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How is particle physics doing?
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How is particle physics doing?
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Naturalness
It’s the 1600s. Why prefer heliocentrism to geocentrism?

“Heliocentrism fit the data better”



Naturalness

It’s the 1600s. Why prefer heliocentrism to geocentrism?

“Heliocentrisnth ata better”

Ptolemaic theory never got the orbits wrong. Epicycles work great.
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We want theories which are simple.

Fergusonin EB 1s“Edition (1771)



Naturalhess

It’s the 1600s. Why prefer heliocentrism to geocentrism?

We want theories which are simple.

This is a useful guide because theories with many ingredients are
not as predictive. And predictivity is the point!

The structure of effective field theory means there will be

many models that fit the data. There is a decoupling limit.
See Wells (2020)



Low-energy

Naturalness and fine-tuning  «7|
A

* Not just some discrete choices
in building our theories

* Theories of particle physics come with some
parameter space of inputs which are required
to make physical predictions

Z

* Fine-tuning is the question of how sensitive some important physical
output is to exactly where you live in parameter space

* A theory that must be fine-tuned to produce some feature does not
explain that feature!



So is the Standard Model fine-tuned?

In the SM mg, Ace, Yij, g1, Ocp - are inputs and
can’t strictly ask about their fine-tuning!

* There is a problem in the context of a deeper theory that
predicts these parameters

* Given some UV theory, does the familiar physics of the SM
generically arise in the IR?

* No reason to worry if mZ will never find an explanation
* But this is a huge assumption!



Where is/particle physics?
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But let me pull back further a moment
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And there must be more out there!

* Dark matter, neutrino masses, baryogenesis, inflation, ...
* Flavor hierarchies, strong CP, quantum gravity, grand unification

Fundamental

In our best UV theories, the Higgs 1 theory
arises out of some larger structure. o
2 EW

mzy; IS an output.

=t Standard
Model
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The Higgs as e.g. a component of a UV multiplet

Toy GUT with Higgs embedded

LD M2dTd with ® = (Z)

Spontaneous breaking of the symmetry splits the multiplets
LD M2pTo + (M? + Avéyr) HTH
To get H mass ~ viy, while @ mass ~ véyr requires
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In fact the problem is worse... and more general

The low-energy value of the Higgs mass is jostled about by any
degrees of freedom which talk to the Higgs and contribute finite
corrections

L>yHYY + cHTHpT L —

| (
M @,

WY mZ !
H 16 n2

(—y*my, + cmy)

The Higgs mass is not protected by a global symmetry, so our infrared
understanding of technical naturalness tells us the problem will be general.



Solving the Hierarchy Problem

 Familiar solutions introduce some new

structure in the UV to control the form Supersymmetry Compositeness
of corrections to the Higgs mass
e But that isn’t present in the SM, so must Extra dimensions

be broken to give a nonzero Higgs mass

Compactification

SUSY breaking Confinement



Supersymmetry Compositeness

The ‘Loerarchy’ Problem Extra

dimensions

* The success of the LHC has turned
naturalness into a sharp empirical
problem: Where is the new physics
that protects the Higgs mass?

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits ATLAS Preliminary

July 2022 i .
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Where do we go from here?

e SUSY is right around the corner
e Continued, robust experimental program important

* Hide LHC signatures with additional one-loop protection
* Great idea, can only get you so far

* Cosmological dynamical evolution to ‘relax’ the Higgs mass
e Really intriguing, needs better understanding

* Past Wilsonian effective field theory?
e UV/IR mixing well-motivated
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* Past Wilsonian effective field theory?
e UV/IR mixing well-motivated



Where do we go from here?

SUSY is right around the corner
e Continued, robust experimental program important
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Hide LHC signatures with additional one-loop protection g, vernaarer: puriow.

* Great idea, can only get you so far

McCullough, Salvioni; Serra, Stetzl,
Torre, Weiler; Asadi, Craig, Li; ...]

Cosmological dynamical evolution to ‘relax’ the Higgs mass

e Really intriguing, needs better understanding

Past Wilsonian effective field theory?
e UV/IR mixing well-motivated

[e.g. Graham, Kaplan, Rajendran; Arkani-
Hamed, Cohen, D’Agnolo, Hook, Kim, Pinner;
Geller, Hochberg, Kuflik; Cheung, Saraswat;
Strumia, Teresi; Giudice, Kehagias, Riotto;
Csaki, D’Agnolo, Geller, Ismail; Giudice,
McCullough, You; D’Agnolo, Teresi; Khoury; ...]



Where do we go from here?

SUSY is right around the corner
e Continued, robust experimental program important

[e.g. Chacko, Goh, Harnik; Burdman,
Chacko, Goh, Harnik; Poland, Thaler;
Cai, Cheng, Terning; Craig, Knapen,
Longhi; Batell, McCullough; Curtin,
Saraswat; Cheng, Jung, Salvioni, Tsai;
Craig, Knapen, Longhi, Strassler; Craig,
Katz, Strassler, Sundrum; Cohen, Craig,
Giudice, McCullough, Cheng, Li,

Hide LHC signatures with additional one-loop protection g, vernaarer: puriow.

* Great idea, can only get you so far

McCullough, Salvioni; Serra, Stetzl,
Torre, Weiler; Asadi, Craig, Li; ...]

Cosmological dynamical evolution to ‘relax’ the Higgs mass

e Really intriguing, needs better understanding

Past Wilsonian effective field theory?
e UV/IR mixing well-motivated

- ‘Swampland’ of EFTs [e.g. Cheung & Remmen
’14; Lust & Palti’17; Ibanez, Martin-Lozano, Valenzuela
’17; Craig, Garcia Garcia, SK’18, ‘19]

- More direct UV/IR? [e.g. Dienes ‘94-; Minwalla,
van Raamsdonk, Seiberg ‘00; Craig & SK “19]

[e.g. Graham, Kaplan, Rajendran; Arkani-
Hamed, Cohen, D’Agnolo, Hook, Kim, Pinner;
Geller, Hochberg, Kuflik; Cheung, Saraswat;
Strumia, Teresi; Giudice, Kehagias, Riotto;
Csaki, D’Agnolo, Geller, Ismail; Giudice,
McCullough, You; D’Agnolo, Teresi; Khoury; ...]



Conclusion

* We want theories that explain infrared physics simply

* There’s more out there to be discovered, and some deeper theory
should predict the Higgs mass

* All known such theories predict lots of weak scale particles
* We haven’t seen them! Something is wrong.
* We need further clever ideas.

The Hierarchy Problem: From the
Fundamentals to the Frontiers

2009.11870
APS 2022 Sakurai Dissertation Award



“So what, it’s turtles all
the way down?”

No! Reductionism ends with quantum gravity when
distances themselves are dynamical.

Gravity is different because the far UV is controlled by
infrared physics

Large masses M can have low-scale effects m ~ M;l/M

How will this UV/IR mixing affect particle physics?




s QED natural?

* On general grounds, elementary particle masses m; € [0, M,,;]
* So why are Me, My, K Mpl?

* In the context of QED, these are just inputs.

s QEDCSM natural?

* m, now explained by a3 and QCD confinement
* m, explained by small Yukawa coupling y,
* In both cases, small change to input gives small change to output



A fine-tuned UV completion of QED

* In the SM, the masses of QED arise from a chiral theory.
* A vector-like UV completion does not explain them.

SU(2) -» U(1)?
* A vector-like theory means we can write a mass in the UV
L=MYY + y¥Pi¥

. e
e |f X gets avev A, and we want a light electron, ¥ = (é)’ must tune M
against yA
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