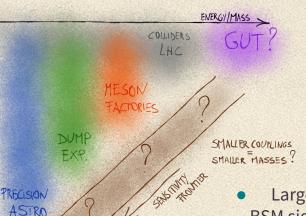
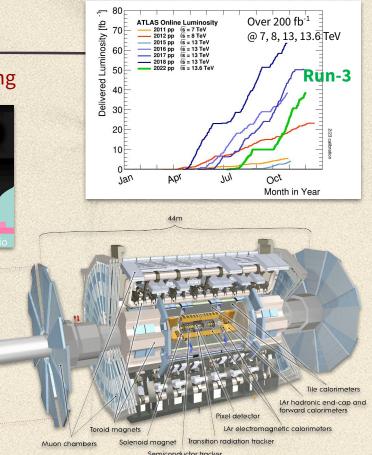
Searches for BSM Physics at ATLAS

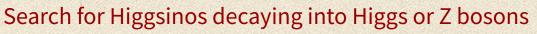
Cristiano Alpigiani

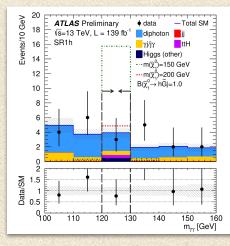
On behalf of the ATLAS Collaboration

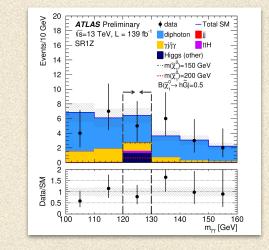

ASPEN 2023 Aspen, 29 March 2023

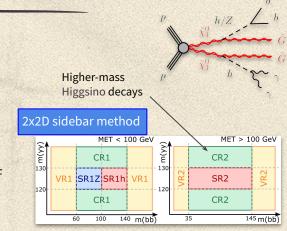

BSM? Where? How? When?

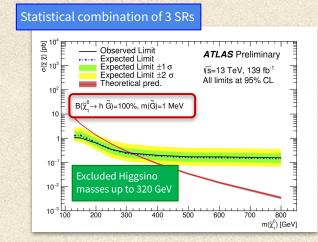
Many theories predicting heavy new states with sizeable coupling


- Large number of searches for BSM signatures done at the LHC
- No clear sign of new physics, but still a lot of unexplored models and parameter space
- Many portals: vector (dark photons), scalar (dark Higgs), fermion (sterile neutrino), pseudo-scalar (axions)

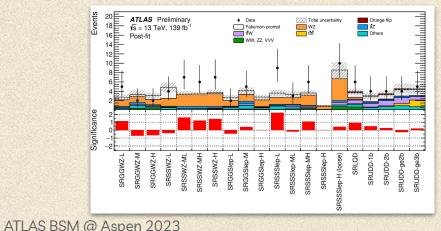

NB1: full set of ATLAS public results can be found in <u>AtlasPublic</u> **NB2:** some of the latest BSM searches using ML are in <u>Daniel's talk</u>

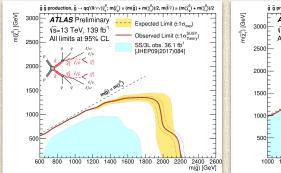

CORLIN 6/INTENSITY

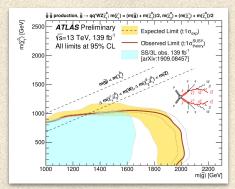

Paired Produced Higgsinos

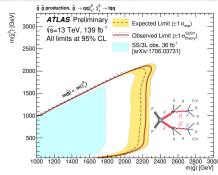

- Final states with 2γ and $2b + E_{T}^{miss}$ (from Gravitino)
- Three orthogonal SR to gain sensitivity to different Higgsino mass hypothesis and decay modes
- **Resonant background** from $H \rightarrow \gamma \gamma$ (subdominant) determined from MC
- Non-resonant background (dominant) estimated using data in the sidebands of m_{yy} distributions

ATLAS-CONF-2023-009

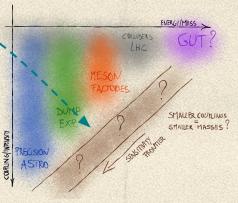

Squarks/gluinos Decaying Via Sleptons/W

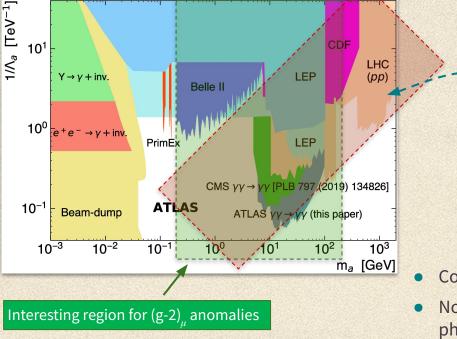

Search for squarks or gluinos in final states with leptons


NEW


ATLAS-CONF-2023-017

- Final state with exactly 2 same-sign leptons or at least 3 leptons (no charge requirement)
- Multiple (not exclusive) SRs to maximise the sensitivity to the various signal models
 - Built on the # of leptons and their charges, and # of jets
 - Most relevant observable: $m_{\text{eff}} = \sum p_{\text{T}}^{\text{jet}} + \sum p_{\text{T}}^{\ell} + E_{\text{T}}^{\text{miss}}$
- Dominant same-sign lepton final states background from:
 - \circ SM processed \rightarrow estimated with MC + data control region
 - \circ Fake/non prompt leptons or incorrect charge reco \rightarrow data-driven methods


ALPs (Axion Like Particles)

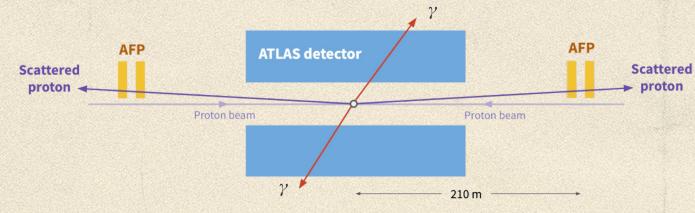

Very light (pseudo) scalar particles

- They appear in any theory with spontaneously broken global symmetry
- ALPs interactions grow with momentum

Existing constraints from JHEP 12 (2017) 044

- Couplings inversely proportional to NP scale A_a
- Non-thermal candidates for DM, explain unclear astrophysical phenomena (e.g. TeV transparency, stellar cooling excess)

ATLAS BSM @ Aspen 2023

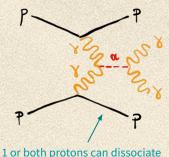

ALPs Searches with AFP

NEW

ATLAS-CONF-2023-002

Search for forward proton scattering with light-by-light scattering

- For di-photon masses >~ 20 GeV effective γγ luminosity in pp collisions higher than Pb-Pb
- Resonance search in m_{γγ} distributions: pair of photons in ATLAS + at least 1 proton tagged in ATLAS Forward Proton (AFP)
- Proton-proton collision data recorded in 2017 @ 13 TeV (14.6 fb⁻¹)

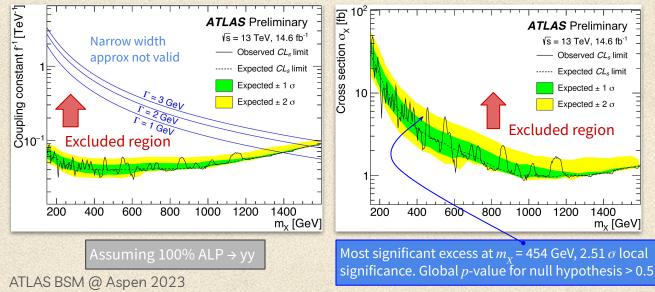


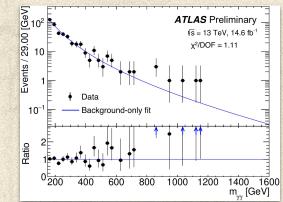
- AFP → Roman Pots system (<u>ATLAS-TDR-024</u>, <u>ATL-PHYS-PUB-2017-012</u>)
 - 4 tracking units located at $z = \pm 205$ m and ± 217 m
 - Each station has a silicon tracker made of four planes of edgeless silicon pixel sensors (6 µm resolution)

ATLAS BSM @ Aspen 2023

 $\gamma\gamma$ cross section can be enhanced by BSM

radiating a virtual photon




ALPs Searches with AFP

Search for forward proton scattering with light-by-light scattering

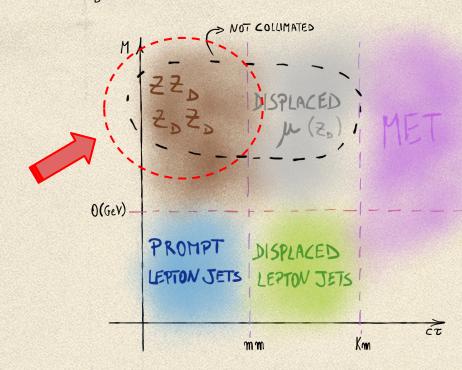
- Selection based on proton energy loss fraction: $\xi = 1 E_{scattered}/E_{beam}$
 - Interesting events expected to have $\xi^{\pm}_{\gamma\gamma,\text{ATLAS}} \sim \xi^{\pm}_{\text{AFP}}$
- Combinatorial background from pair of photons (including fakes) + protons produced in another collision

• Fully data-driven combinatorial background sample

441 observed events

ATLAS-CONF-2023-002

- Statistical uncertainty is dominant
- Systematics from AFP alignment
- >1 AFP proton matching increase the mass acceptance


Building ALPs from light

dbox Studio

Dark Photons

Many extensions of the SM introduce a dark/hidden sector (DS)

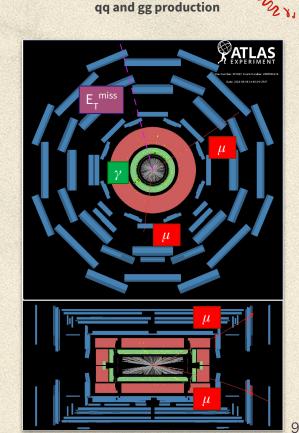
DS containing a dark abelian gauge group U(1)_D gives rise to "vector portal"
 → kinetic mixing between dark photon (DP) and SM hypercharge gauge boson (ϵ ~10⁻⁸-10⁻⁴)
 → If U(1)_D is broken → massive DP

- Higgs portal: could observe deviations in some SM Higgs decay channels
- Can explain DM, some astrophysical observations (positron excess in cosmic rays), muon anomalies, ...

Dark Photons via ZH

NEW

HDBS-2019-13

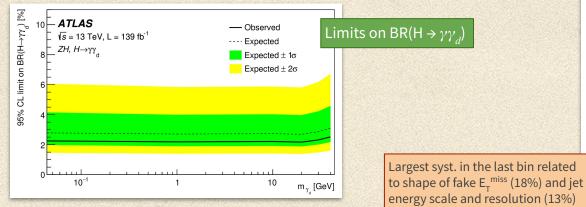

Search for dark photons produced through ZH using 139 fb⁻¹ of data

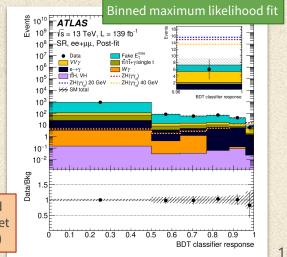
- Branching ratio of $H \Rightarrow \gamma \gamma_d$ with values up to a few % are possible for a massless dark photon / heavy DS scenarios
- Look for
 - resonant γ +MET events (selection optimised for signal acceptance)
 - 2 same-flavour, opposite-charge electrons or muons (trigger and Z mass constraint)
- Relatively clean signal
- Signal sensitivity improved using a **BDT implemented using the XGBoost** classifier using 6 variables: E_{T}^{miss} significance, $m_{\mu}^{\gamma} p_{T}^{\gamma}$, m_{μ}^{γ} , and

$$m_{\rm T} = \sqrt{2E_{\rm T}^{\rm miss} p_{\rm T}^{\gamma} [1 - \cos[\Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\gamma})]]} \qquad p_{\rm T}^{ratio} = \frac{|\vec{E}_{\rm T}^{\rm miss} + \vec{p}_{\rm T}^{\gamma}| - p_{\rm T}^{\ell}}{p_{\rm T}^{\ell\ell}}$$

- 5-fold cross validation strategy:
 - Samples divided into 5 subsets → **5 BDTs trained**
 - Each BDT training: 4 subsets used for training and 1 for testing

 \rightarrow 5 BDT trainings = permutations of training-testing setups \rightarrow used to compute BDT score of data divided into 5 subsets in the same way




Dark Photons via ZH

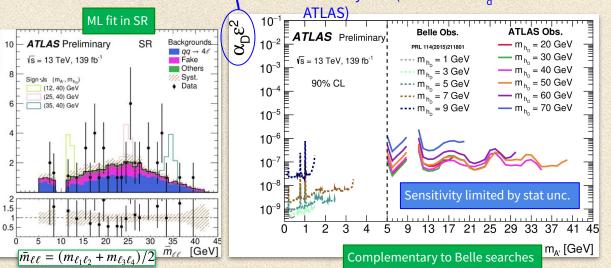
Search for dark photons produced through ZH using 139 fb⁻¹ of data

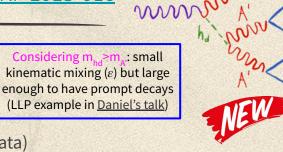
- Backgrounds:
 - Irreducible from VV γ final states to decay leptonically
 - Reducible: fake E_T^{miss} (dominant), particle mis-identification (e → γ), jets not contained in the detector acceptance, t → W(→ ሎ)b
 - $e \rightarrow \gamma$ estimated using a "probe-e" CR (SR selection + extra e required): 21.0 ± 2.4 (ee) and 20.4 ± 2.1 (µµ)
 - Fake E_T^{miss} estimated using ABCD (CRs enriched with fake E_T^{miss}); residual E_T^{miss} (from $e \rightarrow \gamma$) and background (VV γ , ...) subtracted: **413 ± 50** (*ee*) and **581 ± 64** ($\mu\mu$) events
 - Others bkg estimated using MC simulation constrained by data in VR

gg and gg production

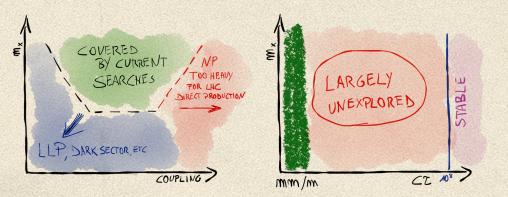
ATLAS BSM @ Aspen 2023

11


Dark Photons via Rare Z Decays

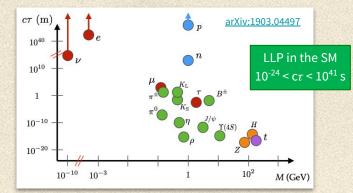

(First!) search for a dark photon and dark Higgs produced via dark Higgs-strahlung in rare Z boson decays

- Final state: $4\ell(e/\mu \text{ from on shell DP, same-flavour opposite-charge}) + X$
- **Dominant background from qq \rightarrow 4\ell** (modelled using MC and normalised to data)


s/Ge

- Subleading bkg from Z+jets, top-quark and WZjj with fake leptons, minor contributions (<5%) from $ZZ \rightarrow 4\ell$, tri-boson, tt + X (J/ ψ , Υ (bb), b jet vetoes) \propto decay rate (1st limit on α_{d} and ε in
- Signal selection:
 - $m_{4/} < m_7 5 \text{ GeV} (\text{suppress } qq \rightarrow 4/)$ Quadruplet with smaller lepton-pair
 - mass difference
 - m_{4(lower)} /m_{4(higher)} > 0.85 (ensure originate from A' decay)
 - Same (opposite) flavored leptons required to have $\Delta R > 0.1 (0.2)$
 - m___ > 5 GeV
 - Veto to suppress quarkonia bkg

ATLAS-CONF-2023-016

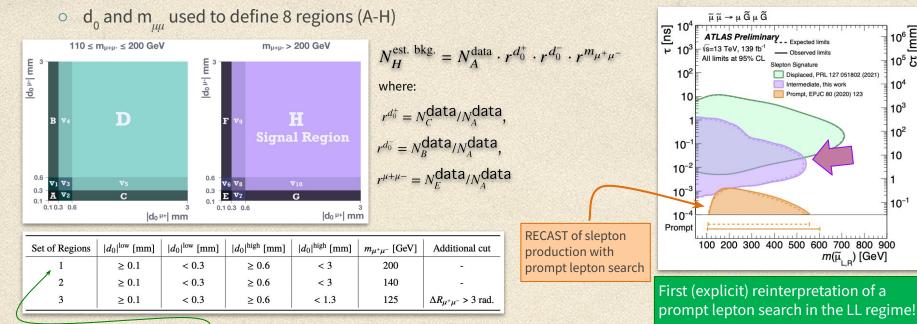


Nature is plenty of particles with macroscopic detectable decay lengths

- Not surprising that long-lived particles (LLP) might exist also beyond the SM
- New particles might more likely labelled as background
- The particle lifetime is a free parameter in the model (sampled from an exponential)
- Detector signatures strongly depend on boost/mass of the LLP

Need to adapt the search strategy!

Long-Lived Particles



ML heavily used in LLP searches (also with innovative approaches) - see Daniel's talk

ATLAS Micro-Displaced Muons ATLAS-CONF-2023-018

Search for pairs of $\mu^+\mu^-$ with impact parameters in the mm range

- Target a gap in coverage smuon lifetime 1-10 ps between prompt and displaced slepton searches
- Selected muons with $0.1 \le |d_0| \le 3 \text{ mm}$ (no selection on z_0), $m_{\mu\mu} \ge 110 \text{ GeV}$ (reduce contribution of muons from Z)
- Dominant background from semileptonic B-hadron decays bb $\rightarrow \mu^+\mu^-$ (Z/W+jets, top decays are negligible)

ATLAS BSM @ Aspen 2023

10⁶ 🖳

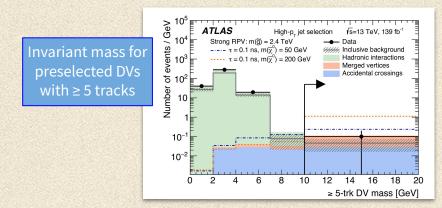
10⁵ 片

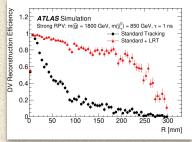
10⁴

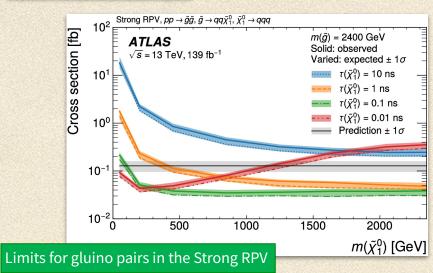
10³

 10^{2}

10


10-1

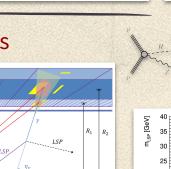

ATLAS Displaced Jets in the Tracker


SUSY-2018-13

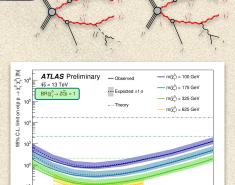
Search for LLP decaying into hadrons in events with multiple jets and a displaced vertex

- 2-7 high-pT jets $+ \ge 1$ DV with ≥ 5 tracks and mass > 10 GeV
 - Additional dedicated SR for lower pT jets
- Dedicated LLP reconstruction techniques (<u>ATL-PHYS-PUB-2017-014</u>)
- Background from hadronic interactions, accidental crossings, and merged vertices estimated using an inclusive data-driven technique predicting the displaced vertices rates for all sources and validated in several VRs

ATLAS-CONF-2022-051

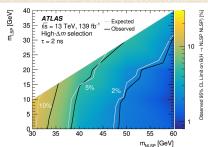

ATLAS Displaced/Delayed Photons

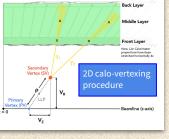
Search for displaced production of H/Z from a neutral LLP

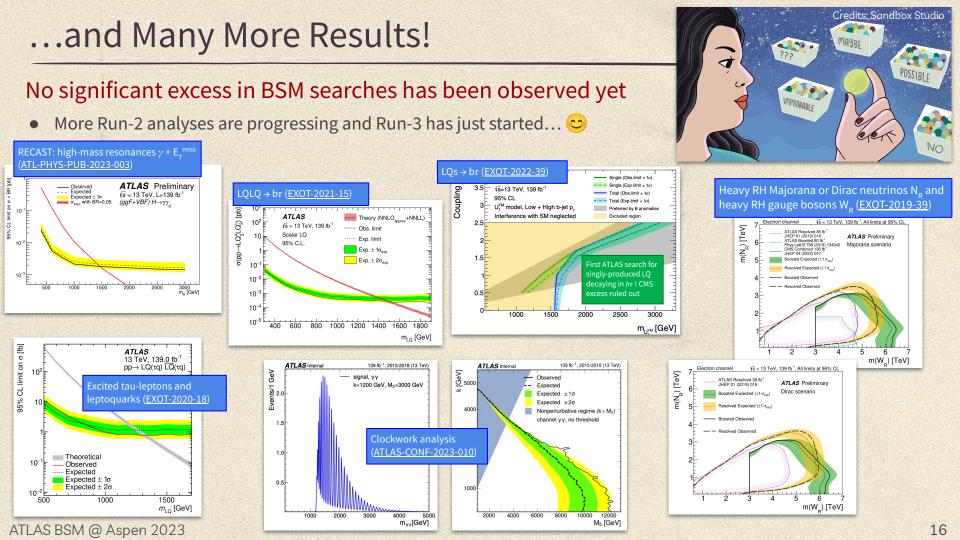

- $2\gamma/2e$ from H/Z (vertexing using only LAr precise timing info) + E_T^{miss}
- Selection using pointing/timing info
- Background: processes with real and fake photons
 - o Data-driven bkg estimation using a CR with low E_{T}^{miss} values
- Binned profile likelihood fit of t_{avg} performed simultaneously across five *ρ* categories

Search for delayed and nonpointing photons from LLPs

- 2γ + triggering on prompt leptons
- Pointing/timing info and shape fit of timing distribution
- Background from prompt γ, e/jets misidentified as photons → estimated using data control samples
- Look for lifetimes O(10 ns)
- Results interpreted in terms of m_{LSP}, m_{NLPS}, LLP lifetime

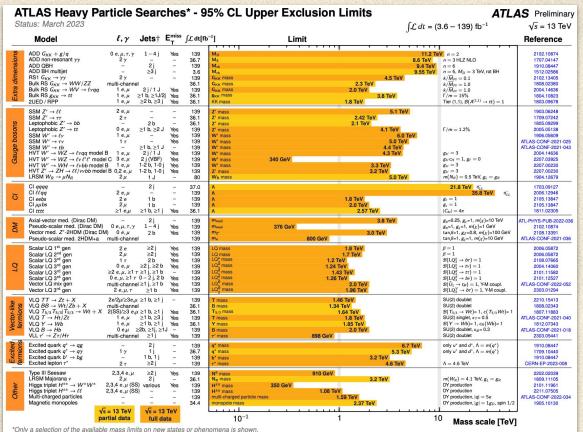



Λz

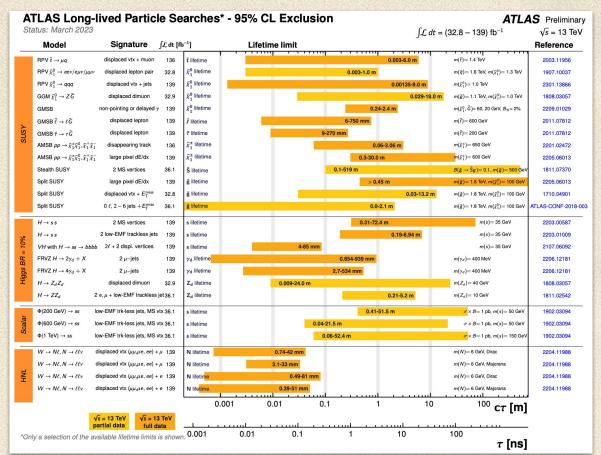


SUSY-2019-14

15



Backup


Some Summary Plots - Heavy Particles

*Only a selection of the available mass limits on new states or phenomena is show

+Small-radius (large-radius) jets are denoted by the letter j (J).

Some Summary Plots - LLP

Some Summary Plots - SUSY

$ \begin{array}{ $		arch 2023 Model	5	Signatur	re ∫	<i>L dt</i> [fb ⁻	Mass limit	$\sqrt{s} = 13$ T Reference
gs $\beta_{1}, \beta_{1}, -\mu_{1}(r), rescale $	s	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$	0 e, µ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	139 139		
gs $\beta_{1}, \beta_{1}, -\mu_{1}(r), rescale $	irche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	$0 \ e, \mu$	2-6 jets	E_T^{miss}	139		
Space 3_{1} 2_{-reg} WZR ¹ 0_{1} 2_{1} 7_{-11} (reg k_{-}^{-reg} 1.97 m(n) -600 (reg k_{-}^{-reg} 1.92 1.92 $m(n) -600 (reg k_{-}^{-reg} 1.92 m(n) -600 (reg k_{-}^{-reg} 1.92 1.9$	Sea	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 e, µ			139		
$ \frac{1}{2} 1$	Ne				E_T^{miss}			
$ \frac{1}{2} 1$	SIIC	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZY_1^-$	0 e,μ SS e,μ	6 jets	E_T^{mass}		g 1.97 m(k ₁) <600 GeV ğ 1.15 m(ĝ)m(k ₁)=200 GeV	
$ \frac{1}{2} \int_{0}^{1} h_{1}^{1} h_{2}^{1} h_{2}^{2} \rightarrow h_{1}^{2}^{2} = 0$ $ \int_{0}^{1} h_{1}^{1} h_{2}^{1} h_{2}^{2} + h_{1}^{2} + h_{2}^{2} $	Ĕ	$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 e,μ SS e,μ	3 b 6 jets	$E_T^{\rm miss}$	139 139		
		$\tilde{b}_1 \tilde{b}_1$	0 e, µ	2 b	$E_T^{\rm miss}$	139		
$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	tion	$\tilde{b}_1\tilde{b}_1, \tilde{b}_1{\rightarrow}b\tilde{\chi}^0_2 {\rightarrow}bh\tilde{\chi}^0_1$		6 b 2 b	$E_T^{\rm miss}$ $E_T^{\rm miss}$	139 139	b_1 Forbidden 0.23-1.35 $\Delta m(\tilde{x}_0^0, \tilde{x}_1^0) = 130 \text{ GeV}, m(\tilde{x}_1^0, \tilde{x}_1^0) = 100 \text{ GeV}$	1908.03122
$ \begin{array}{c} p_{1} p_{1} p_{1} p_{1} p_{1} p_{1} p_{2} p_{1} p_{2} p_{1} p_{2} p_{2$	duct	$\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow t \tilde{\chi}_1^0$			E_T^{miss}	139	ī ₁ 1.25 m(ξ ⁰ ₁)=1 GeV	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	pro	$\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow W b \tilde{\chi}_1^0$			E _T miss			
$ \frac{1}{k_{1}^{2}} \frac{1}{k_{1}^{2}} \frac{1}{k_{1}^{2}} \frac{1}{k_{1}^{2}} \frac{1}{k_{2}^{2}} \frac{1}{k_{1}^{2}} \frac{1}{k_{1}^$	rect				E _T E ^{miss}			
is, f_1, f_2, f_1 + Z 3 r_{μ} 1 h E ^{max} h 5 h Forbidden 0.86 m(f_1)=30.08(m(f_1), m(f_1) = 4) GeV 2006.05880 $k_1^{+}k_2^{+}$ via W Multipole (plots E^{max}_{T} min 39 $k_1^{+}k_1^{+}$ 0.205 0.96 m(f_1)=0.000 FMR (min 1) m(f_1) = 0.000 FMR (min 1) FMR (min 1) FMR (min 1) = 0.000 FMR (min 1) = 0.000 FMR (min 1) FMR (min 1) = 0.000 FMR (min 1	di		0 e, µ			139	\tilde{t}_1 0.55 $m(\tilde{t}_1,\tilde{c})-m(\tilde{t}_1^0)=5 \text{ GeV}$	2102.10874
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_2, \tilde{t}_3 \rightarrow \tilde{t}_4 + Z$						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Multiple <i>ℓ/j</i> e	ts		139		2106.01676, 2108.07586
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ũ±ũ [∓] , 4− mm		≥ i jei				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				ts	ET Emiss			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	+	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via $\tilde{\ell}_{L}/\tilde{\nu}$			$E_T^{\rm miss}$	139	\tilde{x}_{1}^{\pm} 1.0 $m(\tilde{c}, \tilde{v})=0.5(m(\tilde{x}_{1}^{\pm})+m(\tilde{x}_{1}^{0}))$	1908.08215
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	rec			0.1.1.	E_T^{miss}			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D	$\ell_{L,R}\ell_{L,R}, \ell \rightarrow \ell \ell_1$	ee, µµ	≥ 1 jet	$E_T^{T_{miss}}$	139	^ℓ 0.256 m(ℓ ₁)=0 m(ℓ ₁)=0 m(ℓ ₁)=10 GeV	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 e, µ	$\geq 3 b$	ETniss	36.1	\tilde{H} 0.13-0.23 0.29-0.88 BR($\tilde{\chi}_{1}^{0} \rightarrow h\tilde{G}$)=1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			4 e, μ 0 e, μ	≥ 2 large je	ts E_T^{fniss}	139	H 0.55 BH($\tilde{x}_1 \rightarrow ZG$)=1 \tilde{H} 0.45-0.93 BH($\tilde{x}_1 \rightarrow ZG$)=1	
Stable & R-hadron pixel dE/dx E_T^{mix} 0.21 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.1071 0.205 0.1071 0.205 0.1071 0.205 0.1071 0.205 0.1071 0.205 0.1071 0.2051 0.01771 0.0110712 0.00000 <td></td> <td></td> <td>2 e,µ</td> <td>≥ 2 jets</td> <td>$E_T^{\rm miss}$</td> <td>139</td> <td></td> <td>2204.13072</td>			2 e,µ	≥ 2 jets	$E_T^{\rm miss}$	139		2204.13072
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\operatorname{Direct} \tilde{\chi}_1^* \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. tr	k 1 jet	$E_T^{\rm miss}$	139	X [±] 0.66 Pure Wino Via 0.21 Pure Mino	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	seles	Stable § R-hadron			E_T^{miss}		ğ 2.05	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	urtic				E_T^{miss}			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	pa	$\ell\ell, \ell \rightarrow \ell G$					$\bar{\tau} = 0.34$ $\tau(\bar{\ell}) = 0.1 \text{ ns}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			pixel dE/d	×	E_T^{miss}	139	t	2205.06013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0 inte	remiss			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\chi_1 \chi_1 / \chi_2^* \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$ $\tilde{a}\tilde{a}, \tilde{a} \rightarrow aa\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow aaa$	4 e,μ					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	>	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$		Multiple		36.1	\tilde{t} [ℓ_{333}^{v} =2e-4, 1e-2] 0.55 1.05 m($\tilde{\ell}_{1}^{0}$)=200 GeV, bino-like	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	눈	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$						
1 μ DV 136 \tilde{t}_1 [1e-10< t_{244}^2 <1e-8, 3e-10< t_{244}^2 <3e-9] 1.0 1.6 BR($t_1 \rightarrow q\mu$)=100%, $\cos\theta_r$ =1 2003.11956			2 e.u		,		7. 0.4.1.45 BB(i→be(bu)>20%	
$\vec{k}_1^* \vec{k}_2^* \vec{k}_1^* \vec{k}_1^* \rightarrow bbs$ 1-2 $e, \mu \ge 6$ jets 139 \vec{k}_1^{μ} 0.2-0.32 Pure higgsino 2106.09609			1 μ	DV		136	$\vec{t}_{1} = [1e - 10 < t_{21k}^{\prime} < 1e - 8, 3e - 10 < t_{23k}^{\prime} < 3e - 9] = 1.0 = 1.6 = BR(\vec{t}_{1} \rightarrow q_{2}) = 100\%, \cos\theta_{t} = 1.0 = 1.6$	2003.11956
		$\tilde{\chi}_1^x/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^* \rightarrow bbs$	1-2 e, µ	≥6 jets		139	<i>x</i> ⁿ ₁ 0.2-0.32 Pure higgsino	2106.09609

Paired Produced Higgsinos - SR Selection / Event Yield

					ATLAS CONF 2000 000
req	uirement	$\mathbf{SR1h}$	$\mathbf{SR1Z}$	$\mathbf{SR2}$	ATLAS-CONF-2023-009
$ m_{\gamma} $	$_{\gamma} - 125 GeV$				
$E_{\mathrm{T}}^{\mathrm{m}}$	iss	≤ 100	GeV	> 100 GeV	
m_{bb})	$\in (100, 140) GeV$	$\in (60, 100) GeV$	$\in (35, 145) GeV$	NEW
$p_{\mathrm{T}}^{\gamma\gamma}$		≥ 900	GeV	-	· · · · · · · · · · · · · · · · · · ·
$p_{\mathrm{T}}^{\gamma\gamma}$	$/m_{\gamma\gamma}$	≥ 0	.4	≥ 0.2	
					<u> </u>
	Channel	$\operatorname{SR1h}$	$\operatorname{SR1}$	Z	SR2
	Observed events	3	5		2
	Total SM events	3.9 ± 0.6	$6.4 \pm$	1.0 1.7	7 ± 0.7
	$\gamma\gamma$ events	2.5 ± 0.5	$3.7\pm$	0.7 0.88	3 ± 0.26
	γj events	0.47 ± 0.2	8 $0.8 \pm$	0.5 0.24	4 ± 0.15
	$j\gamma$ events	0.088 ± 0.0	14 $0.27 \pm$		0 ± 0.6
	jj events	< 0.01	$0.07 \pm$	0.05 0.2	$2^{+0.24}_{-0.22}$
	ttH events	0.41 ± 0.0	4 $0.297 \pm$	0.025 0.27	7 ± 0.06
	Higgs (other)	0.40 ± 0.0	8 $1.22 \pm$	0.26 0.064	4 ± 0.011
		0.03	0.0	4	0.03
	$S_{ m obs}^{95}$	4.8	5.5	,)	4.8
	S_{exp}^{95}	$5.4^{+2.2}_{-1.5}$	6.7^{+1}_{-1}	$\frac{2.6}{1.8}$ 4.	$6^{+1.6}_{-0.8}$
	$\frac{p(s=0)}{p(s=0)}$	0.50	0.5		0.43

Squarks/gluinos Decaying Via Sleptons/W

ℓ/ν qqW Wqq q ℓ/ν ZZpp $ilde{\chi}_1^0$ $\tilde{\chi}_1^0$ $ilde{\chi}_1^0$ $\tilde{\chi}^0_2$ $\tilde{\ell}/\tilde{\nu}$ $ilde{\chi}^0_2$ • $\tilde{\chi}_1^0$ $ilde{\chi}_1^0$ \tilde{g} \tilde{g} ppp ℓ/ν WqqW ℓ/ν qq q(b) (a) (c) ν/ℓ q ℓ/ν q ℓ/ν ph pq \tilde{g} $ilde{\chi}^0_1$ $ilde{t}^* \lambda_{313}''$ $\tilde{\chi}_1^0$ d $\ell/\tilde{\nu}$ $ilde{\chi}_1^0$ \boldsymbol{q} pppb q ℓ/ν q ℓ/ν qt

ATLAS-CONF-2023-017

ALPs with AFP - Efficiency x Acceptance

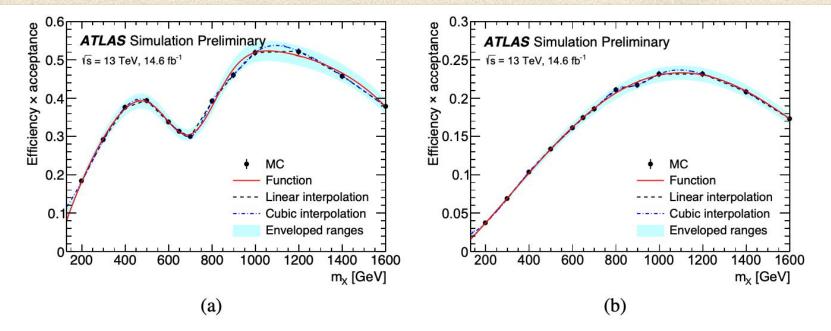


Figure 2: Signal selection efficiency times acceptance as a function of ALP mass m_X for the (a) exclusive and (b) single-dissociative process. The ratio of the number of the generated MC events and the selected events is given (black points) and is parameterised by an analytical function (red solid line). The linear (black dashed line) and cubic (blue chain line) interpolations of the black points are used to derive the envelopes (cyan filled region) which are regarded as systematic uncertainties.

ALPs with AFP - Proton Fractional Energy Loss

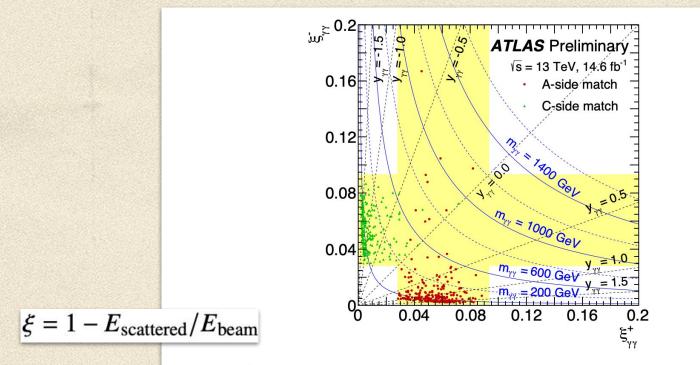


Figure 5: $(\xi_{\gamma\gamma}^+, \xi_{\gamma\gamma}^-)$ distribution of the selected data candidates after the full event selection in $m_{\gamma\gamma} \in [150, 1600]$ GeV with $m_{\gamma\gamma}$ contours (blue) and $y_{\gamma\gamma}$ contours (black). The range of $\xi_{\gamma\gamma}$ in which forward proton matching is possible, $[0.035 - \xi_{\text{th}}, 0.08 + \xi_{\text{th}}]$, is indicated by the yellow rectangle for each side. Events passing the matching selection on the A(C)-side are represented by the red dots (green triangles). No event passed the matching selection for both A and C-sides.

Dark Photons via ZH - Signal Selection and Event yield

Table 3: Optimised kinematic selections defining the signal region for $\ell^+\ell^- + \gamma + E_T^{\text{miss}}$

Two same flavour, opposite sign, medium ID and loose isolated leptons, with leading $p_T > 27$ GeV, sub-leading $p_T > 20$ GeV

Veto events with additional lepton(s) with loose ID and $p_{\rm T} > 10 \text{ GeV}$

76 GeV $< m_{\ell\ell} < 116$ GeV

Only one tight ID, tight isolation photon with $E_{\rm T}^{\gamma} > 25 \text{ GeV}$

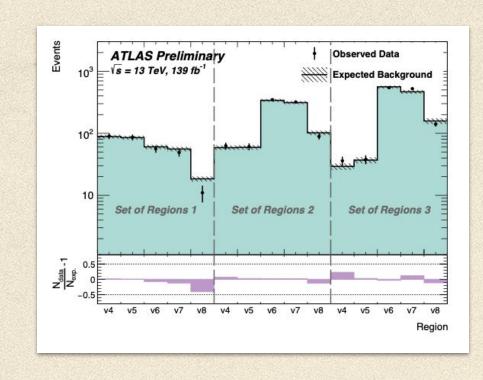
 $E_{\rm T}^{\rm miss} > 60 \text{ GeV}$ with $\Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{\,\ell\ell\gamma}) > 2.4 \text{ rad}$

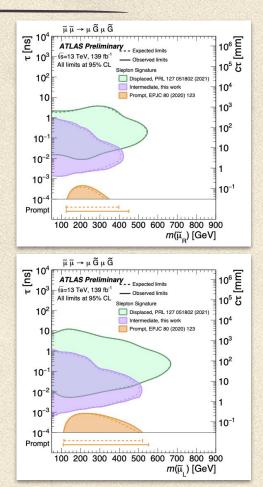
 $m_{\ell\ell\gamma} > 100 \text{ GeV}$

 $N_{jet} \le 2$, with $p_T^{jet} > 30$ GeV, $|\eta| < 4.5$

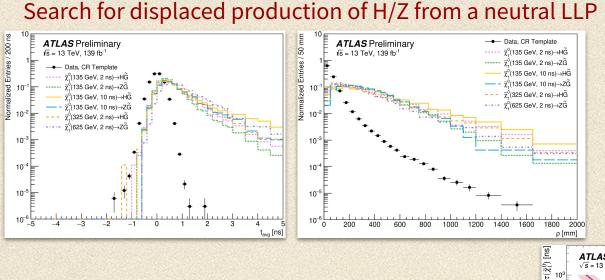
Veto events with b-jet(s)

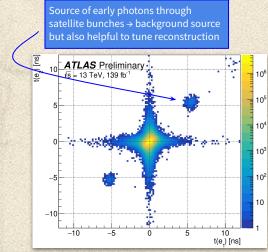
BDT bin	SR 0 - 0.50	SR 0.50 - 0.64	SR 0.64 - 0.77	SR 0.77 - 0.88	SR 0.88 - 0.96	SR 0.96 - 1	$VV\gamma$ CR
Observed	910	84	59	72	42	6	32
Post-fit SM background	910 ± 29	85.5 ± 8.7	59.9 ± 7.3	69.7 ± 7.8	41.6 ± 6.1	7.3 ± 2.0	31.4 ± 5.4
Fake E_T^{miss}	800 ± 34	72.1 ± 8.3	45.7 ± 6.5	53.2 ± 7.1	27.9 ± 6.1	2.0 ± 1.9	$2.1^{+3.5}_{-2.1}$
e ~~ y	21.5 ± 2.0	3.33 ± 0.62	3.75 ± 0.74	6.4 ± 1.1	5.7 ± 1.4	1.47 ± 0.25	1.24 ± 0.07
$VV\gamma$	44 ± 12	5.3 ± 1.6	5.8 ± 1.7	6.4 ± 1.8	5.7 ± 1.9	3.30 ± 0.97	27.3 ± 6.4
$t\bar{t}, t\bar{t}\gamma$, single t	42 ± 15	4.3 ± 1.5	3.4 ± 1.2	3.6 ± 1.2	2.13 ± 0.80	0.50 ± 0.18	0.63 ± 0.22
$W\gamma$	3.3 ± 1.5	0.39 ± 0.18	1.18 ± 0.55	-	0.04 ± 0.02	-	-
$t\bar{t}H, VH$	0.15 ± 0.02	0.03 ± 0.01	0.04 ± 0.01	0.06 ± 0.01	0.09 ± 0.03	0.02 ± 0.01	$0.17^{+0.18}_{-0.17}$
Pre-fit SM background	900 ± 120	90 ± 35	65 ± 27	53 ± 24	35 ± 22	7.8 ± 4.4	24 ± 4.7
Signal $(ZH \rightarrow \gamma \gamma_d)$	5.1 ± 1.3	1.98 ± 0.51	3.2 ± 1.0	5.5 ± 1.6	11.1 ± 3.1	14.9 ± 1.9	-

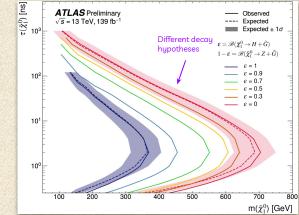

Dark Photons via ZH - Uncertainties


BDT bin	0 - 0.50	0.50 - 0.64	0.64 - 0.77	0.77- 0.88	0.88 - 0.96	0.96 - 1
	[%]	[%]	[%]	[%]	[%]	[%]
Total (statistical+systematic) uncertainty	3.1	10	12	11	15	28
Statistical uncertainty	3.1	9.9	12	11	14	16
Fake $E_{\rm T}^{\rm miss}$ shape	0.17	0.97	0.40	0.55	2.8	18
Jet <i>E</i> scale and resolution	0.02	3.3	2.1	0.47	2.1	13
Electron, photon E scale and resolution	0.04	0.45	0.75	0.46	1.7	5.6
Muon E scale and resolution	0.08	0.17	0.15	0.91	1.2	4.1
Fake $E_{\rm T}^{\rm miss}$ data-driven	0.50	0.28	0.18	0.04	0.40	3.5
$E_{\rm T}^{\rm miss}$ soft term scale and resolution	0.26	0.16	0.59	0.49	0.20	2.8
Electron trigger/ID/iso/reco eff.	0.01	0.10	0.10	0.01	0.17	1.0
Muon trigger/ID/iso/reco eff.	0.01	0.07	0.08	0.06	0.03	0.84
Flavour tagging eff.	< 0.01	0.08	0.10	0.04	0.02	0.82
Electrons faking photons data-driven	0.02	0.08	0.06	0.06	0.07	0.73
Photon ID/iso/reco eff.	0.01	0.07	0.08	0.04	0.09	0.61
Reweighting of $\langle \mu \rangle$ in MC simulation	0.08	0.10	0.32	0.46	0.09	0.48
Top normalization	0.08	0.06	0.06	0.02	0.09	0.13
Theoretical $VV\gamma$	0.04	0.02	0.16	0.04	0.13	0.49
Theoretical fake $E_{\rm T}^{\rm miss}$	0.05	0.11	0.12	0.22	0.29	0.45
Theoretical top	0.09	0.05	0.17	0.10	0.04	0.28
Theoretical $W\gamma$	0.04	0.10	0.18	0.05	0.13	0.24
Theoretical Higgs	0.01	0.05	0.04	0.02	0.08	0.05

Micro-Displaced Muons

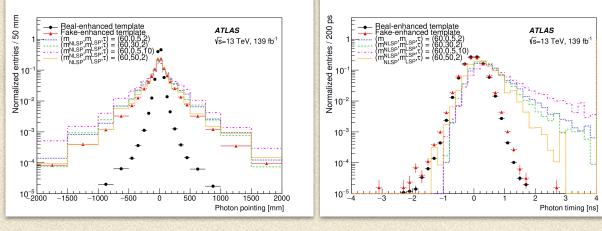

<u>SUSY-2020-09 (to be</u> <u>updated when public)</u>

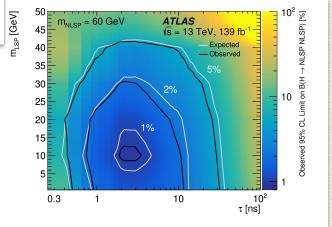




Displaced Photons

ATLAS-CONF-2022-051





Delayed Photons

Search for delayed and nonpointing photons from LLPs

