.cern.ch/record/2839920/

Heavy flavour jet tagging @ CMS

e Comparison with current default CMS algo
Deeplet based on 1D CNN architecture on

per-particle plus b-tagging features

e Known challenges in tagging high pr jets
— worse reconstruction of key features like
impact parameter and secondary vertices

e Introduction of pair-wise features mitigate
performance loss thanks to increased

expressivity

Finalising integration in CMS software...
Looking forward for deployment in Run 3

analyses — first attention-based tagger at LHC!

CMS-DP-2022-050
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https://iopscience.iop.org/article/10.1088/1748-0221/15/12/P12012
https://cds.cern.ch/record/2839920/
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ML for background estimation

e Recent exciting CMS results reporting observation of the rare 4 top quarks production
process at 40 for combination of multiple final states [CMS-TOP-21-005 — Submitted to PLB|

§ CERN-EP-2023-014
MS, 2023/03/08

\

’f//m

L N \
A \\
CMS-TOP-21-005

Evidence for four-top quark production in proton-proton
collisions at v/s = 13 TeV

The CMS Collaboration

OBSERVATION JUST REPORTED LAST WEEK AT MORIOND!

13


http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-21-005/

ML for background estimation

e Recent exciting CMS results reporting evidence for the rare 4 top quarks production
process at 40 for combination of multiple final states [CMS-TOP-21-005 — Submitted to PLB|

e Analysis of data in the challenging all-hadronic final state performed for the first time

- after multijet preselection a BDT

is trained to separate signal vs 1#+QCD background

— final discriminating observable

- multiple signal categories using
tagged resolved tops (Ngr),
tagged boosted tops (Ng1) and Hr

Hr (GeV)

- background estimation with
Neural Autoregressive Flows novel in CMS!

> 15004

1500+
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12004

Baseline selections:
N(leptons) = 0, N(jets) > 9, N(b-jets) > 3, HT > 700 GeV

S

13004

| 1004
10004
9200 +
800 +
700 +

Summary of SR Categories

8 categories

2 categories 2 categories

L

NprT= | NrT=> 2
Ngr> |
Top Multiplicity
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http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-21-005/

ML for background estimation

e Start with defining 5 CRs as in “extended” ABCD method N(bJets)

(i.e. number of CRs > 3) si
Y | C D (SR)
e Main idea: for each CR learn transformation “T L
7. P — P using NAF as universal approximator s~~XA """""" S
of bijective transformation with sigmoidal function & N .
PN = (X" X X|7) D

e 9" tt+QCD background = data - (¢ftf + minor MC backgrounds)
o 9 . tt simulation

—_ . .
* X :input variables

¢y : output variables

} BDT and HT shapes

e C : conditions, including control variables N(Jets) and N(bJets)

plus preceding inputs
* |oss function: maximum-mean-discrepancy

e activation function: sigmoid

15



ML for background estimation

]\6.
e After training in the 5 CRs, the transformation between B
MC and data is applied to tf simulation in the SR .
— morphed to predict the shape
of the 17+QCD multijet background in the SR TEd)
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http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-21-005/
http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-21-005/

ML for detector health monitoring

 The online data quality monitoring (DQM) of CMS aims at detecting faults almost
in real-time — O(s)

— . Ex: CMS ECAL barrel
- initiate reaction from detector experts to promptly
identify and fix problems 85CMS Prelimina EB 2018 (13 Te

- minimize downtime, maximize time for physics!

e Standard workflow: set of histograms that are
populated with a set of events seen by the detector

0 . | | .
85 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340, 360

* Challenge: anomalies come in all shapes and sizes

— impossible to anticipate all possible failure modes GREEN = good
RED = bad
o Why ML can h@lp? BROWN = known problem
no data (which may or may not be
problematic — depends on context).

- provides robust anomaly detection and localization
(via semi/unsupervised learning)

- eliminate the need for hand coded rules for every possible fault

- automated adaptivity to changing running conditions and experimental setup

17



ML for detector health monitoring

* First development using an autoencoder in production since 2017 for Drift Tubes
subsystem in muon detectors — first example of ML for online DQM at LHC!

e More parallel efforts now ongoing mostly based on autoencoders under or planned
commissioning in Run 3 data taking:

- Resistive Plate Chambers subsystem of muon detectors [ACAT ‘22]

- Electromagnetic and Hadronic Calorimeters subsystems [CMS-DP-2022-043, IML workshop]

- Pixel Silicon Tracker subsystem [CMS-DP-2022-013]

Metric: False Discovery Rate (FDR)
Electromagnetic Calorimeter example: at 99% anomaly detection

(i.e. what fractions of shifter calls will be false alarm?)
- Training set of certified GOOD

occupancy map imaes

. ; Missing Hot T

- Test set of both synthetic and real Sy | e e o

Run 2 & 3 anomal les Barrel Barrel  EE+ EE- Barrel EE+ EE-

No correction 3.6 % bl 7 86 % 87 % 2.8 % 001% @ <1/30k
- Autoencoder model: ResNet for both
: : B e 31% 9% | 13% | 14% | 29% | 006% | 0.05%

encoding and decoding correction

P _ o i i Sr’“tiﬂi.ﬂnd i e s 8O | GBI <l | <alienls | ilis |
- Preprocessing to take Into account e T

variable spatial response and Sl e e

(See Backup). validation set

time-dependent nature of faults s


https://indico.cern.ch/event/1106990/contributions/4991222/
https://cds.cern.ch/record/2839738?ln=en
https://indico.cern.ch/event/1078970/contributions/4833337/
https://cds.cern.ch/record/2812026?ln=en

ML for detector health monitoring

* First development using an autoencoder in production since 2017 for Drift Tubes
subsystem in muon detectors — first example of ML for online DQM at LHC!

e More parallel efforts now ongoing mostly based on autoencoders under or planned
commissioning in Run 3 data taking:

- Resistive Plate Chambers subsystem of muon detectors [ACAT ‘22]

- Electromagnetic and Hadronic Calorimeters subsystems [CMS-DP-2022-043, IML workshop]

- Pixel Silicon Tracker subsystem [CMS-DP-2022-013]

Successful commissioning tests

Electromagnetic Calorimeter example:
from last year run!

- Training set of certified GOOD
occupancy map images ML Quality plot from ECAL Online DQM during a Run3 run

OMS Prelimina EB 2022 (13.6 Te

- Test set of both synthetic and real
Run 2 & 3 anomalies

ieta

- Autoencoder model: ResNet for both

encoding and decoding
Bad towers

- Preprocessing to take into account detected
Variable Spatial reSponse and 85 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340,360

time-dependent nature of faults .


https://indico.cern.ch/event/1106990/contributions/4991222/
https://cds.cern.ch/record/2839738?ln=en
https://indico.cern.ch/event/1078970/contributions/4833337/
https://cds.cern.ch/record/2812026?ln=en
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ML for particle flow reconstruction

e General effort in the experimental community to replace standard rule-based
reconstruction algorithms with more computationally efficient and scalable ML models
in view of future increased challenges

e One example in CMS is the Particle flow (PF) algorithm:
it combines information from all subdetector
to reconstruct particles and thus improve the resolution

- ex. track + hadronic energy ®
= charged hadron

- ex. no track + electromagnetic energy L
= photon i

\\h- -

Tracker

e [t starts from calorimeter clusters & tracks — Eectromagnstic

J.

M

Calerfmeter
and outputs particle candidates Hadron o
Calorimeter Superconducting
— re p I ace With M L m Od el Solenoid Iron return yoke interspersed
with muon chambers |
Muon Electron Charged hadron (e.g. pion)

- = =-Neutral hadron (e.g. neutron) ----. Photon

21



ML for particle flow reconstruction

* Model based on dynamic graph CNN
generati ng on th@ ﬂy m u Iti p l e i nternal Event as input set Event as graph Transformed inputs

— X={x),A=A. = (h.
kNN graphs based on embedded features X = {x) bk A =4 H = {h)
® 9 Graph building Message passing
e Per-particle loss function to simultaneously o= ~—[EIE — 1 ! o — I —
perform multi-classification . TXlw=A \ G(X,Alw)=H
and regression tasks
Target set Y = {y;} Output set Y' = {y;} l
Decoding
M| — / Elementwise loss L(y;, /) | twi
HY —Y ” = Z L(yj’ yj) ’ classification&regresjsiojn ‘_
j€event <—> D0, by lw) = y;

I\ o -
L(yj.y J ) = CLS(cj, € ) +aREG(p;, p J ) x; = [type, prs Egcars Encars 1> s Nouters Pouter» 9 -+ type € {track, cluster}

y; = [PID, pr, E, 31, ¢,q, ...], PID € {none, charged hadron, neutral hadron, 7, =, 1)

hi = R256
Trainable neural networks: &, &, J
° FirSt VerSion target baseline particle fIOW ® - track, I - calorimeter cluster, @ - encoded element

. - target (predicted) particle, - no target (predicted) particle
reconstruction — does not allow to do

better than that

* Second version target generator-level
information — can one improve response versus baseline?

22



Total number of particles / bin

PF / MLPF

—
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Number of jets / GeV
o
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o
i

ML for particle flow reconstruction
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MET pr [GeV]

Eur. Phys. ]. C (2021) 81: 381

ACAT ‘21

ACAT ‘22

* Overall, a good particle-level
agreement is observed
between PF and MLPF algos

* Missing transverse energy
mismodelling under
Investigation

e Using gen-level information
gives similar performance
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https://arxiv.org/abs/2203.00330
https://link.springer.com/article/10.1140/epjc/s10052-021-09158-w
https://indico.cern.ch/event/1106990/contributions/4998026/

Computing infrastructure

e A crucial metric when developing ML models is the computational efficiency

e Cannot exploit full ML power without extensive work to support and optimize ML

inference in the CMS software
Current CMS software support for ML
- continuous improvements in supporting

direct inference on local GPU/CPU

TensorFlow+Keras PyTorch scikit-learn XGBoost

(< Qeeam XfB

torch.onnx

- promising effort in supporting inference
as a service on cloud resources

Training engine
(Python in your env.)

cmsml default
defau}t
saved model ik thonnx sklear‘n onnx )
CMS simulation Preliminary Run 3 (14 TeV)
|—|1OO||||;|||x|||||||||||||xx||1|| ;
G>J B i Inference with ONNXRuntime in a single CPU thread, 7] PR ...... . Y XY 7/ Hemesesecscaases
Nl i single GPU stream on NVIDIA RTX2060S 8GB. B v : i . .
() ! ! Not a production-like setup. Synthetic inputs. £ ' 4 : ' 4
¥ Model throughput only, no data preparation. go ey ] : : s
E ! g ! Perlforma'nce vary depending on the chosen o ; E E '
I; 50 __ i E i optimizations and hyperparameters. ] 8 é . : E
= =t g5 i XLA/AOT : TensorFlow ONNX i PyTorch
B 2 = St . : H
= [ £ = ] D (cru
% O pree : | € TR it : . s
- 0 5000 10000 15000 20000 25000 30000 R ’ = in development

PFElements per event

CMS Simulation Preliminary __Run 3 (14TeV)  First results from MLPF in standalone setup promising:

00 et e s v e ;

m = a ° °

= | e e O e |  TENSORFLOW implementation and exported to ONNX
@O0F 1 EEmRm E

o B 5  oeesmnme - .

= , : See CHEP 2023 this May for full results

D- : | L L | | L | L L I L | | L | | L | L | | L L | | L | L L : M '

O OO 5000 10000 15000 20000 25000 30000 In CMS SOftware StaCk°

PFElements per event ’4


https://www.jlab.org/conference/CHEP2023

ML for triggering

Compute From Javier’s talk on Tuesday
Latency
" 1ns 1s
7.5 kHz
1 MB/evt
—
Offline
CPUs

FPGAs

Exabyte-scale
datasets

Thanks to advances in computing
tools/infrastructures DL possible in
CMS HLT since Run 2 & SOA models

like graph-based tagger possible in
Run 3 data taking!

25


https://indico.fnal.gov/event/21471/contributions/259113/

ML for triggering

Compute From Javier’s talk on Tuesday
Latency

1 ms 1s

’b‘

1 ns

7.5 kHz
1 MB/evt

— (i

%
2. ¢
/'\9 Q

7, Offline
9@, l,e/
- CPUs CPUs
GPUs GPUs
FPGAs

Development of tool to port ML models to FPGAs

made CMS first in deploying Al at 40 MHz in Run 3:

few models currently in commissioning including
anomaly detection!

Effort also ongoing for Phase 2 developments where
increased L1T system capabilities will allow to do
even more!

Exabyte-scale
datasets

Thanks to advances in computing
tools/infrastructures DL possible in
CMS HLT since Run 2 & SOA models
like graph-based tagger possible in
Run 3 data taking!
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Conclusions

Continuous innovation in CMS on both algorithms and system side
exploiting modern Deep Learning techniques

Push developments today and use acquired expertise in the future at HL-LHC

ML for classification ML beyond classification

Computing software & hardware for ML

L2 Group: Machine Learning

Goal: enable, support,
guide and foster ML developments in CMS v

computing, physics objects and physics analyses groups = gregor kasiecka Jennifer Ngadiuba
S ———————

Three subgroups coordinating multiple efforts
to achieve the goal!

cms-conveners-ml@cern.ch
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http://cms-conveners-ml@cern.ch
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