

Astrophysical searches for dark matter with neural simulation-based inference

Based on 2208.12825; Nguyen, SM, Williams, Necib arXiv:2110.06931; SM, Cranmer

Siddharth Mishra-Sharma

NSF Al Institute for Artificial Intelligence and Fundamental Interactions (IAIFI)

Aspen Winter 2023 March 29, 2023

Parameters of interests, θ

Data, *X*Observations

Parameters of interests, θ

 $p(x | \theta)$ Likelihood function

Data, *x*Observations

Parameters of interests, θ

Latent variables, z

(Modeled) Parameters other than θ which participate in the data-generation process

Data, *X*Observations

$$p(x | \theta) = \int dz p(x, z | \theta)$$
Likelihood function

Parameters of interests, θ

Latent variables, z

(Modeled) Parameters other than θ which participate in the data-generation process

Data, *X*Observations

$$p(x | \theta) = \int dz p(x, z | \theta)$$
Likelihood function

$$p(x \mid \theta) \propto e^{\left(-\frac{v_{\text{obs}} - v_{\text{model}}(\theta)}{\sigma_{v_{\text{obs}}}}\right)^2}$$

20

25

Likelihood is often intractable...

Data analysis typically requires simplifying assumptions

Siddharth Mishra-Sharma (MIT/IAIFI) | Aspen Winter 2023

Likelihood is often intractable...

Data analysis typically requires simplifying assumptions

Pulsars or DM

Dwarf galaxies

Self-interactions

Likelihood is often intractable...

Data analysis typically requires simplifying assumptions

How can we do inference without compromise?

Dwarf galaxies

Self-interactions

Outline

Characterizing the Galactic Center Excess

Inferring dark matter halo shapes in dwarf galaxies

Possible explanations

Astrophysics

Spectrum and morphology consistent with millisecond pulsar expectation

"Clumpier" signal

Modeling PS populations: ingredients

Modeling PS populations: ingredients

Parameters of interest

PS population parameters

$$\theta = \{A, n, S\}$$

Observables γ -ray map x

Parameters of interest

PS population parameters

$$\theta = \{A, n, S\}$$

Latent variables

Individual PS properties

$$n_{\mathrm{PS}}, \{z_{\mathrm{PS},i}\}$$

Observables

 γ -ray map x

$$p\left(n_{\text{PS}} \mid \theta_{\text{PS}}\right) \prod_{i}^{n_{\text{PS}}} p\left(z_{\text{PS},i} \mid \theta_{\text{PS}}; T_{\text{PS}}\right) \times p\left(x \mid \theta_{\text{smooth}}, \left\{z_{\text{PS},i}\right\}\right)$$

Parameters of interest

PS population parameters

$$\theta = \{A, n, S\}$$

Latent variables

Individual PS properties

$$n_{\text{PS}}, \{z_{\text{PS},i}\}$$

Observables

 γ -ray map x

We can easily write a simulator to sample from

$$p(x, z \mid \theta) = p\left(n_{\text{PS}} \mid \theta_{\text{PS}}\right) \prod_{i}^{n_{\text{PS}}} p\left(z_{\text{PS}, i} \mid \theta_{\text{PS}}; T_{\text{PS}}\right) \times p\left(x \mid \theta_{\text{smooth}}, \left\{z_{\text{PS}, i}\right\}\right)$$

Prediction (Simulation)

Parameters of interest

PS population parameters

$$\theta = \{A, n, S\}$$

Latent variables

Individual PS properties

$$n_{\mathrm{PS}}, \{z_{\mathrm{PS},i}\}$$

Observables

 γ -ray map x

$$p(x \mid \theta) = \sum_{n_{\text{PS}}} \int d^{n_{\text{PS}}} z_{\text{sub}} \quad p\left(n_{\text{PS}} \mid \theta_{\text{PS}}\right) \prod_{i}^{n_{\text{PS}}} p\left(z_{\text{PS},i} \mid \theta_{\text{PS}}; T_{\text{PS}}\right) \quad \times \quad p\left(x \mid \theta_{\text{smooth}}, \left\{z_{\text{PS},i}\right\}\right)$$

The key quantity for inference is the marginal likelihood

Inference

Parameters of interest

PS population parameters

$$\theta = \{A, n, S\}$$

Latent variables

Individual PS properties

$$n_{\text{PS}}, \{z_{\text{PS},i}\}$$

Observables

 γ -ray map x

$$p(x \mid \theta) = \sum_{n_{\text{PS}}} \int d^{n_{\text{PS}}} z_{\text{sub}}$$

$$p(x \mid \theta) = \sum_{n_{\text{PS}}} \int d^{n_{\text{PS}}} z_{\text{sub}} \left[p\left(n_{\text{PS}} \mid \theta_{\text{PS}}\right) \prod_{i}^{n_{\text{PS}}} p\left(z_{\text{PS},i} \mid \theta_{\text{PS}}; T_{\text{PS}}\right) \right] \times p\left(x \mid \theta_{\text{smooth}}, \{z_{\text{PS},i}\}\right)$$

The key quantity for inference is the marginal likelihood

Inference

Simplifying the problem: pixel-wise conditional independence

Assume pixel-wise conditional independence \Longrightarrow model photon counts PDF as a <u>doubly-stochastic Poisson process</u>

NPTF = Non-Poissonian Template Fitting

$$p(x \mid \theta) \approx \prod_{p} p(x^p \mid \theta)$$

Simplifying the problem: pixel-wise conditional independence

Assume pixel-wise conditional independence \Longrightarrow model photon counts PDF as a <u>doubly-stochastic Poisson process</u>

Malyshev & Hogg [ApJ 2011] Lee et al [JCAP 2014]

What could go wrong?

What could go wrong?

Diffuse foregrounds make up most of the observed emission in the Galactic Center

What could go wrong?

Diffuse foregrounds make up most of the observed emission in the Galactic Center

Promising direction: build/apply better diffuse models

Buschmann et al [PRD 2020] Pohl et al [ApJ 2022], Macias et al [JCAP 2019]

Simulation-based inference (SBI)

Simulation-based inference (SBI) github.com/smsharma/awesome-neural-sbi README.md Simulator **Parameters** θ incomplete -- contributions are welcome! Contents

Prediction:

Inference:

Well-n

Simula

Likelih

Inferer

Going beyond the counts PDF: neural posterior estimation

Going beyond the counts PDF: neural posterior estimation

Going beyond the counts PDF: neural posterior estimation

Complementary method using Bayesian neural networks:

List et al [PRL 2021] List et al [PRD 2021]

Qualitatively similar results

Application to Fermi γ -ray data

Application to Fermi γ -ray data

Exploiting more information in the γ -ray maps results in smaller PS component compared to NPTF

Differentiable probabilistic programming: the future?

Society if we gave Bayesians billions of dollars for their MCMC

Differentiable probabilistic programming: the future?

Outline

Characterizing the Galactic Center Excess

Inferring dark matter halo shapes in dwarf galaxies

Dwarf galaxies and halo shapes

Dwarf galaxies are ideal targets for probing the shapes of DM halos

Dwarf galaxies and halo shapes

Dwarf galaxies are ideal targets for probing the shapes of DM halos

Dwarf galaxies and halo shapes

Dwarf galaxies are ideal targets for probing the shapes of DM halos

$$dn(\overrightarrow{x}, \overrightarrow{v}) \propto f(\overrightarrow{x}, \overrightarrow{v}) d^3x d^3v$$

Phase space density and its moments

$$n(\overrightarrow{x}) = \int d^3v f(\overrightarrow{x}, \overrightarrow{v})$$

$$\langle v_i(\overrightarrow{x}) \rangle = \int d^3v v_i f(\overrightarrow{x}, \overrightarrow{v})$$

$$\sigma_{ij}(\overrightarrow{x}) = \int d^3v (v_i - \overline{v}_i)(v_j - \overline{v}_j) f(\overrightarrow{x}, \overrightarrow{v})$$

Phase-space density
$$dn(\overrightarrow{x}, \overrightarrow{v}) \propto f(\overrightarrow{x}, \overrightarrow{v}) d^3x d^3v$$

Phase space density and its moments

$$n(\overrightarrow{x}) = \int d^3v f(\overrightarrow{x}, \overrightarrow{v})$$

$$\langle v_i(\overrightarrow{x}) \rangle = \int d^3v v_i f(\overrightarrow{x}, \overrightarrow{v})$$

$$\sigma_{ij}(\overrightarrow{x}) = \int d^3v (v_i - \overline{v}_i)(v_j - \overline{v}_j) f(\overrightarrow{x}, \overrightarrow{v})$$

Jeans equations connect moments of $f(\vec{x}, \vec{v})$ to $\Phi(\vec{x})$

$$n\langle v_i \rangle \frac{\partial \langle v_j \rangle}{\partial x_i} + n \frac{\partial \Phi}{\partial x_j} + \frac{\partial \left[n \sigma_{ij}^2 \right]}{\partial x_i} = 0$$

Limitations of Jeans modeling

Assumptions about the data-generating process

Challenging to include:

- Non-equilibrium effects
- Asphericity
- Baryonic feedback
- Host potential

Limitations of Jeans modeling

Assumptions about the data-generating process

Challenging to include:

- Non-equilibrium effects
- Asphericity
- Baryonic feedback
- Host potential

Reliance on moments of $f(\overrightarrow{x}, \overrightarrow{v})$

$$n\langle v_i \rangle \frac{\partial \langle v_j \rangle}{\partial x_i} + n \frac{\partial \Phi}{\partial x_j} + \frac{\partial \left[n \sigma_{ij}^2 \right]}{\partial x_i} = 0$$

- Simplified description of the data = loss of information
- Typically only 3 phase-space coordinates available:

$$\{\vec{r}, \overrightarrow{v}\} \longrightarrow \{\vec{r}_{\perp}, \overrightarrow{v}_{\text{los}}\}$$

• Noisy estimates of $\sigma_r^2(r)$, n(r) and derivatives

Limitations of Jeans modeling

Assumptions about the data-generating process

Challenging to include:

- Non-equilibrium effects
- Asphericity
- Baryonic feedback
- Host potential

Reliance on moments of $f(\overrightarrow{x}, \overrightarrow{v})$

$$n\langle v_i \rangle \frac{\partial \langle v_j \rangle}{\partial x_i} + n \frac{\partial \Phi}{\partial x_j} + \frac{\partial \left[n \sigma_{ij}^2 \right]}{\partial x_i} = 0$$

- Simplified description of the data = loss of information
- Typically only 3 phase-space coordinates available:

$$\{\vec{r}, \overrightarrow{v}\} \longrightarrow \{\vec{r}_{\perp}, \overrightarrow{v}_{\text{los}}\}$$

• Noisy estimates of $\sigma_r^2(r)$, n(r) and derivatives

Graph neural networks for stellar kinematics

Graph neural networks for stellar kinematics

Inferring the dark matter profile

Distance from center of halo

Inferring the dark matter profile

GNN + Simulation-based Traditional method $\log_{10} \left(r_s / \text{kpc} \right)$ $M_{\odot} \text{kpc}^{-3}$

Inferring the dark matter profile

Distance from center of halo

- Leverage more information → greater sensitivity
- Fewer assumptions → more flexible
- Significantly faster analysis

Sensitivity to projection

Applications to hydrodynamic simulations

Wheeler et al [MNRAS 2019]

Applications to hydrodynamic simulations

Wheeler et al [MNRAS 2019]

Conclusions

Modeled components

Data modeled as a Poisson realization of a linear combination of spatial templates

$$= Pois \left(\theta_{bub} \times \begin{array}{c} + \theta_{iso} \times \\ \end{array} + \theta_{iso} \times \begin{array}{c} + \theta_{PS} \times \\ \end{array} + \theta_{DM} \times \begin{array}{c} + \theta_{dif} \times \\ \end{array} \right)$$

Modeled components

Data modeled as a Poisson realization of a linear combination of spatial templates

Tests on simulations: dark matter signal

Tests on simulations: point source signal

NPTF vs

NPTF vs

Exploiting more information in the γ -ray maps results in <u>smaller</u>, but <u>still significant PS-like component</u>

Robustness tests

Generally well-behaved under known forms of systematic mismodeling

Robustness tests

Generally well-behaved under known forms of systematic mismodeling

Dwarf spheroidal galaxies

Dwarf spheroidal galaxies

Dwarf spheroidal galaxies

Fornax dwarf galaxy

Dwarf galaxies and halo shapes

Dwarf galaxies are ideal targets for probing the shapes of DM halos

Dwarf galaxies and halo shapes

Dwarf galaxies are ideal targets for probing the shapes of DM halos

Dwarf galaxies and halo shapes

Dwarf galaxies are ideal targets for probing the shapes of DM halos

$$dn(\overrightarrow{x}, \overrightarrow{v}) \propto f(\overrightarrow{x}, \overrightarrow{v}) d^3x d^3v$$

Phase space density and its moments

$$n(\overrightarrow{x}) = \int d^3v f(\overrightarrow{x}, \overrightarrow{v})$$

$$\langle v_i(\overrightarrow{x}) \rangle = \int d^3v v_i f(\overrightarrow{x}, \overrightarrow{v})$$

$$\sigma_{ij}(\overrightarrow{x}) = \int d^3v (v_i - \overline{v}_i)(v_j - \overline{v}_j) f(\overrightarrow{x}, \overrightarrow{v})$$

Phase-space density $dn(\overrightarrow{x}, \overrightarrow{v}) \propto f(\overrightarrow{x}, \overrightarrow{v}) d^3x d^3v$

Phase space density and its moments

$$n(\overrightarrow{x}) = \int d^3v f(\overrightarrow{x}, \overrightarrow{v})$$

$$\langle v_i(\overrightarrow{x}) \rangle = \int d^3v v_i f(\overrightarrow{x}, \overrightarrow{v})$$

$$\sigma_{ij}(\overrightarrow{x}) = \int d^3v (v_i - \overline{v}_i)(v_j - \overline{v}_j) f(\overrightarrow{x}, \overrightarrow{v})$$

Jeans equations connect moments of $f(\vec{x}, \vec{v})$ to $\Phi(\vec{x})$

$$n\langle v_i \rangle \frac{\partial \langle v_j \rangle}{\partial x_i} + n \frac{\partial \Phi}{\partial x_j} + \frac{\partial \left[n \sigma_{ij}^2 \right]}{\partial x_i} = 0$$

Limitations of Jeans modeling

Assumptions about the data-generating process

Challenging to include:

- Non-equilibrium effects
- Asphericity
- Baryonic feedback
- Host potential

Limitations of Jeans modeling

Assumptions about the data-generating process

Challenging to include:

- Non-equilibrium effects
- Asphericity
- Baryonic feedback
- Host potential

Reliance on moments of $f(\overrightarrow{x}, \overrightarrow{v})$

$$n\langle v_i \rangle \frac{\partial \langle v_j \rangle}{\partial x_i} + n \frac{\partial \Phi}{\partial x_j} + \frac{\partial \left[n \sigma_{ij}^2 \right]}{\partial x_i} = 0$$

- Simplified description of the data = loss of information
- Typically only 3 phase-space coordinates available:

$$\{\vec{r}, \overrightarrow{v}\} \longrightarrow \{\vec{r}_1, \overrightarrow{v}_{los}\}$$

- Degeneracy between DM density profile and anisotropy configuration of stellar orbits
- Noisy estimates of $\sigma_r^2(r)$, n(r) and derivatives

Limitations of Jeans modeling

Assumptions about the data-generating process

Challenging to include:

- Non-equilibrium effects
- Asphericity
- Baryonic feedback
- Host potential

Reliance on moments of $f(\overrightarrow{x}, \overrightarrow{v})$

$$n\langle v_i \rangle \frac{\partial \langle v_j \rangle}{\partial x_i} + n \frac{\partial \Phi}{\partial x_j} + \frac{\partial \left[n \sigma_{ij}^2 \right]}{\partial x_i} = 0$$

- Simplified description of the data = loss of information
- Typically only 3 phase-space coordinates available:

$$\{\vec{r}, \overrightarrow{v}\} \longrightarrow \{\vec{r}_{\perp}, \overrightarrow{v}_{\text{los}}\}$$

- Degeneracy between DM density profile and anisotropy configuration of stellar orbits
- Noisy estimates of $\sigma_r^2(r)$, n(r) and derivatives

Simulation-based inference for dwarf galaxies

Nguyen, SM et al [PRD 2023]

Simulation-based inference for dwarf galaxies

Nguyen, SM et al [PRD 2023]

Node update rule
$$h_{i+1} = \sigma \left(W^T \sum_{j \in \mathcal{N}(i)} h_j \right)$$

Node update rule
$$h_{i+1} = \sigma \left(W^T \sum_{j \in \mathcal{N}(i)} h_j \right)$$

Goal: $model p(\theta)$

Goal: $model p(\theta)$

Goal: model $p(\theta)$

 $\mathcal{N}(u)$

One-to-one transformation

Tractable f^{-1} and $\det \nabla f$

Target density

Goal: model $p(\theta)$

Base density

$$\mathcal{N}(u)$$

One-to-one transformation

Tractable f^{-1} and $\det \nabla f$

$$p(\theta) = \mathcal{N}\left(f^{-1}(\theta)\right) |\det \nabla f|^{-1}$$

Goal: model $p(\theta)$

Base density

 $\mathcal{N}(u)$

One-to-one transformation Tractable f^{-1} and $\det \nabla f$

Target density

$$p(\theta) = \mathcal{N}\left(f^{-1}(\theta)\right) |\det \nabla f|^{-1}$$

Efficient sampling and density estimation

Inferring the dark matter posterior

Nguyen, SM et al [PRD 2023]

Inferring the dark matter posterior

Nguyen, SM et al [PRD 2023]

Inferring the dark matter posterior

Nguyen, SM et al [PRD 2023]

Training objective:

$$\mathcal{L} = \log p_f(\theta \mid g(x))$$

Optimized simultaneously:

- Feature extractor GNN *g*
- \bullet Flow transformation f

Applications to hydrodynamic simulations

Wheeler et al [MNRAS 2019]

Applications to hydrodynamic simulations

Applications to hydrodynamic simulations

Significantly better performance!

True vs predicted DM parameters

J-factors

Sensitivity to projection

Statistical coverage

Statistical coverage

Posterior density estimation

Posterior density estimation

Posterior density estimation

Pipeline

Baryonic Physics

CDM halos of all masses typically have "cuspy" density profiles

However, baryonic feedback can "core" the inner region of a CDM halo

Internal Halo Properties

Dark matter self interactions can transfer heat throughout halo, redistributing matter distribution

