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Likelihood is often intractable…
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How can we do inference 
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Possible explanations
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FIG. 6: Left frame: The spectrum of the dark matter component, extracted from a fit in our standard ROI (1� < |b| < 20�,
|l| < 20�) for a template corresponding to a generalized NFW halo profile with an inner slope of � = 1.18 (normalized to the
flux at an angle of 5� from the Galactic Center). Shown for comparison (solid line) is the spectrum predicted from a 43.0 GeV
dark matter particle annihilating to bb̄ with a cross section of �v = 2.25⇥10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢local]

2. Right frame:
as left frame, but for a full-sky ROI (|b| > 1�), with � = 1.28; shown for comparison (solid line) is the spectrum predicted from
a 36.6 GeV dark matter particle annihilating to bb̄ with a cross section of �v = 0.75⇥ 10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢local]

2.

of the Galactic plane; masking the region with |b| < 2�

changes the preferred value to � = 1.25 in our default
ROI, and � = 1.29 over the whole sky. In contrast to
Ref. [8], we find no significant di↵erence in the slope pre-
ferred by the fit over the standard ROI, and by a fit only
over the southern half (b < 0) of the ROI (we also find
no significant di↵erence between the fit over the full sky
and the southern half of the full sky). This can be seen
directly from Fig. 5, where the full-sky and southern-
sky fits for the same level of masking are found to favor
quite similar values of � (the southern sky distribution
is broader than that for the full sky simply due to the
di↵erence in the number of photons). The best-fit values
for gamma, from fits in the southern half of the standard
ROI and the southern half of the full sky, are 1.13 and
1.26 respectively.

In Fig. 6, we show the spectrum of the emission cor-
related with the dark matter template in the default
ROI and full-sky analysis, for their respective best-fit
values of � = 1.18 and 1.28.6 We restrict to energies
50 GeV and lower to ensure numerical stability of the
fit in the smaller ROI. While no significant emission is
absorbed by this template at energies above ⇠10 GeV,
a bright and robust component is present at lower en-
ergies, peaking near ⇠1-3 GeV. Relative to the analy-
sis of Ref. [8] (which used an incorrectly smoothed dif-
fuse model), our spectrum is in both cases significantly
harder at energies below 1 GeV, rendering it more con-

6 A comparison between the two ROIs with � held constant is
presented in Appendix A.

sistent with that extracted at higher latitudes (see Ap-
pendix A).7 Shown for comparison (as a solid line) is the
spectrum predicted from (left panel) a 43.0 GeV dark
matter particle annihilating to bb̄ with a cross section
of �v = 2.25 ⇥ 10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢local]2,
and (right panel) a 36.6 GeV dark matter particle anni-
hilating to bb̄ with a cross section of �v = 0.75 ⇥ 10�26

cm3/s ⇥ [(0.4GeV/cm3)/⇢local]2. The spectra extracted
for this component are in moderately good agreement
with the predictions of the dark matter models, yielding
fits of �2 = 44 and 64 over the 22 error bars between 0.3
and 50 GeV. We emphasize that these uncertainties (and
the resulting �2 values) are purely statistical, and there
are significant systematic uncertainties which are not ac-
counted for here (see the discussion in the appendices).
We also note that the spectral shape of the dark matter
template is quite robust to variations in �, within the
range where good fits are obtained (see Appendix A).

In Fig. 7, we plot the maps of the gamma-ray sky
in four energy ranges after subtracting the best-fit dif-
fuse model, Fermi Bubbles, and isotropic templates. In
the 0.5-1 GeV, 1-3 GeV, and 3-10 GeV maps, the dark-
matter-like emission is clearly visible in the region sur-
rounding the Galactic Center. Much less central emission
is visible at 10-50 GeV, where the dark matter compo-
nent is absent, or at least significantly less bright.

7 An earlier version of this work found this improvement only in
the presence of the CTBCORE cut; we now find this hardening
independent of the CTBCORE cut.

8

0.5-1 GeV residual

 

-20-1001020 00

 

-20

-10

0

10

20

00

0

5

10

15

20

0

5

10

15

20

1
0

-6 c
o
u
n
ts

/c
m

2/s
/s

r

1-3 GeV residual

 

-20-1001020 00

 

-20

-10

0

10

20

00 

-2

0

2

4

6

8

10

12

-2

0

2

4

6

8

10

12

1
0

-6 c
o
u
n
ts

/c
m

2/s
/s

r

3-10 GeV residual

 

-20-1001020 00

 

-20

-10

0

10

20

00

0

1

2

3

4

0

1

2

3

4

1
0

-6 c
o
u
n
ts

/c
m

2/s
/s

r

10-50 GeV residual

 

-20-1001020 00

 

-20

-10

0

10

20

00 

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

1
0

-6 c
o
u
n
ts

/c
m

2/s
/s

r

FIG. 7: Intensity maps (in galactic coordinates) after subtracting the point source model and best-fit Galactic di↵use model,
Fermi bubbles, and isotropic templates. Template coe�cients are obtained from the fit including these three templates and
a � = 1.3 DM-like template. Masked pixels are indicated in black. All maps have been smoothed to a common PSF of 2
degrees for display, before masking (the corresponding masks have not been smoothed; they reflect the actual masks used in
the analysis). At energies between ⇠0.5-10 GeV (i.e. in the first three frames), the dark-matter-like emission is clearly visible
around the Galactic Center.

V. THE GALACTIC CENTER

In this section, we describe our analysis of the Fermi
data from the region of the Galactic Center, defined as
|b| < 5�, |l| < 5�. We make use of the same Pass 7 data
set, with Q2 cuts on CTBCORE, as described in the pre-
vious section. We performed a binned likelihood analysis
to this data set using the Fermi tool gtlike, dividing
the region into 200⇥200 spatial bins (each 0.05�⇥0.05�),
and 12 logarithmically-spaced energy bins between 0.316-

10.0 GeV. Included in the fit is a model for the Galac-
tic di↵use emission, supplemented by a model spatially
tracing the observed 20 cm emission [45], a model for
the isotropic gamma-ray background, and all gamma-ray
sources listed in the 2FGL catalog [46], as well as the
two additional point sources described in Ref. [47]. We
allow the flux and spectral shape of all high-significance
(
p
TS > 25) 2FGL sources located within 7� of the

Galactic Center to vary. For somewhat more distant or
lower significance sources ( = 7� � 8� and

p
TS > 25,

Spectrum and morphology consistent with DM expectation

Dark Matter

Daylan et al [PDU 2016]
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scaling by luminosity. The red line is the average of the
spectra with and without weighting by L−1/2, i.e, as-
suming volume-limited and flux-limited samples, respec-
tively. The blue and orange hatching show the 1σ and
2σ uncertainties in the red spectrum as estimated from
bootstrap resampling of the 45 MSPs. For this exer-
cise, we have adopted the fitted spectra in Table I of
Cholis et al. (2014) and have neglected measurement er-
rors, fitting errors, and distance errors.
The difference in Figure 4 between the scaled and un-

scaled spectra results from a correlation between lumi-
nosity and spectral index. Distance errors will tend to
blur this correlation; the MSP spectrum of a population
at a single distance is likely to be slightly harder than the
red line in Figure 4. Including this effect and adding mea-
surement errors would not bring the MSP spectrum into
perfect agreement with the Galactic center excess, but it
could bring the 1σ discrepancy to as little as ∼20–30%
at 500 MeV. Selecting only those MSPs with |b| > 10◦

(38 of the 45 that pass our 1–3 GeV signal-to-noise cut)
would also marginally improve the agreement with the
spectrum of the GeV excess.
The discrepancy between our estimated average MSP

spectrum and the GeV excess is only significant at the
lowest energies (<800 MeV) where Fermi’s sensitivity is
rapidly falling. Uncertainties in Galactic diffuse emis-
sion are largest here (Calore et al. 2015). As a result,
there are spectrally correlated systematic errors in the
spectrum of the GeV excess not shown in the black
stars of Figure 4. Systematic errors can be quite large,
and can also arise from the method of masking point
sources and from the assumed morphology of the excess,
among other aspects of the fitting (Daylan et al. 2014;
Calore et al. 2015). Figure 4 also shows the systematic
errors from varying the diffuse backgrounds as estimated
by Calore et al. (2015). These gray and gold hatched
regions neglect statistical errors.

7. PROSPECTS FOR RADIO DETECTIONS

Our results show that a population of disrupted glob-
ular clusters, which must exist to explain the current
clusters, naturally predicts a field population of MSPs in
the Galaxy’s inner few kpc. These MSPs satisfy the spa-
tial, spectral, and luminosity requirements imposed by
the Fermi observations. A large population of MSPs in
a nuclear star cluster is another necessary consequence
of a population of disrupted massive globular clusters.
Such a population explains the 20–40 keV X-ray emis-
sion seen by NuSTAR (Perez et al. 2015) and implies
that many of the unidentified Chandra point sources may
be MSPs (Muno et al. 2004; Perez et al. 2015). Astro-
H (Takahashi et al. 2010) will also be sensitive to high-
energy X-rays, and could confirm the NuSTAR results.
A population of ∼1000 MSPs around Sgr A* can also
explain the observed TeV emission by inverse Comp-
ton scattering of the dense interstellar radiation field
(Bednarek & Sobczak 2013).
Radio observations could individually detect our pre-

dicted MSPs and confirm their identities. However,
the bulk of the radio observations to date have fo-
cused not on scales of tens to thousands of pc, where
most of our predicted MSPs lie, but in the inner-
most pc. This was motivated by theoretical estimates
predicting ∼100–1000 pulsars formed in situ within

Fig. 4.— The average spectrum of Fermi-detected field MSPs
adopting the fitted spectral parameters of Cholis et al. (2014). The
dotted-dashed blue line is the unweighted average spectrum. The
red line has selected only those MSPs detectable based only on
their 1–3 GeV flux (45 of 59 MSPs), and is the average of the spec-
tra expected for a population at uniform distance assuming the
Cholis et al. (2014) to be volume-limited and flux-limited. These
scenarios almost certainly bracket the truth. The blue and or-
ange hatching show 1σ and 2σ sample variances as estimated us-
ing bootstrap resampling. We have neglected errors in the MSP
distances and in the spectral measurements; both would tend to
alleviate the discrepancy with the observed Galactic center excess
(Daylan et al. 2014). The error bars on the Daylan et al. (2014)
fits are only statistical; systematic errors (which are spectrally cor-
related) are neglected. The gold and gray hatching show 1σ and 2σ
systematic uncertainties (neglecting statistical errors) as estimated
by Calore et al. (2015).

0.02 pc of Sgr A* (Pfahl & Loeb 2004). More re-
cently, Faucher-Giguère & Loeb (2011) noted that the
encounter rate in the inner 1 pc of the central star clus-
ter is comparable to that of the globular cluster Terzan 5
(which has many MSPs), and estimated that up to ∼1200
MSPs may be present in this region due to the deeper
gravitational potential well of Sgr A*. The disrupted
globular cluster scenario instead predicts these MSPs to
be found over a larger region: we predict ∼1,000 MSPs
within 3 pc of Sgr A*, and a further ∼1,000 MSPs within
300 pc (2◦, see Figure 1).
MSP observations towards the Galactic center are ex-

tremely challenging because of the large dispersion mea-
sures. Radio pulses at a frequency ν are broadened by
an amount τ = (1.3 ± 0.2)(ν/GHz)−3.8±0.2 (with τ in
seconds, Spitler et al. 2014), implying that MSPs may
not be observed below ∼8 GHz. The radio intensity of
pulsars scales steeply with frequency (I ∝ ν−1.6 to ν−1.8,
Kramer et al. 1998), so high-frequency detections require
extended integration times.
While discovering and timing MSPs 0.001 pc from

the central supermassive black hole would offer tanta-
lizing measurements of general relativity and tests of
alternative theories of gravity (Wex & Kopeikin 1999;
Kramer et al. 2004; Cordes et al. 2004; Pfahl & Loeb

Boxy Bulge
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�20�1001020

` [deg]
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Figure 1: Left panel: Fermi -LAT data above 1 GeV in the inner 40�
⇥ 40� around the Galactic center. Other panels:

Spatial templates used to fit the GCE, with arbitrary normalization. From left to right: DM profile (NFW126),
boxy-bulge, nuclear bulge, X-shaped bulge.

rived using the runs with fixed spectra.
We emphasize that, given the large modeling uncer-

tainties of cosmic-ray induced �-ray emission from the
inner Galaxy, we do not explicitly include a source of
cosmic rays at the GC when modeling the di↵use com-
ponents. However, such sources are expected, e.g., from
star formation in the central molecular zone (CMZ, Gag-
gero et al. 2015; Carlson et al. 2016a,b). The associated
emission will depend on the e�ciency of cosmic-ray accel-
eration, the e↵ects of potentially strong advective winds
or anisotropic di↵usion, which are di�cult to model in
detail. In our analysis, the expected hard emission would
be instead absorbed by our Fermi Bubbles component
(see supplemental material, B.4, for a discussion).

3. RESULTS AND DISCUSSIONS

3.1. Comparison of templates

Run �2 lnL
free spectrum MSP spectrum

r5 RCG NB X 647808.1 648020.2

r5 RCG NB 647831.2 648027.5

r5 RCG 647884.7 648061.7

r5 BulgeGC 647916.5 648140.3

r5 Einasto 647961.4 648188.6

r5 NFW126 648021.8 648242.4

r5 NFW100 648049.8 648278.6

Table 1: Log-likelihood values for fits with various GCE
templates. Column 2 shows results for a unconstrained
GCE spectrum, and column 3 for a spectrum fixed to
stacked MSPs.

In Tab. 1 we compare the values of the total (Poisson
plus constraints; see Storm et al. (2017) for details) log-
likelihood, �2 ln L, from the SkyFACT runs, of the vari-
ous modifications of Run5 with di↵erent GCE templates
with constrained morphology. We find that, formally,
the combination of boxy bulge as traced by RCG and
NB (r5 RCG NB) provides a better fit to the data than

the other runs (except the one including the X-shaped
bulge, see below). The total flux associated with the
bulge is (2.1 ± 0.1) ⇥ 10�9 erg cm�2 s�1 for the compo-
nent traced by RCG and (2.3 ± 0.4)⇥10�10 erg cm�2 s�1

for the NB component (in the range 0.1–100 GeV). The
quoted errors are statistical; we emphasize that typical
systematic uncertainties from modeling assumptions (the
range of allowed modulation parameters, etc.) are gen-
erally smaller than a factor ⇠ 2.

We find that the addition of the X-shaped bulge can
only mildly improve the fit quality. Its total flux is (3 ±

1)% of that of the boxy bulge for the fixed spectrum run
(r5 RCG NB X msp). This value is only slightly smaller
than the expectations from Li & Shen (2012) and Cao
et al. (2013), who find the X-shape to be, by mass, about
6–7% of the boxy bulge (although fractions of 20–30%
(Portail et al. 2015b) and ⇠ 45% (Portail et al. 2015a)
have also been argued). We find that this component
is not critical for providing a good fit to the data (2.7�
improvement), and will concentrate subsequently on the
RCG+NB model. For a more detailed discussion of the
X-shaped bulge and the from Macias et al. (2016) see the
supplementary material B.3.

We find that RCG+NB model provides a significantly
better fit than any of the DM models. These DM profiles
can be excluded with a high significance of about 12.5�.

In Fig. 2, we show the longitudinal and latitudinal de-
pendences of the various model components compared
with Fermi -LAT data, for two di↵erent GCE models,
namely the r5 NFW126 and r5 RCG NB runs. The solid
lines correspond to the components of the r5 RCG NB run,
while the dashed lines of the same color correspond to
the r5 NFW126 components, except for the GCE com-
ponent, which is red (RCG) and orange (NB) for the
r5 RCG NB run and brown (NFW126) for the r5 NFW126

run. The dotted black and yellow lines are point sources
and extended sources, respectively, which have the same
total flux in both runs. There is very little variation in
any components except those of the GCE (in the lati-
tude profile, the extended source flux peaks just below

Astrophysics

Brandt & Kocsis [ApJ 2015] Bartels et al [Nature Astronomy 2018]
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Simplifying the problem: pixel-wise conditional independence
Assume pixel-wise conditional independence  model photon counts PDF as a doubly-stochastic Poisson process⟹

p(x ∣ θ) ≈ ∏
p

p(xp ∣ θ)

NPTF = Non-Poissonian Template Fitting



Siddharth Mishra-Sharma (MIT/IAIFI) | Aspen Winter 2023 /238

Simplifying the problem: pixel-wise conditional independence
Assume pixel-wise conditional independence  model photon counts PDF as a doubly-stochastic Poisson process⟹

0 2 4 6 8 10
Counts

100

101

102

103

104

105

106

P
ix

el
s

Histogram of photon counts

PS-like

DM-like

$BSUFTJBO�WJFX

� ��

PS template (NFW)

0 13.4

Starting guess for PS template

0 1

Recovered MLE PS template

0 13.4

Data (Simulated PS)

0 52

True underlying PS distribution

Adaptive NPTF

Draw PSs

Assuming ~best-fit 
GCE source count

p(x ∣ θ) ≈ ∏
p

p(xp ∣ θ)

Malyshev & Hogg [ApJ 2011]

Lee et al [JCAP 2014]

NPTF = Non-Poissonian Template Fitting



Siddharth Mishra-Sharma (MIT/IAIFI) | Aspen Winter 2023 /239

What could go wrong?

Fermi -ray dataγ
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Leane & Slatyer [PRL 2019]


+ Leane & Slatyer [PRL 2020, PRD 2020]
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Simulator

Parameters

θ

Observations

x

• Well-motivated mechanistic, causal model


• Simulator can generate samples  x ∼ p(x |θ)
Prediction:

• Likelihood  is intractable


• Inference is challenging

p(x |θ) = ∫ dz p(x, z |θ)
Inference:

Simulation-based inference (SBI)

Latent z
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Prediction:

• Likelihood  is intractable


• Inference is challenging

p(x |θ) = ∫ dz p(x, z |θ)
Inference:

Simulation-based inference (SBI)

Latent z

github.com/smsharma/awesome-neural-sbi

http://github.com/smsharma/awesome-neural-sbi
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below, to help you get started.

Once you’re familiar with the editor, you can find various project setting in the Overleaf menu,

accessed via the button in the very top left of the editor. To view tutorials, user guides, and further

documentation, please visit our help library, or head to our plans page to choose your plan.

2 Some examples to get started

2.1 How to create Sections and Subsections

Simply use the section and subsection commands, as in this example document! With Overleaf, all

the formatting and numbering is handled automatically according to the template you’ve chosen. If

you’re using Rich Text mode, you can also create new section and subsections via the buttons in the

editor toolbar.

2.2 How to include Figures
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2.3 How to add Tables

Use the table and tabular environments for basic tables — see Table 1, for example. For more infor-
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Complementary method using 

Bayesian neural networks:


List et al [PRL 2021]
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Qualitatively similar results
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Differentiable probabilistic programming: the future?
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Dwarf galaxies and halo shapes
Dwarf galaxies are ideal targets for probing the shapes of DM halos
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From stellar kinematics to halo shapes: Jeans modeling

Φ( ⃗x )
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From stellar kinematics to halo shapes: Jeans modeling

dn( ⃗x , ⃗v ) ∝ f( ⃗x , ⃗v ) d3x d3v
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From stellar kinematics to halo shapes: Jeans modeling

n( ⃗x ) = ∫ d3v f( ⃗x , ⃗v )

⟨vi( ⃗x )⟩ = ∫ d3v vi f( ⃗x , ⃗v )

σij( ⃗x ) = ∫ d3v (vi − v̄i)(vj − v̄j) f( ⃗x , ⃗v )

Phase space density and its momentsdn( ⃗x , ⃗v ) ∝ f( ⃗x , ⃗v ) d3x d3v
Phase-space density

Φ( ⃗x )
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From stellar kinematics to halo shapes: Jeans modeling
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Limitations of Jeans modeling

Assumptions about the data-generating process

Challenging to include:


• Non-equilibrium effects


• Asphericity


• Baryonic feedback


• Host potential

Be it therefore resolved 3

Figure 1. Dark matter density distribution (greyscale) within the central 30 kpc for each simulation in Table 1, along with star particles (colors for each
simulation) belonging to the central galaxy or a satellite (within r⇤max; see Table 1). The top panels show galaxies simulated at “standard resolution” (250 M�),
while the bottom panels show “high resolution” simulations (30 M�). A length scale of 10 kpc is shown in each of the top panels; bottom panels are shown at
the same scale.

Mhalo(109 M�) rvir( kpc) Vmax (kms�1) M?(103 M�) r⇤max (kpc) R1/2 (pc) vrot/� gsoft (pc) DMsoft (pc) ncrit(cm�3)
Resolved Central Galaxies in Our High-Resolution (30 M�) Simulations (> 100 star particles in AHF-Identified Halo)

m10q30 7.7 51 34 5200 7.7 720 0.17 0.40 14 1000
m10q30 Sat 0.34 6.3 16 1.2 1.2 560 0.85 0.40 14 1000

m10v30 9.0 54 30 330 8.2 330 0.45 0.10 14 1e5
m10v30 B 3.2 37 24 41 5.6 280 0.20 0.10 14 1e5
m10v30 C 1.1 26 16 2.9 3.9 540 0.39 0.10 14 1e5
m10v30 D 0.75 24 16 3.7 4.8 860 0.37 0.10 14 1e5

m10v30 Sat 0.52 20 13 2.0 2.8 430 0.29 0.10 14 1e5
m10v30 F 0.44 20 12 1.9 2.5 560 0.66 0.10 14 1e5
m10v30 G 0.27 17 12 2.3 2.5 570 1.1 0.10 14 1e5

m0930 2.5 35 22 12 4.0 200 0.56 0.10 14 1e5
m0930 B 0.67 23 15 1.8 3.4 620 0.79 0.10 14 1e5

Resolved Central Galaxies in Our Standard-Resolution (250 M�) Simulations (> 100 star particles in AHF-Identified Halo)
m10q250 7.5 51 34 2700 7.7 550 0.19 1.0 29 1000
m10v250 8.4 53 30 300 8.0 310 0.31 1.0 29 1000

m10v250 B 2.7 37 24 66 5.5 350 0.14 1.0 29 1000
m09250 2.5 36 22 27 5.3 420 0.14 1.0 29 1000

Table 1. Properties of dwarfs in the suite. Each row lists a di↵erent resolved, central or satellite galaxy at z = 0. Columns give: (1) Mhalo: halo mass. (2)
Rvir: virial radius. (3) Vmax: maximum circular velocity. (4) M⇤: bound stellar mass after removal of satellites and contamination. (5) Rmax: radial extent of
stars (maximum radius of any bound star), as determined from visual inspection. (6) R1/2: mean projected (2D) half-stellar-mass radius. (7) vrot/�: Ratio of
the stellar velocity shear vrot to dispersion �. (8) gsoft: typical minimum gas gravitational+hydrodynamic force softening reached in star-forming gas (this is
adaptive). (9) DMsoft: dark matter force softening (held constant). (10) ncrit: minimum gas density required for star formation (in addition to self-shielding,
Jeans instability, and self-gravity).

c� 2018 RAS, MNRAS 000, 1–14

FIRE simulations
Wheeler et al [MNRAS 2019]
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FIRE simulations
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Reliance on moments of  f( ⃗x , ⃗v )

• Simplified description of the data = loss of information
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Limitations of Jeans modeling

Assumptions about the data-generating process

Challenging to include:


• Non-equilibrium effects


• Asphericity


• Baryonic feedback


• Host potential

Circ
ular o

rbitsRadial orbits

Be it therefore resolved 3

Figure 1. Dark matter density distribution (greyscale) within the central 30 kpc for each simulation in Table 1, along with star particles (colors for each
simulation) belonging to the central galaxy or a satellite (within r⇤max; see Table 1). The top panels show galaxies simulated at “standard resolution” (250 M�),
while the bottom panels show “high resolution” simulations (30 M�). A length scale of 10 kpc is shown in each of the top panels; bottom panels are shown at
the same scale.

Mhalo(109 M�) rvir( kpc) Vmax (kms�1) M?(103 M�) r⇤max (kpc) R1/2 (pc) vrot/� gsoft (pc) DMsoft (pc) ncrit(cm�3)
Resolved Central Galaxies in Our High-Resolution (30 M�) Simulations (> 100 star particles in AHF-Identified Halo)

m10q30 7.7 51 34 5200 7.7 720 0.17 0.40 14 1000
m10q30 Sat 0.34 6.3 16 1.2 1.2 560 0.85 0.40 14 1000

m10v30 9.0 54 30 330 8.2 330 0.45 0.10 14 1e5
m10v30 B 3.2 37 24 41 5.6 280 0.20 0.10 14 1e5
m10v30 C 1.1 26 16 2.9 3.9 540 0.39 0.10 14 1e5
m10v30 D 0.75 24 16 3.7 4.8 860 0.37 0.10 14 1e5

m10v30 Sat 0.52 20 13 2.0 2.8 430 0.29 0.10 14 1e5
m10v30 F 0.44 20 12 1.9 2.5 560 0.66 0.10 14 1e5
m10v30 G 0.27 17 12 2.3 2.5 570 1.1 0.10 14 1e5

m0930 2.5 35 22 12 4.0 200 0.56 0.10 14 1e5
m0930 B 0.67 23 15 1.8 3.4 620 0.79 0.10 14 1e5

Resolved Central Galaxies in Our Standard-Resolution (250 M�) Simulations (> 100 star particles in AHF-Identified Halo)
m10q250 7.5 51 34 2700 7.7 550 0.19 1.0 29 1000
m10v250 8.4 53 30 300 8.0 310 0.31 1.0 29 1000

m10v250 B 2.7 37 24 66 5.5 350 0.14 1.0 29 1000
m09250 2.5 36 22 27 5.3 420 0.14 1.0 29 1000

Table 1. Properties of dwarfs in the suite. Each row lists a di↵erent resolved, central or satellite galaxy at z = 0. Columns give: (1) Mhalo: halo mass. (2)
Rvir: virial radius. (3) Vmax: maximum circular velocity. (4) M⇤: bound stellar mass after removal of satellites and contamination. (5) Rmax: radial extent of
stars (maximum radius of any bound star), as determined from visual inspection. (6) R1/2: mean projected (2D) half-stellar-mass radius. (7) vrot/�: Ratio of
the stellar velocity shear vrot to dispersion �. (8) gsoft: typical minimum gas gravitational+hydrodynamic force softening reached in star-forming gas (this is
adaptive). (9) DMsoft: dark matter force softening (held constant). (10) ncrit: minimum gas density required for star formation (in addition to self-shielding,
Jeans instability, and self-gravity).

c� 2018 RAS, MNRAS 000, 1–14

FIRE simulations
Wheeler et al [MNRAS 2019]
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Graph neural networks for stellar kinematics Nguyen, SM et al [PRD 2023]11
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where � is the gravitational potential, f = f(~x,~v) is the phase-space distribution function, and (~x, ~v) are the phase
space coordinates of tracer stars.

Working in the dwarf galaxy’s spherical coordinate system (r, ✓,�) and assuming spherical symmetry and steady
state, we multiply Eq. (A4) by the radial velocity vr and integrate over all velocity components to obtain the spherical
Jeans equation
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Inferring the dark matter profile
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Sensitivity to projection

Different projections
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Applications to hydrodynamic simulations

Be it therefore resolved 3

Figure 1. Dark matter density distribution (greyscale) within the central 30 kpc for each simulation in Table 1, along with star particles (colors for each
simulation) belonging to the central galaxy or a satellite (within r⇤max; see Table 1). The top panels show galaxies simulated at “standard resolution” (250 M�),
while the bottom panels show “high resolution” simulations (30 M�). A length scale of 10 kpc is shown in each of the top panels; bottom panels are shown at
the same scale.

Mhalo(109 M�) rvir( kpc) Vmax (kms�1) M?(103 M�) r⇤max (kpc) R1/2 (pc) vrot/� gsoft (pc) DMsoft (pc) ncrit(cm�3)
Resolved Central Galaxies in Our High-Resolution (30 M�) Simulations (> 100 star particles in AHF-Identified Halo)

m10q30 7.7 51 34 5200 7.7 720 0.17 0.40 14 1000
m10q30 Sat 0.34 6.3 16 1.2 1.2 560 0.85 0.40 14 1000

m10v30 9.0 54 30 330 8.2 330 0.45 0.10 14 1e5
m10v30 B 3.2 37 24 41 5.6 280 0.20 0.10 14 1e5
m10v30 C 1.1 26 16 2.9 3.9 540 0.39 0.10 14 1e5
m10v30 D 0.75 24 16 3.7 4.8 860 0.37 0.10 14 1e5

m10v30 Sat 0.52 20 13 2.0 2.8 430 0.29 0.10 14 1e5
m10v30 F 0.44 20 12 1.9 2.5 560 0.66 0.10 14 1e5
m10v30 G 0.27 17 12 2.3 2.5 570 1.1 0.10 14 1e5

m0930 2.5 35 22 12 4.0 200 0.56 0.10 14 1e5
m0930 B 0.67 23 15 1.8 3.4 620 0.79 0.10 14 1e5

Resolved Central Galaxies in Our Standard-Resolution (250 M�) Simulations (> 100 star particles in AHF-Identified Halo)
m10q250 7.5 51 34 2700 7.7 550 0.19 1.0 29 1000
m10v250 8.4 53 30 300 8.0 310 0.31 1.0 29 1000

m10v250 B 2.7 37 24 66 5.5 350 0.14 1.0 29 1000
m09250 2.5 36 22 27 5.3 420 0.14 1.0 29 1000

Table 1. Properties of dwarfs in the suite. Each row lists a di↵erent resolved, central or satellite galaxy at z = 0. Columns give: (1) Mhalo: halo mass. (2)
Rvir: virial radius. (3) Vmax: maximum circular velocity. (4) M⇤: bound stellar mass after removal of satellites and contamination. (5) Rmax: radial extent of
stars (maximum radius of any bound star), as determined from visual inspection. (6) R1/2: mean projected (2D) half-stellar-mass radius. (7) vrot/�: Ratio of
the stellar velocity shear vrot to dispersion �. (8) gsoft: typical minimum gas gravitational+hydrodynamic force softening reached in star-forming gas (this is
adaptive). (9) DMsoft: dark matter force softening (held constant). (10) ncrit: minimum gas density required for star formation (in addition to self-shielding,
Jeans instability, and self-gravity).

c� 2018 RAS, MNRAS 000, 1–14

Wheeler et al [MNRAS 2019]


FIRE simulations

Nguyen, SM et al [In prep]
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Applications to hydrodynamic simulations

Be it therefore resolved 3

Figure 1. Dark matter density distribution (greyscale) within the central 30 kpc for each simulation in Table 1, along with star particles (colors for each
simulation) belonging to the central galaxy or a satellite (within r⇤max; see Table 1). The top panels show galaxies simulated at “standard resolution” (250 M�),
while the bottom panels show “high resolution” simulations (30 M�). A length scale of 10 kpc is shown in each of the top panels; bottom panels are shown at
the same scale.
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Resolved Central Galaxies in Our High-Resolution (30 M�) Simulations (> 100 star particles in AHF-Identified Halo)

m10q30 7.7 51 34 5200 7.7 720 0.17 0.40 14 1000
m10q30 Sat 0.34 6.3 16 1.2 1.2 560 0.85 0.40 14 1000

m10v30 9.0 54 30 330 8.2 330 0.45 0.10 14 1e5
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m10v30 Sat 0.52 20 13 2.0 2.8 430 0.29 0.10 14 1e5
m10v30 F 0.44 20 12 1.9 2.5 560 0.66 0.10 14 1e5
m10v30 G 0.27 17 12 2.3 2.5 570 1.1 0.10 14 1e5

m0930 2.5 35 22 12 4.0 200 0.56 0.10 14 1e5
m0930 B 0.67 23 15 1.8 3.4 620 0.79 0.10 14 1e5

Resolved Central Galaxies in Our Standard-Resolution (250 M�) Simulations (> 100 star particles in AHF-Identified Halo)
m10q250 7.5 51 34 2700 7.7 550 0.19 1.0 29 1000
m10v250 8.4 53 30 300 8.0 310 0.31 1.0 29 1000

m10v250 B 2.7 37 24 66 5.5 350 0.14 1.0 29 1000
m09250 2.5 36 22 27 5.3 420 0.14 1.0 29 1000

Table 1. Properties of dwarfs in the suite. Each row lists a di↵erent resolved, central or satellite galaxy at z = 0. Columns give: (1) Mhalo: halo mass. (2)
Rvir: virial radius. (3) Vmax: maximum circular velocity. (4) M⇤: bound stellar mass after removal of satellites and contamination. (5) Rmax: radial extent of
stars (maximum radius of any bound star), as determined from visual inspection. (6) R1/2: mean projected (2D) half-stellar-mass radius. (7) vrot/�: Ratio of
the stellar velocity shear vrot to dispersion �. (8) gsoft: typical minimum gas gravitational+hydrodynamic force softening reached in star-forming gas (this is
adaptive). (9) DMsoft: dark matter force softening (held constant). (10) ncrit: minimum gas density required for star formation (in addition to self-shielding,
Jeans instability, and self-gravity).

c� 2018 RAS, MNRAS 000, 1–14

Wheeler et al [MNRAS 2019]
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Tests on simulations: dark matter signal
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FIG. 2. Results of the analysis on simulated Fermi data where the GCE consists of purely DM-like emission, with di↵erent rows
corresponding to five di↵erent simulated realizations. The left column shows the inferred source-count distribution posteriors
for GCE-correlated (red) and disk-correlated (blue) PSs. Dashed vertical lines corresponding to the flux associated with 1
expected photon per source and the approximate 1-� threshold for detecting individual sources are shown for reference. Solid
lines correspond to the inferred posterior median, and the lighter and darker bands represent the middle-68% and 95% posterior
containments respectively, evaluated point-wise in flux F . The middle column shows the posteriors for the Poissonian templates.
The right column shows the joins posterior on the flux fractions of DM-like and PS-like emission. The dotted lines (in the left
two columns) and the stars (in the right column) correspond to the true simulated quantities. DM-like emission is successfully
inferred in each case, with the other parameter posteriors corresponding faithfully to the true simulated values.

emission from resolved 3FGL PSs as the posterior in that
case is largely unconstrained owing to the fact that re-
solved PSs are masked out in the analysis. The right
column shows the joint posterior on the fraction of DM-
and PS-like emission in proportion to the total inferred
flux in the ROI. The true underlying parameter values
from which the data was generated are represented by
dotted lines in the left and middle columns, and by star
markers in the right column. We see that, in all cases
shown, the pipeline successfully recovers the presence of
DM-like emission, with little flux—. 10% of the total
inferred GCE emission in all cases—attributed to PSs.

Figure 3 shows the corresponding results for simu-
lated data containing PS-like emission correlated with
the GCE. We see that PS-like emission is successfully in-
ferred in each case, while at the same time exemplifying
some degeneracy with the Poissonian component. Fur-
thermore, as seen in the left column, the method is able
to characterize the contribution of the two modeled PS
components through the inferred source-count distribu-
tion. The inferred posteriors for the contribution of the
DM-like component are seen to be compatible with zero.
The overall flux of all modeled components, both PS and
di↵use, is seen to be consistent with the true values used

$BSUFTJBO�WJFX

� ��
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Tests on simulations: point source signal
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FIG. 3. Same as Fig. 2, but for five simulated realization of Fermi data where the GCE consists of predominantly PS-like
emission. PS-like emission is inferred in each case, with the other posteriors corresponding faithfully to their true simulated
quantities. The GCE-correlated source-count distribution is also seen to be successfully recovered in the left panel. We note
that, as detailed towards the end of Sec. II A, PS flux below ⇠ 5 photons is partially accounted for by the smooth DM-like
component, which is responsible for the sharp turn-o↵ in the modeled as well as inferred GCE-correlated SCD with decreasing
flux.

neural network is re-trained on a new set of simulations
obtained using the alternative forward model before
applying it to Fermi data. Results of these analysis
variations are summarized in Tab. II.

Variation on the di↵use foreground model: In ad-
dition to di↵use Model O considered in the baseline anal-
ysis, we consider the alternative Models A and F from
Ref. [11] to model the di↵use foreground emission, again
including separate templates for gas-correlated emission
and inverse Compton scattering. While shown to be a
worse fit to the present dataset [32], these models have
been previously used in the GCE literature [32, 69, 70]
and provide a useful comparison point.

Results for these variations are shown in Figs. 6

and 7, respectively. In each case, results using the SBI
pipeline are shown in the top row, with corresponding
results using the NPTF pipeline in the bottom row. A
somewhat larger fraction of the GCE, 47.2+10.5

�24.6%, is
attributed to PSs when using di↵use Model A (Fig. 6)
compared to the baseline analysis using Model O.
The corresponding NPTF analysis finds a still larger
fraction of 74.9+6.6

�22.5%. Using Model F, 62.5+10.1
�26.9% of

the GCE is attributed to PSs, with qualitatively similar
results found by the NPTF analysis. The total emission
absorbed by the GCE in this case is about ⇠ 60% of
that found in the baseline scenario. This is consistent
with the results of Ref. [32], which found that the total
GCE flux could vary by up to a factor of ⇠ 2 between
analyses using di↵erent di↵use models.
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FIG. 2. Results of the analysis on simulated Fermi data where the GCE consists of purely DM-like emission, with di↵erent rows
corresponding to five di↵erent simulated realizations. The left column shows the inferred source-count distribution posteriors
for GCE-correlated (red) and disk-correlated (blue) PSs. Dashed vertical lines corresponding to the flux associated with 1
expected photon per source and the approximate 1-� threshold for detecting individual sources are shown for reference. Solid
lines correspond to the inferred posterior median, and the lighter and darker bands represent the middle-68% and 95% posterior
containments respectively, evaluated point-wise in flux F . The middle column shows the posteriors for the Poissonian templates.
The right column shows the joins posterior on the flux fractions of DM-like and PS-like emission. The dotted lines (in the left
two columns) and the stars (in the right column) correspond to the true simulated quantities. DM-like emission is successfully
inferred in each case, with the other parameter posteriors corresponding faithfully to the true simulated values.

emission from resolved 3FGL PSs as the posterior in that
case is largely unconstrained owing to the fact that re-
solved PSs are masked out in the analysis. The right
column shows the joint posterior on the fraction of DM-
and PS-like emission in proportion to the total inferred
flux in the ROI. The true underlying parameter values
from which the data was generated are represented by
dotted lines in the left and middle columns, and by star
markers in the right column. We see that, in all cases
shown, the pipeline successfully recovers the presence of
DM-like emission, with little flux—. 10% of the total
inferred GCE emission in all cases—attributed to PSs.

Figure 3 shows the corresponding results for simu-
lated data containing PS-like emission correlated with
the GCE. We see that PS-like emission is successfully in-
ferred in each case, while at the same time exemplifying
some degeneracy with the Poissonian component. Fur-
thermore, as seen in the left column, the method is able
to characterize the contribution of the two modeled PS
components through the inferred source-count distribu-
tion. The inferred posteriors for the contribution of the
DM-like component are seen to be compatible with zero.
The overall flux of all modeled components, both PS and
di↵use, is seen to be consistent with the true values used
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FIG. 9. E↵ect of mismodeling on a smooth GCE within our analysis framework. Each row shows aggregate posteriors collected
over 10 simulated samples; row-wise from top to bottom: (i) No mismodeling; simulated data is constructed with the same
templates as those used in the forward model for training. (ii) Mock data created with di↵use Model A, showing a possible
e↵ect of di↵use mismodeling. (iii) Mock data where the di↵use template, described by Model O, is modulated by draws from
a Gaussian process modeling large-scale mismodeling inferred from the real Fermi data. (iv) Mock data where the thick-disk
template is used in lieu of the thin-disk template. (v) Mock data where the GCE signal in the Northern hemisphere is twice as
large as that in the Southern hemisphere. While some PS-like emission is inferred, it is consistent with zero in all cases, and
evidence for a smooth GCE is robust.
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FIG. 9. E↵ect of mismodeling on a smooth GCE within our analysis framework. Each row shows aggregate posteriors collected
over 10 simulated samples; row-wise from top to bottom: (i) No mismodeling; simulated data is constructed with the same
templates as those used in the forward model for training. (ii) Mock data created with di↵use Model A, showing a possible
e↵ect of di↵use mismodeling. (iii) Mock data where the di↵use template, described by Model O, is modulated by draws from
a Gaussian process modeling large-scale mismodeling inferred from the real Fermi data. (iv) Mock data where the thick-disk
template is used in lieu of the thin-disk template. (v) Mock data where the GCE signal in the Northern hemisphere is twice as
large as that in the Southern hemisphere. While some PS-like emission is inferred, it is consistent with zero in all cases, and
evidence for a smooth GCE is robust.
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FIG. 9. E↵ect of mismodeling on a smooth GCE within our analysis framework. Each row shows aggregate posteriors collected
over 10 simulated samples; row-wise from top to bottom: (i) No mismodeling; simulated data is constructed with the same
templates as those used in the forward model for training. (ii) Mock data created with di↵use Model A, showing a possible
e↵ect of di↵use mismodeling. (iii) Mock data where the di↵use template, described by Model O, is modulated by draws from
a Gaussian process modeling large-scale mismodeling inferred from the real Fermi data. (iv) Mock data where the thick-disk
template is used in lieu of the thin-disk template. (v) Mock data where the GCE signal in the Northern hemisphere is twice as
large as that in the Southern hemisphere. While some PS-like emission is inferred, it is consistent with zero in all cases, and
evidence for a smooth GCE is robust.

Test on

GP-modulated 


background

Train with one diffuse model / 
test with another

Generally well-behaved under known forms of systematic mismodeling

18

10�11 10�10 10�9

F [ph cm�2 s�1]

10�12

10�11

10�10

F
2
dN

/d
F

[p
h

cm
�

2
s�

1
de

g�
2 ]

‘1
-�

’

1-
p
h

Source-count distributions

0 1 2 3 4 5

Intensity [10�7 ph cm�2 s�1 sr�1]

Component intensities

10 20 30 0 5 10 15
DM-like [%]

0

5

10

15

P
S-

lik
e
[%

]

Di�use mismodeling
GCE DM only, SBI

GCE flux fractions

10�11 10�10 10�9

F [ph cm�2 s�1]

10�12

10�11

10�10

F
2
dN

/d
F

[p
h

cm
�

2
s�

1
de

g�
2 ]

‘1
-�

’

1-
p
h

Source-count distributions

0 1 2 3 4 5

Intensity [10�7 ph cm�2 s�1 sr�1]

Component intensities

10 20 30 0 5 10 15
DM-like [%]

0

5

10

15

P
S-

lik
e
[%

]

Data-driven mismodeling
GCE DM only, SBI

GCE flux fractions

FIG. 9. E↵ect of mismodeling on a smooth GCE within our analysis framework. Each row shows aggregate posteriors collected
over 10 simulated samples; row-wise from top to bottom: (i) No mismodeling; simulated data is constructed with the same
templates as those used in the forward model for training. (ii) Mock data created with di↵use Model A, showing a possible
e↵ect of di↵use mismodeling. (iii) Mock data where the di↵use template, described by Model O, is modulated by draws from
a Gaussian process modeling large-scale mismodeling inferred from the real Fermi data. (iv) Mock data where the thick-disk
template is used in lieu of the thin-disk template. (v) Mock data where the GCE signal in the Northern hemisphere is twice as
large as that in the Southern hemisphere. While some PS-like emission is inferred, it is consistent with zero in all cases, and
evidence for a smooth GCE is robust.
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Limitations of Jeans modeling

Assumptions about the data-generating process

Challenging to include:


• Non-equilibrium effects


• Asphericity


• Baryonic feedback


• Host potential

Be it therefore resolved 3

Figure 1. Dark matter density distribution (greyscale) within the central 30 kpc for each simulation in Table 1, along with star particles (colors for each
simulation) belonging to the central galaxy or a satellite (within r⇤max; see Table 1). The top panels show galaxies simulated at “standard resolution” (250 M�),
while the bottom panels show “high resolution” simulations (30 M�). A length scale of 10 kpc is shown in each of the top panels; bottom panels are shown at
the same scale.

Mhalo(109 M�) rvir( kpc) Vmax (kms�1) M?(103 M�) r⇤max (kpc) R1/2 (pc) vrot/� gsoft (pc) DMsoft (pc) ncrit(cm�3)
Resolved Central Galaxies in Our High-Resolution (30 M�) Simulations (> 100 star particles in AHF-Identified Halo)

m10q30 7.7 51 34 5200 7.7 720 0.17 0.40 14 1000
m10q30 Sat 0.34 6.3 16 1.2 1.2 560 0.85 0.40 14 1000

m10v30 9.0 54 30 330 8.2 330 0.45 0.10 14 1e5
m10v30 B 3.2 37 24 41 5.6 280 0.20 0.10 14 1e5
m10v30 C 1.1 26 16 2.9 3.9 540 0.39 0.10 14 1e5
m10v30 D 0.75 24 16 3.7 4.8 860 0.37 0.10 14 1e5

m10v30 Sat 0.52 20 13 2.0 2.8 430 0.29 0.10 14 1e5
m10v30 F 0.44 20 12 1.9 2.5 560 0.66 0.10 14 1e5
m10v30 G 0.27 17 12 2.3 2.5 570 1.1 0.10 14 1e5

m0930 2.5 35 22 12 4.0 200 0.56 0.10 14 1e5
m0930 B 0.67 23 15 1.8 3.4 620 0.79 0.10 14 1e5

Resolved Central Galaxies in Our Standard-Resolution (250 M�) Simulations (> 100 star particles in AHF-Identified Halo)
m10q250 7.5 51 34 2700 7.7 550 0.19 1.0 29 1000
m10v250 8.4 53 30 300 8.0 310 0.31 1.0 29 1000

m10v250 B 2.7 37 24 66 5.5 350 0.14 1.0 29 1000
m09250 2.5 36 22 27 5.3 420 0.14 1.0 29 1000

Table 1. Properties of dwarfs in the suite. Each row lists a di↵erent resolved, central or satellite galaxy at z = 0. Columns give: (1) Mhalo: halo mass. (2)
Rvir: virial radius. (3) Vmax: maximum circular velocity. (4) M⇤: bound stellar mass after removal of satellites and contamination. (5) Rmax: radial extent of
stars (maximum radius of any bound star), as determined from visual inspection. (6) R1/2: mean projected (2D) half-stellar-mass radius. (7) vrot/�: Ratio of
the stellar velocity shear vrot to dispersion �. (8) gsoft: typical minimum gas gravitational+hydrodynamic force softening reached in star-forming gas (this is
adaptive). (9) DMsoft: dark matter force softening (held constant). (10) ncrit: minimum gas density required for star formation (in addition to self-shielding,
Jeans instability, and self-gravity).

c� 2018 RAS, MNRAS 000, 1–14

FIRE simulations
Wheeler et al [MNRAS 2019]
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Figure 1. Dark matter density distribution (greyscale) within the central 30 kpc for each simulation in Table 1, along with star particles (colors for each
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Applications to hydrodynamic simulations

Be it therefore resolved 3

Figure 1. Dark matter density distribution (greyscale) within the central 30 kpc for each simulation in Table 1, along with star particles (colors for each
simulation) belonging to the central galaxy or a satellite (within r⇤max; see Table 1). The top panels show galaxies simulated at “standard resolution” (250 M�),
while the bottom panels show “high resolution” simulations (30 M�). A length scale of 10 kpc is shown in each of the top panels; bottom panels are shown at
the same scale.

Mhalo(109 M�) rvir( kpc) Vmax (kms�1) M?(103 M�) r⇤max (kpc) R1/2 (pc) vrot/� gsoft (pc) DMsoft (pc) ncrit(cm�3)
Resolved Central Galaxies in Our High-Resolution (30 M�) Simulations (> 100 star particles in AHF-Identified Halo)

m10q30 7.7 51 34 5200 7.7 720 0.17 0.40 14 1000
m10q30 Sat 0.34 6.3 16 1.2 1.2 560 0.85 0.40 14 1000

m10v30 9.0 54 30 330 8.2 330 0.45 0.10 14 1e5
m10v30 B 3.2 37 24 41 5.6 280 0.20 0.10 14 1e5
m10v30 C 1.1 26 16 2.9 3.9 540 0.39 0.10 14 1e5
m10v30 D 0.75 24 16 3.7 4.8 860 0.37 0.10 14 1e5

m10v30 Sat 0.52 20 13 2.0 2.8 430 0.29 0.10 14 1e5
m10v30 F 0.44 20 12 1.9 2.5 560 0.66 0.10 14 1e5
m10v30 G 0.27 17 12 2.3 2.5 570 1.1 0.10 14 1e5

m0930 2.5 35 22 12 4.0 200 0.56 0.10 14 1e5
m0930 B 0.67 23 15 1.8 3.4 620 0.79 0.10 14 1e5

Resolved Central Galaxies in Our Standard-Resolution (250 M�) Simulations (> 100 star particles in AHF-Identified Halo)
m10q250 7.5 51 34 2700 7.7 550 0.19 1.0 29 1000
m10v250 8.4 53 30 300 8.0 310 0.31 1.0 29 1000

m10v250 B 2.7 37 24 66 5.5 350 0.14 1.0 29 1000
m09250 2.5 36 22 27 5.3 420 0.14 1.0 29 1000

Table 1. Properties of dwarfs in the suite. Each row lists a di↵erent resolved, central or satellite galaxy at z = 0. Columns give: (1) Mhalo: halo mass. (2)
Rvir: virial radius. (3) Vmax: maximum circular velocity. (4) M⇤: bound stellar mass after removal of satellites and contamination. (5) Rmax: radial extent of
stars (maximum radius of any bound star), as determined from visual inspection. (6) R1/2: mean projected (2D) half-stellar-mass radius. (7) vrot/�: Ratio of
the stellar velocity shear vrot to dispersion �. (8) gsoft: typical minimum gas gravitational+hydrodynamic force softening reached in star-forming gas (this is
adaptive). (9) DMsoft: dark matter force softening (held constant). (10) ncrit: minimum gas density required for star formation (in addition to self-shielding,
Jeans instability, and self-gravity).
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Be it therefore resolved 3

Figure 1. Dark matter density distribution (greyscale) within the central 30 kpc for each simulation in Table 1, along with star particles (colors for each
simulation) belonging to the central galaxy or a satellite (within r⇤max; see Table 1). The top panels show galaxies simulated at “standard resolution” (250 M�),
while the bottom panels show “high resolution” simulations (30 M�). A length scale of 10 kpc is shown in each of the top panels; bottom panels are shown at
the same scale.

Mhalo(109 M�) rvir( kpc) Vmax (kms�1) M?(103 M�) r⇤max (kpc) R1/2 (pc) vrot/� gsoft (pc) DMsoft (pc) ncrit(cm�3)
Resolved Central Galaxies in Our High-Resolution (30 M�) Simulations (> 100 star particles in AHF-Identified Halo)
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m10v30 C 1.1 26 16 2.9 3.9 540 0.39 0.10 14 1e5
m10v30 D 0.75 24 16 3.7 4.8 860 0.37 0.10 14 1e5

m10v30 Sat 0.52 20 13 2.0 2.8 430 0.29 0.10 14 1e5
m10v30 F 0.44 20 12 1.9 2.5 560 0.66 0.10 14 1e5
m10v30 G 0.27 17 12 2.3 2.5 570 1.1 0.10 14 1e5

m0930 2.5 35 22 12 4.0 200 0.56 0.10 14 1e5
m0930 B 0.67 23 15 1.8 3.4 620 0.79 0.10 14 1e5

Resolved Central Galaxies in Our Standard-Resolution (250 M�) Simulations (> 100 star particles in AHF-Identified Halo)
m10q250 7.5 51 34 2700 7.7 550 0.19 1.0 29 1000
m10v250 8.4 53 30 300 8.0 310 0.31 1.0 29 1000

m10v250 B 2.7 37 24 66 5.5 350 0.14 1.0 29 1000
m09250 2.5 36 22 27 5.3 420 0.14 1.0 29 1000

Table 1. Properties of dwarfs in the suite. Each row lists a di↵erent resolved, central or satellite galaxy at z = 0. Columns give: (1) Mhalo: halo mass. (2)
Rvir: virial radius. (3) Vmax: maximum circular velocity. (4) M⇤: bound stellar mass after removal of satellites and contamination. (5) Rmax: radial extent of
stars (maximum radius of any bound star), as determined from visual inspection. (6) R1/2: mean projected (2D) half-stellar-mass radius. (7) vrot/�: Ratio of
the stellar velocity shear vrot to dispersion �. (8) gsoft: typical minimum gas gravitational+hydrodynamic force softening reached in star-forming gas (this is
adaptive). (9) DMsoft: dark matter force softening (held constant). (10) ncrit: minimum gas density required for star formation (in addition to self-shielding,
Jeans instability, and self-gravity).
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Figure 1. Dark matter density distribution (greyscale) within the central 30 kpc for each simulation in Table 1, along with star particles (colors for each
simulation) belonging to the central galaxy or a satellite (within r⇤max; see Table 1). The top panels show galaxies simulated at “standard resolution” (250 M�),
while the bottom panels show “high resolution” simulations (30 M�). A length scale of 10 kpc is shown in each of the top panels; bottom panels are shown at
the same scale.
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m10v250 8.4 53 30 300 8.0 310 0.31 1.0 29 1000

m10v250 B 2.7 37 24 66 5.5 350 0.14 1.0 29 1000
m09250 2.5 36 22 27 5.3 420 0.14 1.0 29 1000

Table 1. Properties of dwarfs in the suite. Each row lists a di↵erent resolved, central or satellite galaxy at z = 0. Columns give: (1) Mhalo: halo mass. (2)
Rvir: virial radius. (3) Vmax: maximum circular velocity. (4) M⇤: bound stellar mass after removal of satellites and contamination. (5) Rmax: radial extent of
stars (maximum radius of any bound star), as determined from visual inspection. (6) R1/2: mean projected (2D) half-stellar-mass radius. (7) vrot/�: Ratio of
the stellar velocity shear vrot to dispersion �. (8) gsoft: typical minimum gas gravitational+hydrodynamic force softening reached in star-forming gas (this is
adaptive). (9) DMsoft: dark matter force softening (held constant). (10) ncrit: minimum gas density required for star formation (in addition to self-shielding,
Jeans instability, and self-gravity).
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FIG. 1. A comparison between the predicted and the truth values of the DM parameters on 10,000 test galaxies for our baseline
case containing ⇠ 100 stars with measurement error 0.1 km/s. For each galaxy, the predicted parameters are taken to be the
marginal medians of the joint posterior and then sorted into bins based on their truth values. The median (solid blue line),
middle-68% percentile (dark blue band), and middle-95% (light blue band) containment regions of each bin are shown. The
diagonal dashed red line denotes where the predicted and truth values are equal. The bottom row shows the prediction error
on the median �✓ ⌘ ✓̂ � ✓truth.

B. Data pre-processing and graph construction

We pre-process our dataset by adding projection e↵ects
and measurement errors reflecting typical observations of
dwarf galaxy tracer stars. For each kinematic sample,
we randomly draw a line-of-sight axis and project the
galaxy onto the 2-D plane perpendicular to it. We then
derive the 2-D projected spatial coordinates with respect
to the center of the galaxy (X,Y ) and line-of-sight ve-
locities vlos for each star in these coordinates. To study
the validity of the method before the inclusion of large
measurement errors, we assume a Gaussian velocity noise
model of 0.1 km/s. We show the e↵ect of larger measure-
ment errors in App. B 1. For simplicity and consistency
with Jeans-based analysis, we do not include positional
uncertainty in the angular position measurement.

We can represent the stellar kinematic data in the form
of a potentially weighted, undirected graph G = (V, E , A),
where V is a set of nodes representing |V | = Nstars indi-
vidual stars, E is a set of edges, and A 2 RNstars⇥Nstars

is an adjacency matrix describing the weights of connec-
tions between vertices. This representation is well-suited
for our purposes since the stars in a dwarf galaxy have no
intrinsic ordering, and the graph structure can e�ciently
capture the phase-space correlation structure containing
information about the underlying DM density distribu-
tion, including higher-order moments [52].

In our analysis, each node represents a star, with the
node features being its line-of-sight velocity ṽlos and the
projected radius R =

p
X2 + Y 2. We choose to use R

instead of the full (X,Y ) coordinates in order to incorpo-
rate projective rotational invariance into the graph rep-
resentation, which was found to enhance the simulation-
e�ciency of our method.
To determine the graph edges E , we calculate pair-wise

distances between all stars using (X,Y ), then connect
each star to its k-nearest stars including itself (i.e. self-
loops). Since the edges are assumed to be undirected,
each star can be connected to more than k other stars.
A higher value of k increases the number of edges, which
provides more neighboring information at computational
and memory cost. We found k = 20 to provide a good
trade-o↵ between model performance and computational
overhead. Finally, we do not include edge weights in our
graph, but note that we have experimented with a variety
of weighting schemes, including attention-based learned
weights [53] as well as weights exponentially decaying
with inter-star distance, and found them to perform sim-
ilarly in downstream inference to the unweighted case.

C. Neural network architecture and optimization

We use a graph neural network (GNN) g' : G ! RNfeat

in order to extract Nfeat summary features from the
constructed graph representation x 2 G of mock dwarf
galaxy stellar kinematic data. Here ' represent the
parameters of the graph neural network. The feature-
extraction network consists of 5 graph-convolutional lay-
ers, each with 128 channels, based on convolutions in the
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that the host galaxies are at 100 kpc. Our method generi-
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traditional Jeans analysis.

ruption [69] and supernova feedback [25].

Code used to reproduce the results of this paper is
available at https://github.com/trivnguyen/dsph_
gnn.
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Statistical coverage

Figure 2: Visualising cover-
age: three exemplar density
functions (coloured) and their
coverage of the base distribu-
tion (dash-dotted).

While the following experiments are presented for a particular
choice of flows and neural networks, we found in experiments
that neither architectural details of the neural networks (e.g.
number of hidden units, layers) nor the flows (e.g. choice of
transform) changed the qualitative outcome of the analysis.
Finally, we note that the misspecification transforms have
been intentionally chosen to be simple. For example, the
noise is never parameter dependent, and in two examples the
misspecification is simply additive Gaussian noise. Despite
this, we shall see that the methods tested still struggle greatly
in this setting.

3.2 Metrics

To assess accuracy in the experiments, we consider the cover-

age of the posterior approximations. As discussed in Hermans
et al. [2021], coverage usefully describes the kind of perfor-
mance that is important for defensible scientific inference,
in the sense that it not only assesses the accuracy of the
posterior approximation but can inform the researcher at a
glance if the approximation is conservative or overconfident.

Definition 1 (Expected Coverage). Denote by ⇥p(✓ |x)(1�↵) ⇢ ⇥ the 100(1�↵)% highest
posterior density region of ⇥ with respect to p(✓ |x). That is,

Z

⇥p(✓ |x)(1�↵)
p(✓ |x) d✓ = 1� ↵ and p(✓ |x) > p(✓0 |x) (5)

for any ✓ 2 ⇥p(✓ |x)(1 � ↵), ✓0 2 ⇥ \ ⇥p(✓ |x)(1 � ↵) [e.g. Mukhopadhyay, 2000]. Using
the notation h↵,p(✓,x) = 1{✓ 2 ⇥p(✓ |x)(1 � ↵)}, the expected coverage is defined to be
Ep(✓,x)[h↵,p(✓,x)] which is easily shown to be equal to 1� ↵.

In Hermans et al. [2021], the expectation Ep(✓,x)[h↵,p(✓,x)] is approximated for a particular
posterior estimator q(✓ |x) using the Monte Carlo average

1

n

nX

i=1

h↵,q(✓i,xi); (✓i,xi)
iid⇠ ⇡(✓)p(x |✓). (6)

For a well-calibrated estimator q, Equation (6) evaluates to 1� ↵ at any level ↵. For this
reason the performance of the estimator can be assessed by plotting the nominal and actual
coverage against one another for a range of values ↵ 2 [0, 1], with the line of equality (45� line)
being optimal. An example is shown in Figure 2. Deviations above the straight line (actual
coverage exceeding nominal coverage) indicate that the approximation q is conservative at
that level, with deviations below the line indicating over-confidence. To assess performance
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Statistical coverage

Figure 2: Visualising cover-
age: three exemplar density
functions (coloured) and their
coverage of the base distribu-
tion (dash-dotted).

While the following experiments are presented for a particular
choice of flows and neural networks, we found in experiments
that neither architectural details of the neural networks (e.g.
number of hidden units, layers) nor the flows (e.g. choice of
transform) changed the qualitative outcome of the analysis.
Finally, we note that the misspecification transforms have
been intentionally chosen to be simple. For example, the
noise is never parameter dependent, and in two examples the
misspecification is simply additive Gaussian noise. Despite
this, we shall see that the methods tested still struggle greatly
in this setting.

3.2 Metrics

To assess accuracy in the experiments, we consider the cover-

age of the posterior approximations. As discussed in Hermans
et al. [2021], coverage usefully describes the kind of perfor-
mance that is important for defensible scientific inference,
in the sense that it not only assesses the accuracy of the
posterior approximation but can inform the researcher at a
glance if the approximation is conservative or overconfident.

Definition 1 (Expected Coverage). Denote by ⇥p(✓ |x)(1�↵) ⇢ ⇥ the 100(1�↵)% highest
posterior density region of ⇥ with respect to p(✓ |x). That is,

Z

⇥p(✓ |x)(1�↵)
p(✓ |x) d✓ = 1� ↵ and p(✓ |x) > p(✓0 |x) (5)

for any ✓ 2 ⇥p(✓ |x)(1 � ↵), ✓0 2 ⇥ \ ⇥p(✓ |x)(1 � ↵) [e.g. Mukhopadhyay, 2000]. Using
the notation h↵,p(✓,x) = 1{✓ 2 ⇥p(✓ |x)(1 � ↵)}, the expected coverage is defined to be
Ep(✓,x)[h↵,p(✓,x)] which is easily shown to be equal to 1� ↵.

In Hermans et al. [2021], the expectation Ep(✓,x)[h↵,p(✓,x)] is approximated for a particular
posterior estimator q(✓ |x) using the Monte Carlo average
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h↵,q(✓i,xi); (✓i,xi)
iid⇠ ⇡(✓)p(x |✓). (6)

For a well-calibrated estimator q, Equation (6) evaluates to 1� ↵ at any level ↵. For this
reason the performance of the estimator can be assessed by plotting the nominal and actual
coverage against one another for a range of values ↵ 2 [0, 1], with the line of equality (45� line)
being optimal. An example is shown in Figure 2. Deviations above the straight line (actual
coverage exceeding nominal coverage) indicate that the approximation q is conservative at
that level, with deviations below the line indicating over-confidence. To assess performance
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FIG. S1. A schematic illustration of our method for inferring DM density profiles of dwarf galaxies from observed stellar
kinematics.

where � is the gravitational potential, f = f(~x,~v) is the phase-space distribution function, and (~x, ~v) are the phase
space coordinates of tracer stars.

Working in the dwarf galaxy’s spherical coordinate system (r, ✓,�) and assuming spherical symmetry and steady
state, we multiply Eq. (A4) by the radial velocity vr and integrate over all velocity components to obtain the spherical
Jeans equation
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where ⌫ =
R
d3~v f(~x,~v) is the number density of the tracer stars, �i is the velocity dispersion �i =

p
hv2i i � hvii for

i 2 (r, ✓,�), and �(r) = 1�(�2
✓ +�2

�)/(2�
2
r) is the velocity anisotropy profile. The gravitational potential � is assumed

to be dominated by DM and may be written as � = �GM(< r)/r, where G is the gravitational constant and M(< r)
is the enclosed mass of DM. The Jeans equation (A5) has therefore the solution
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Projecting Eq. (A6) along the line of sight using the Abel transformation s(r) ! S(R) for the spherically symmetric
function s(r),

S(R) = 2

Z 1

R

s(r)r drp
r2 � R2

, (A7)
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Baryonic Physics
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However, baryonic feedback can ``core’’ the inner region of a CDM halo

CDM halos of all masses typically have ``cuspy’’ density profiles
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Internal Halo Properties

Dark matter self interactions can transfer heat throughout halo, 
redistributing matter distribution
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