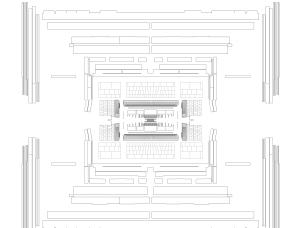


Uncertainties in the era of ML (For Particle and Astrophysics)



$$mH = 125.25 \pm 0.17 \text{ GeV}$$

$$mH = 125.25 \pm 0.17 \,\text{GeV}$$

$$mH = 125.25 \pm 0.17 \,\text{GeV}$$

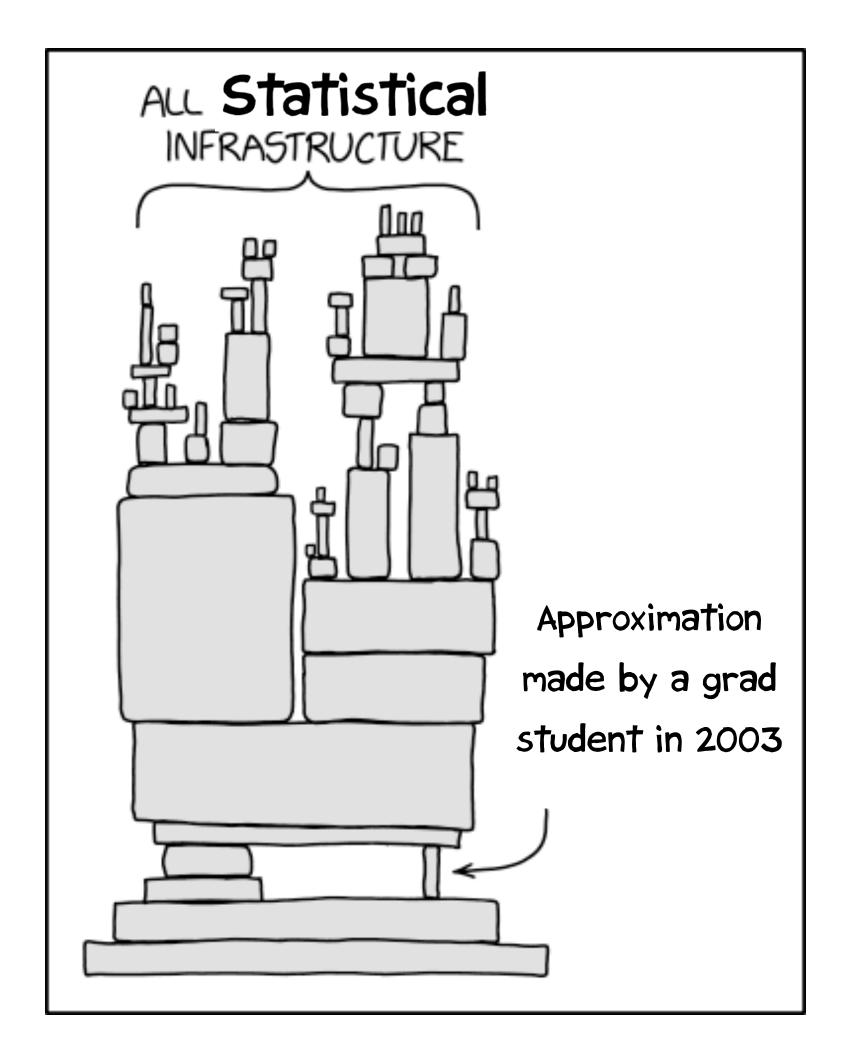
How sure am I? How can I reduce my uncertainty?

$$mH = 125.25 \pm 0.17 \,\text{GeV}$$

{statistical, detector systematic, theory systematic, epistemic,}

How sure am I? How can I reduce my uncertainty?

Nuisance Parameter Infrastructure



Time to re-examine some of the underlying pieces

Are they up to the task of the precision era?

Outline: A predictable evolution over ten years

Fear: Will ML exacerbate uncertainties in a way human-designed strategies naturally avoid?

Solution: Find ML equivalents of uncertainty mitigation tricks we implicitly use in classical methods. Understand good and bad ways to use ML

Opportunity: ML *for* uncertainty – Realising that ML unlocks completely new methods to tackle uncertainties in a way classical methods couldn't

Revolution: Novel ML uncertainty quantification & mitigation methods have wider applications, also backported to traditional algorithms

Outline: A predictable evolution over ten years

Fear: Will ML exacerbate uncertainties in a way human-designed strategies naturally avoid?

Solution: Find ML equivalents of uncertainty mitigation tricks we implicitly use in classical methods. Understand good and bad ways to use ML

Opportunity: ML *for* uncertainty – Realising that ML unlocks completely new methods to tackle uncertainties in a way classical methods couldn't

Revolution: Novel ML uncertainty quantification & mitigation methods have wider applications, also backported to traditional algorithms

Observable Sensitive to Nuisance Parameters

Traditionally, we reduce impact of NP by sacrificing something:

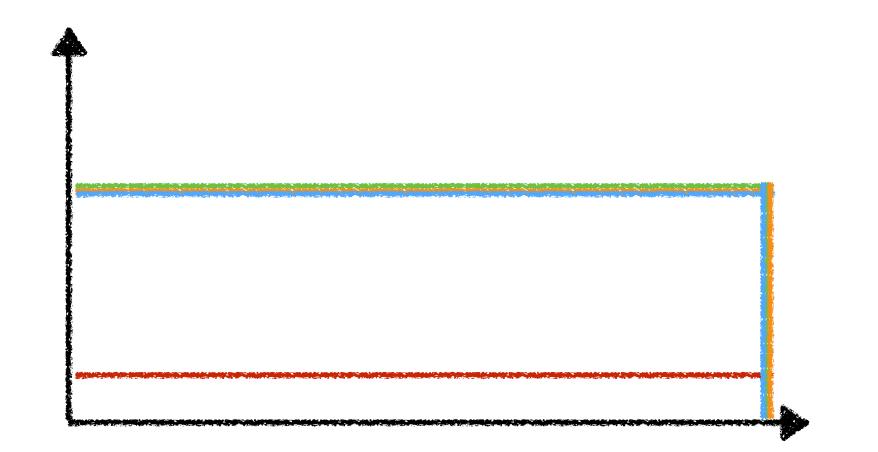
- Don't use observable
- Don't use phase space which is badly modelled by simulation
- Reduce sensitivity some other way

Infinite bin analysis, very sensitive to shape uncertainty

Background uncertain shape

Signal shape

Single bin analysis, insensitive to shape uncertainty



arXiv:1505.07818

MNIST

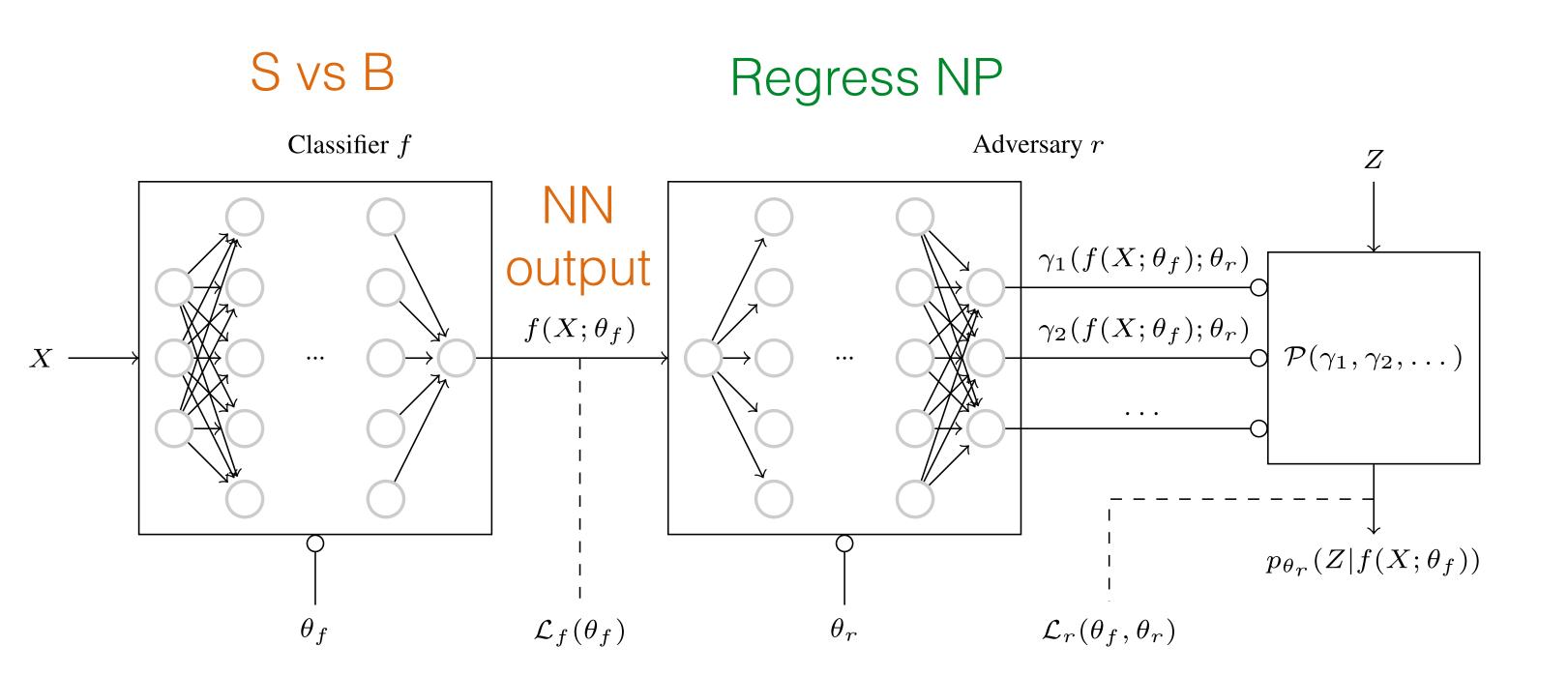
Source

TARGET

Similar ideas: <u>Blance et al.</u>, <u>Stevens et al.</u>, <u>Wunsch at al.</u>,

<u>Estrade at al.</u> Kasieczka at al.

Adversarial decorrelation



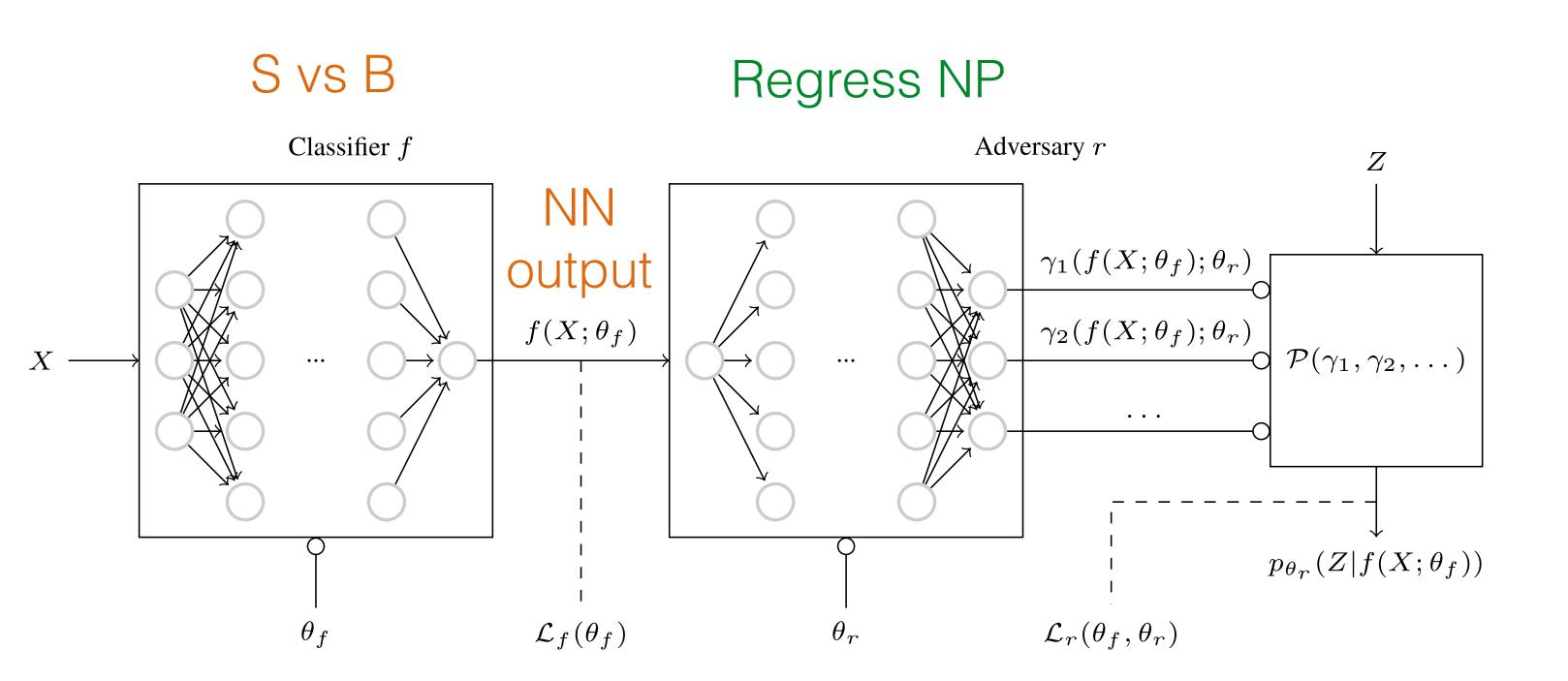
Learning to Pivot, Louppe et al.

$$L_{Classifier} = L_{Classification} - \lambda \cdot L_{Adversary}$$

Similar ideas: <u>Blance et al.</u>, <u>Stevens et al.</u>

al., Wunsch at al. Estrade at al Kasieczka at al

Adversarial decorrelation

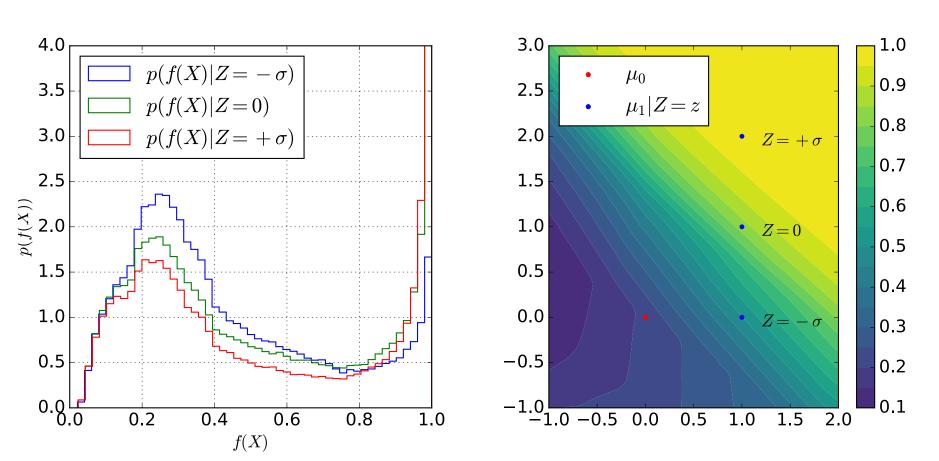


To fool the adversary, classifier output should be decorrelated to Z

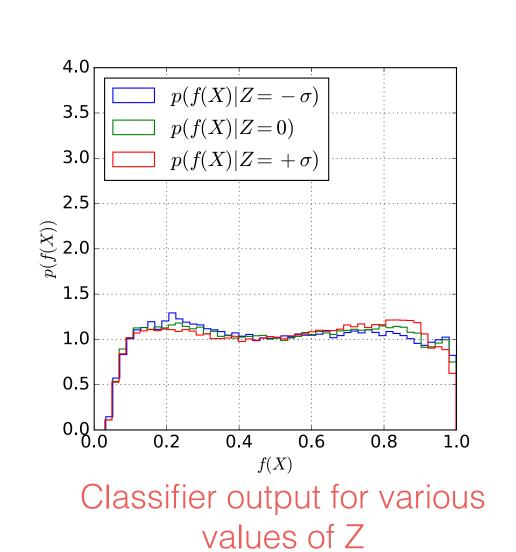
Learning to Pivot, Louppe et al.

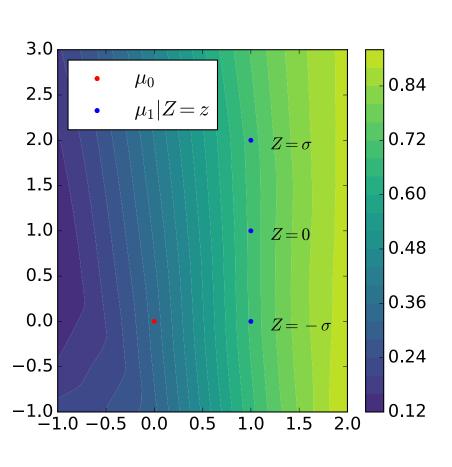
$$L_{Classifier} = L_{Classification} - \lambda \cdot L_{Adversary}$$

ML-Decorrelation Methods

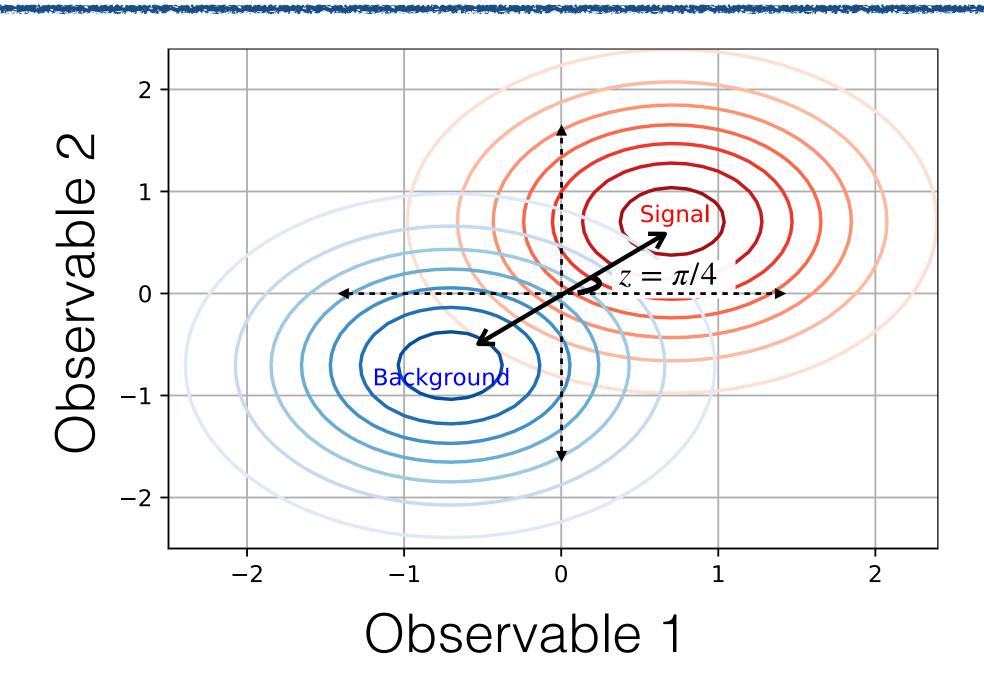


Adversarial Decorrelation

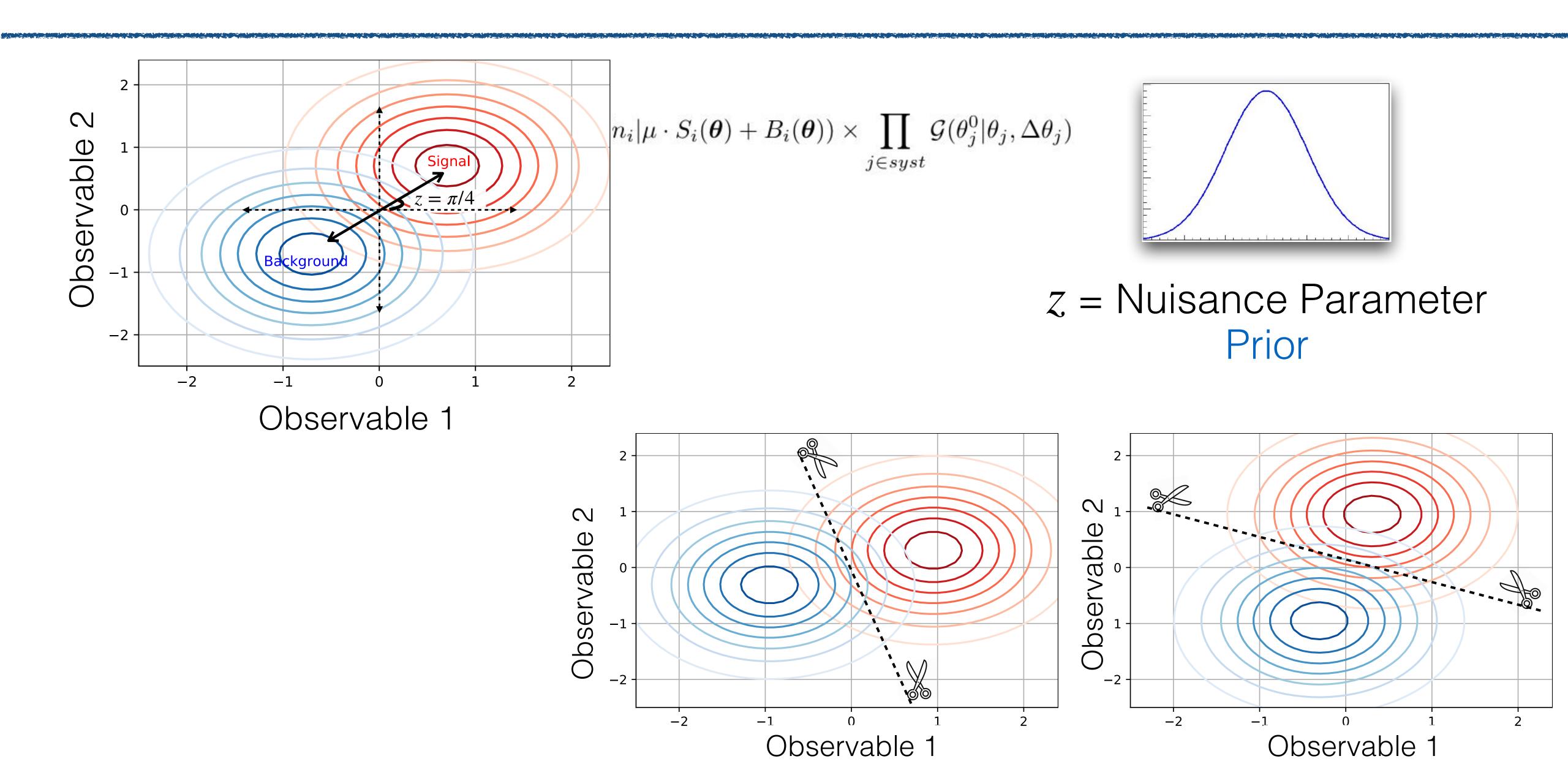


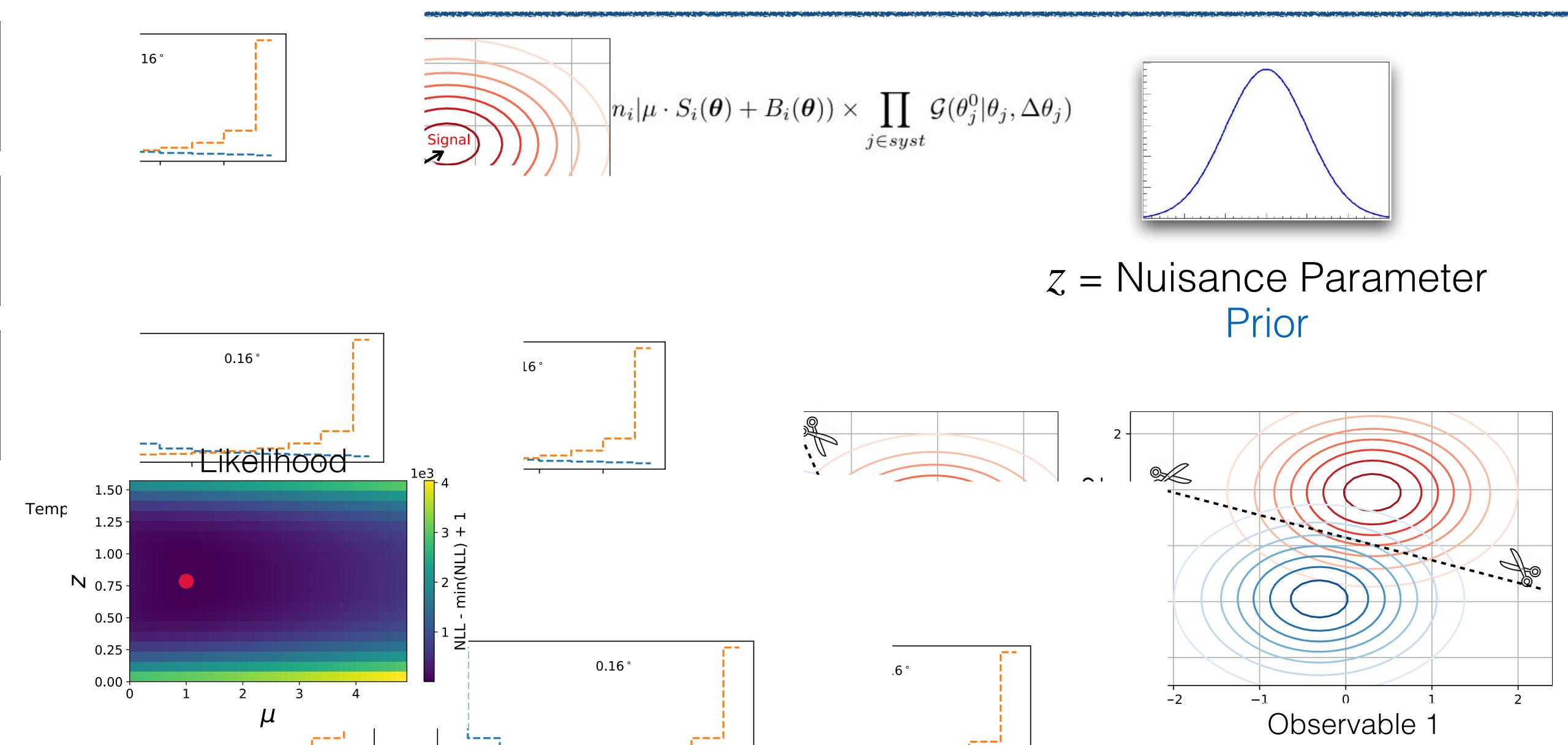


Learning to Pivot, Louppe et al.



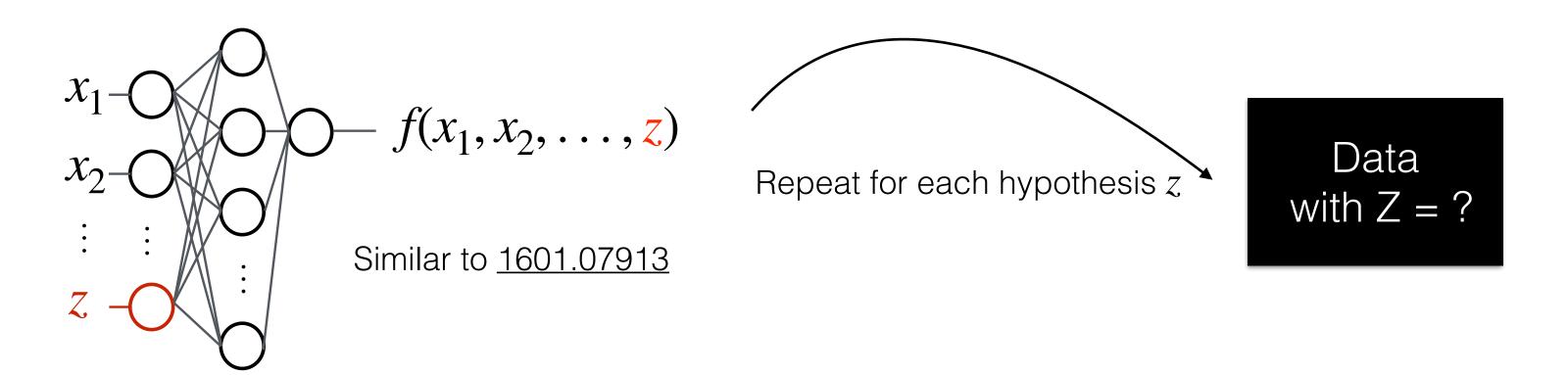
z = Nuisance Parameter





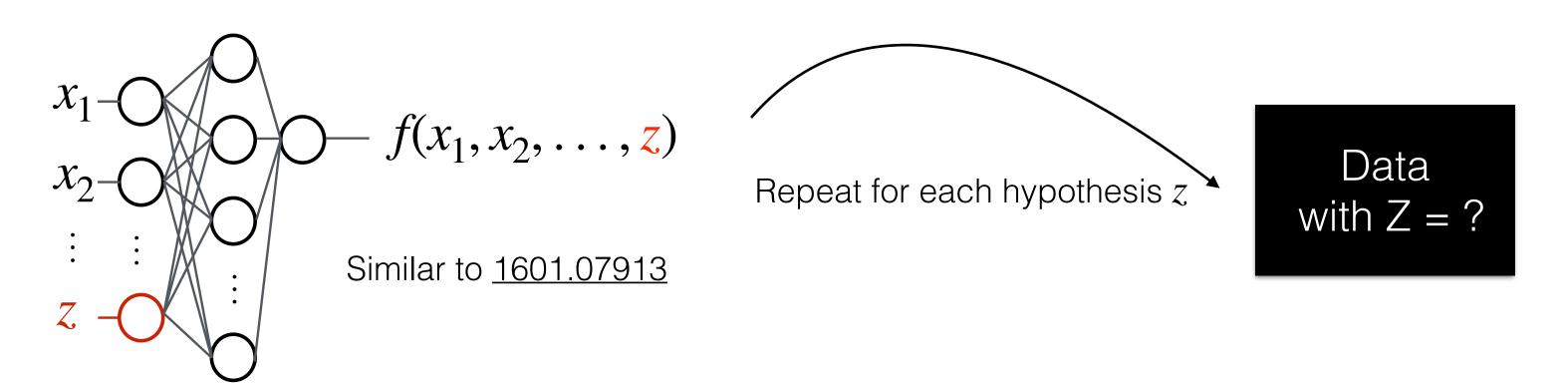
Opposite of decorrelation: Uncertainty-aware learning

• Propagate uncertainties through the classifier in an "uncertainty aware" way



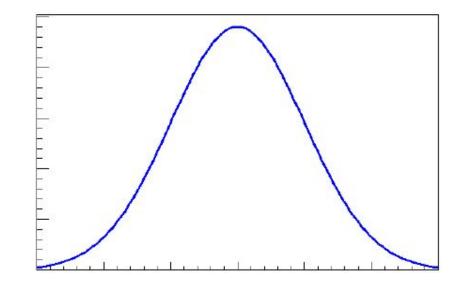
Opposite of decorrelation: Uncertainty-aware learning

• Propagate uncertainties through the classifier in an "uncertainty aware" way

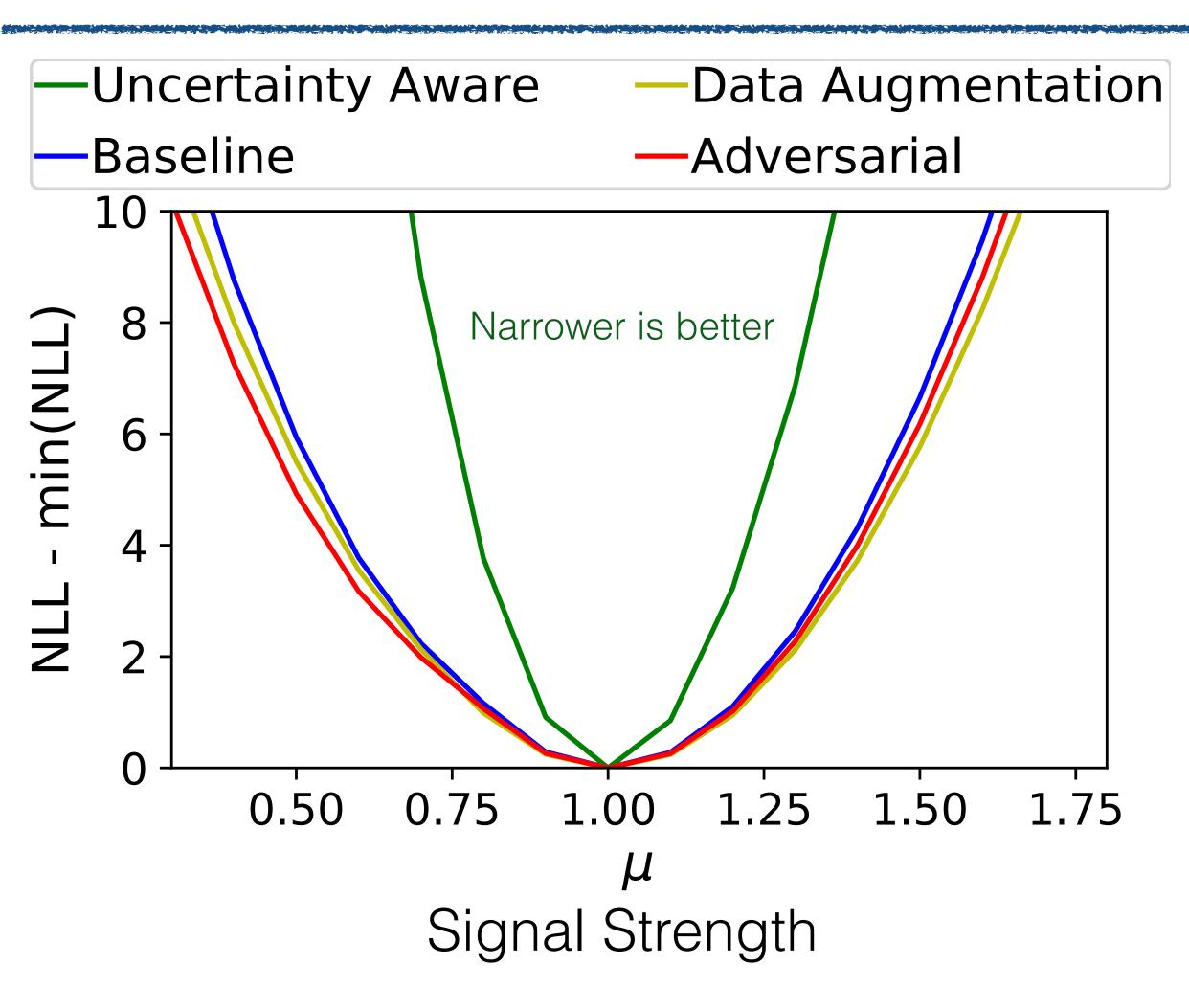


Intuition: Allow the analysis technique to vary with Z
 You always get the best classifier for each value of Z

$$\mathcal{P}(n_i|\mu \cdot S_i(\boldsymbol{\theta}) + B_i(\boldsymbol{\theta})) \times \prod_{j \in syst} \mathcal{G}(\theta_j^0|\theta_j, \Delta\theta_j)$$



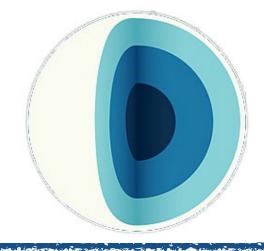
Better final measurements!



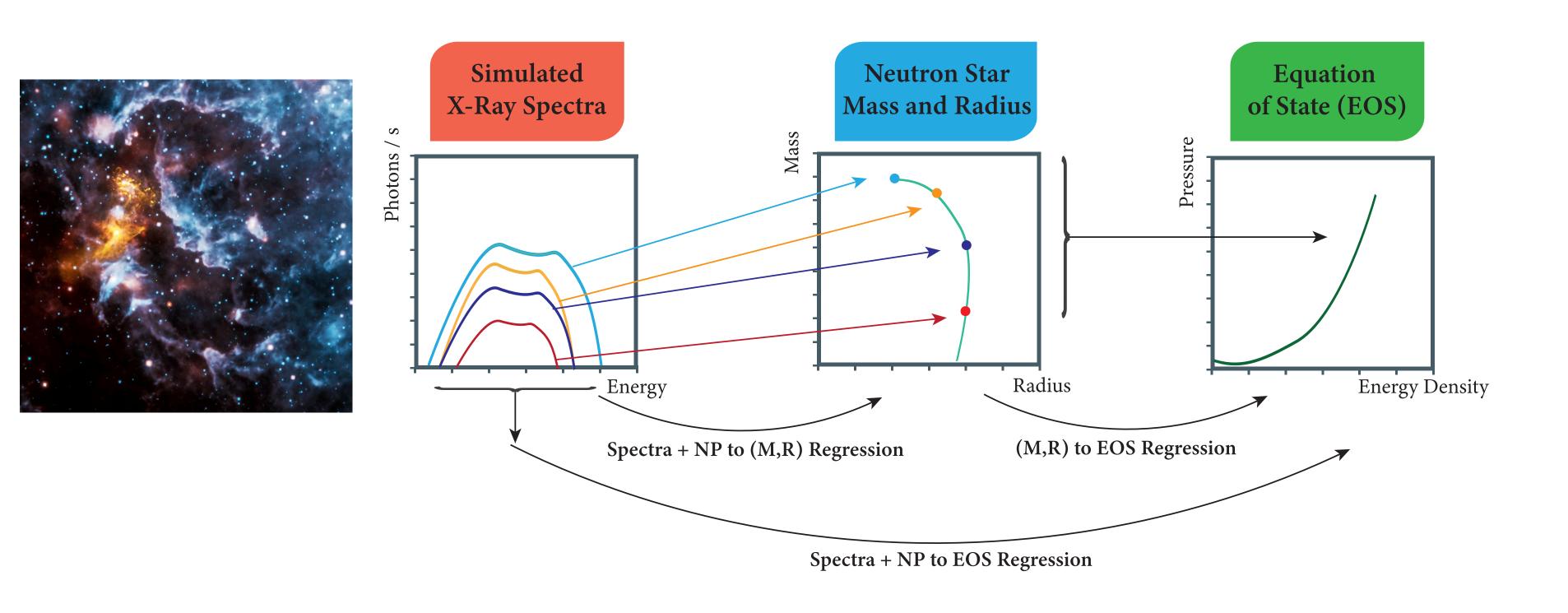
Narrower ⇒ Smaller [statistical + systematic] uncertainty on measurement

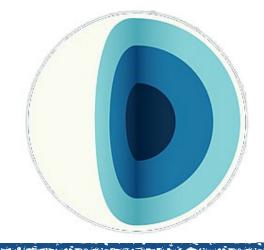
Practical for LHC analysis: Parameterise your main nuisance parameter but no need to train on all 100 NPs

An application in astrophysics

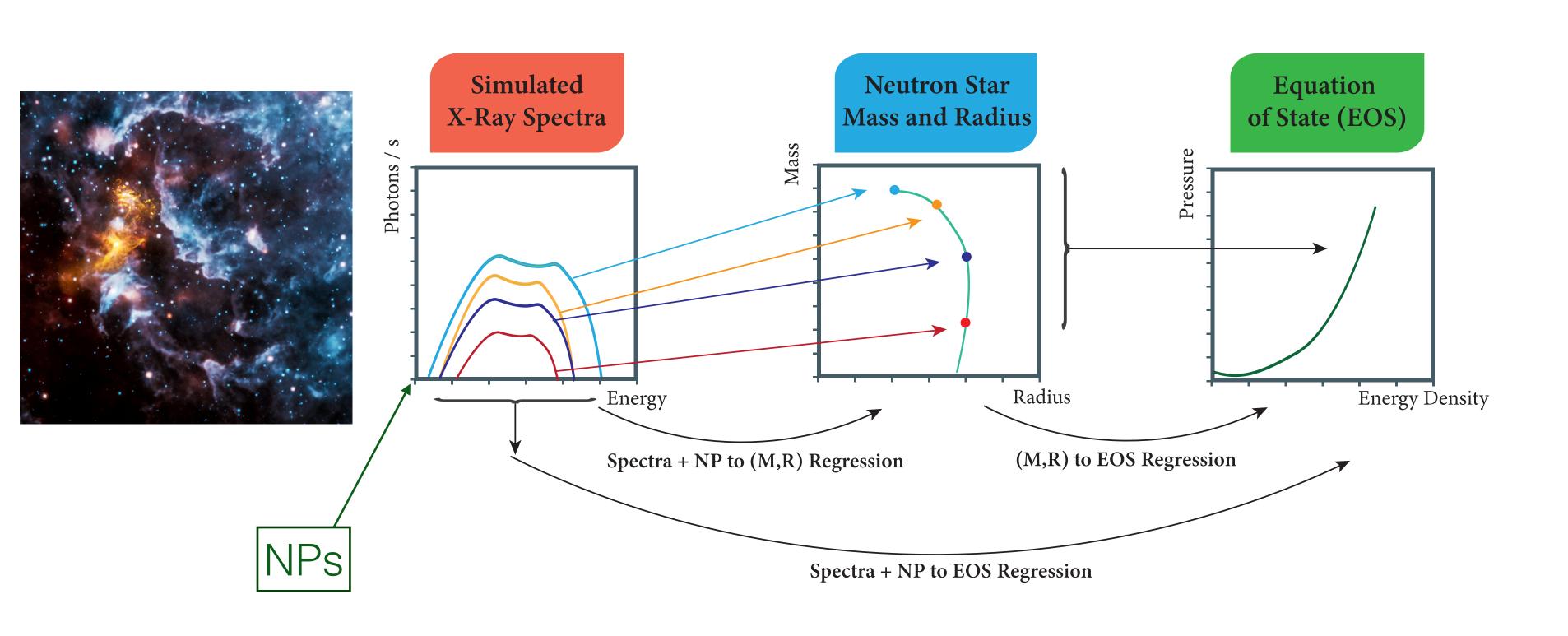


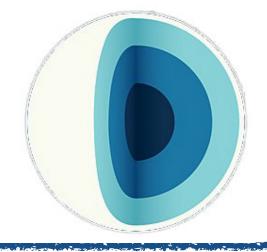
Application in Astrophysics: Full propagation of uncertainties



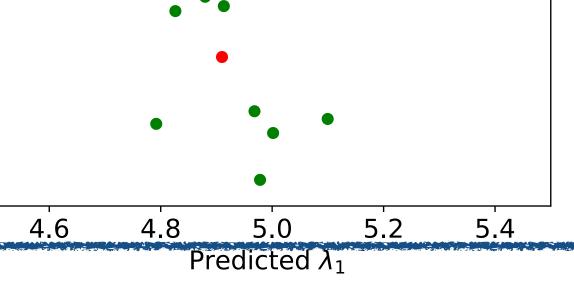


Application in Astrophysics: Full propagation of uncertainties

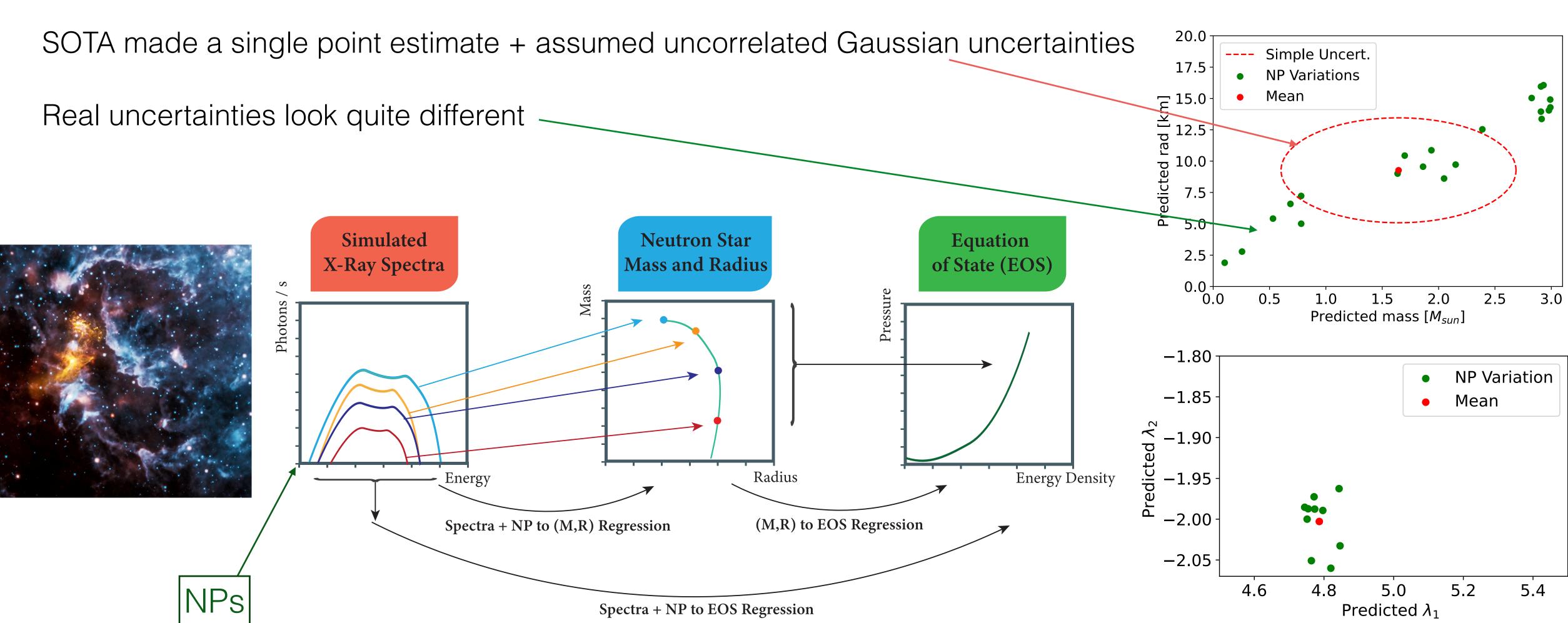


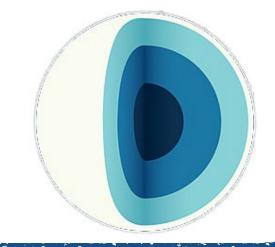


Application in Astrophysics: Full propagation of uncertain

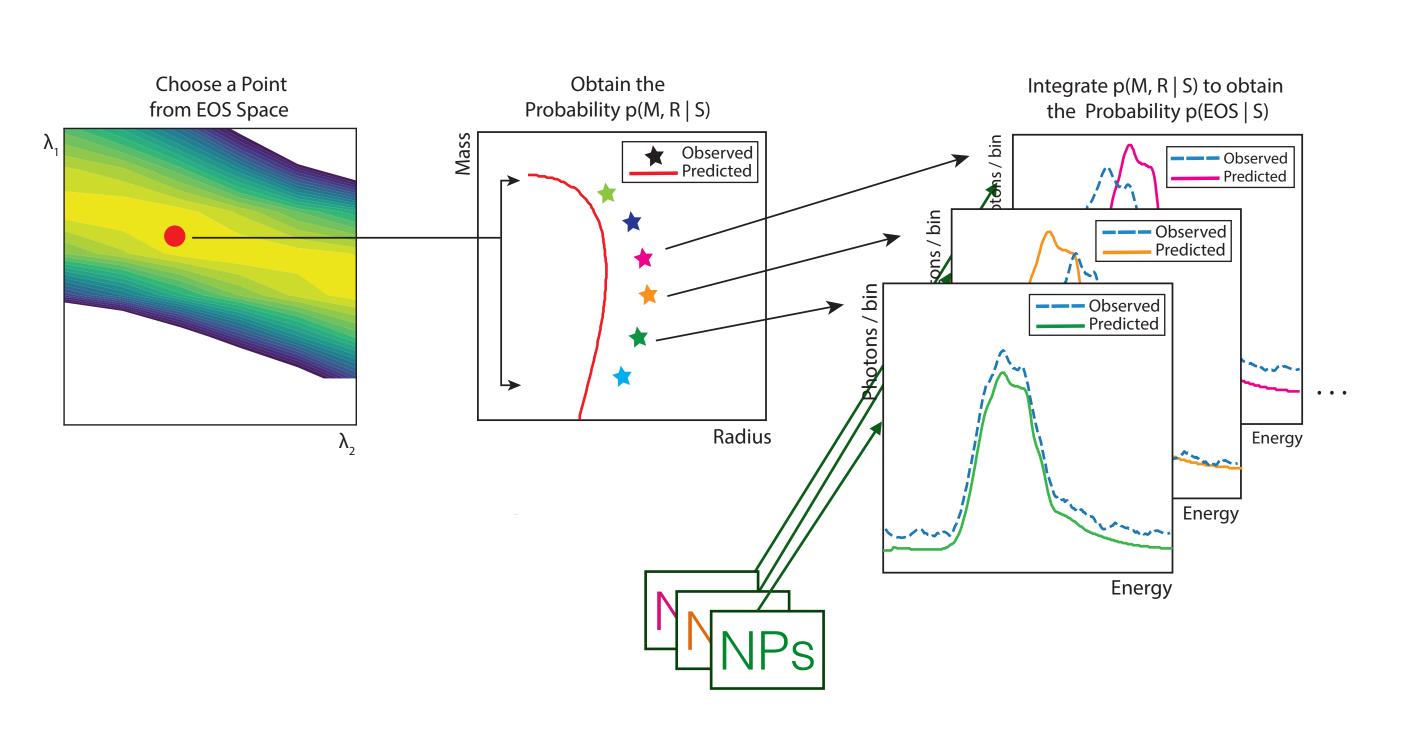


-1.95

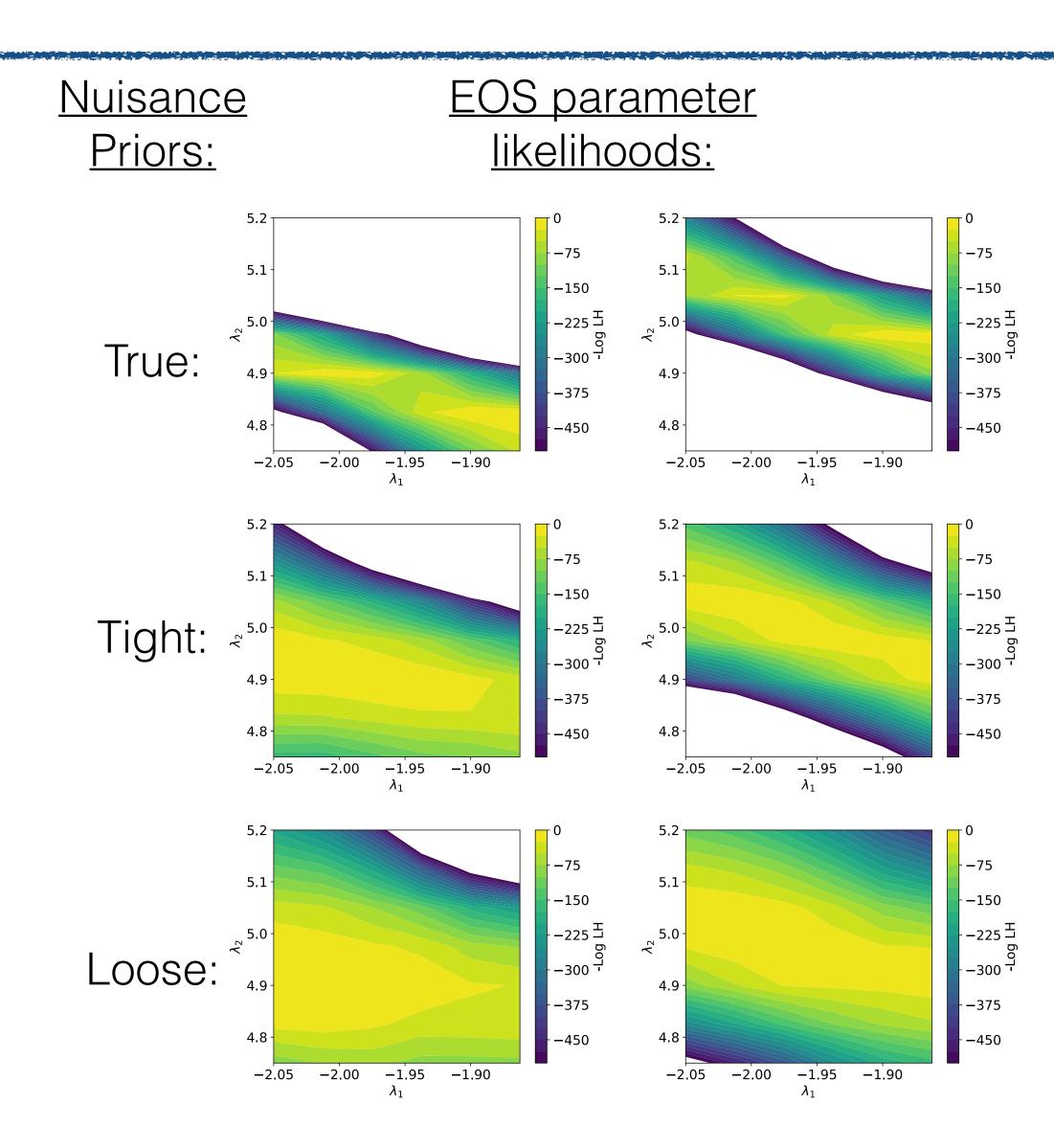


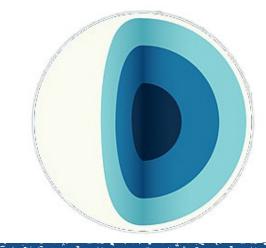


Learn forward process to access the likelihood

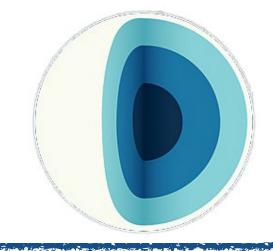


Deploy with ONNX Runtime to compute likelihoods on-the-fly

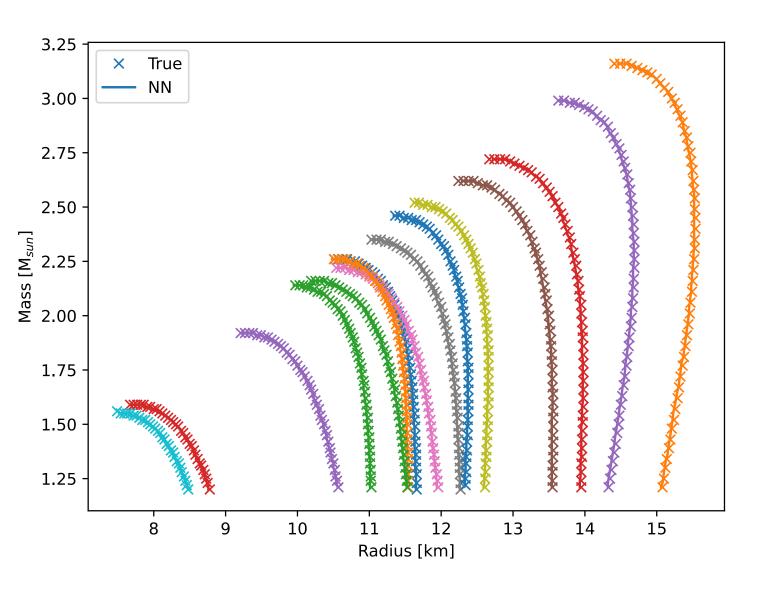




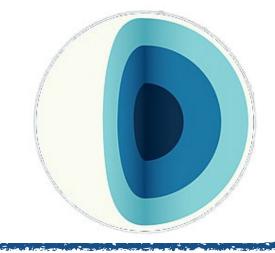
Intermediate steps remain interpretable physical quantities



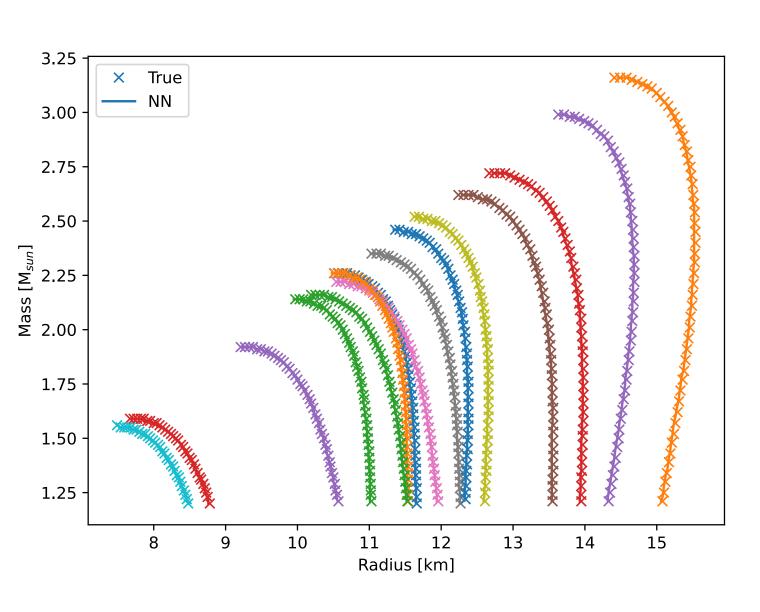
Intermediate steps remain interpretable physical quantities

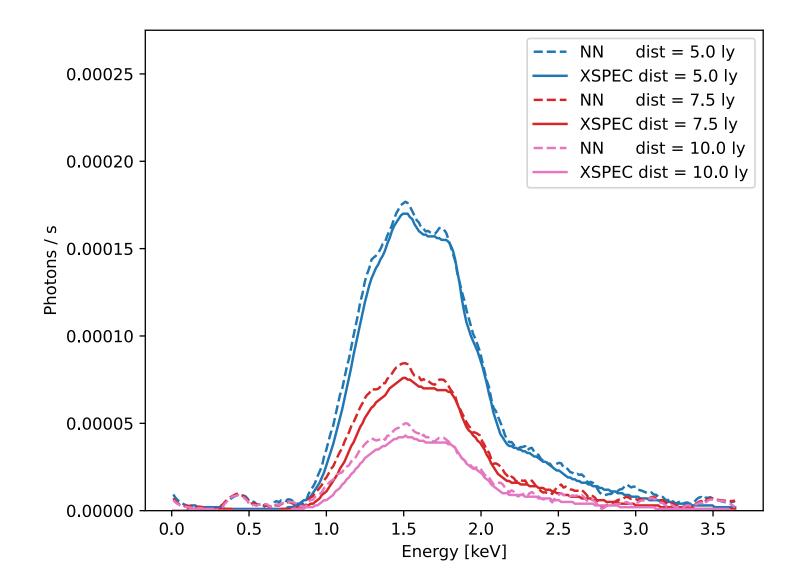


Learn EOS to M-R



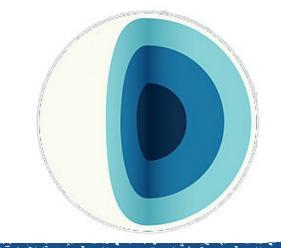
Intermediate steps remain interpretable physical quantities



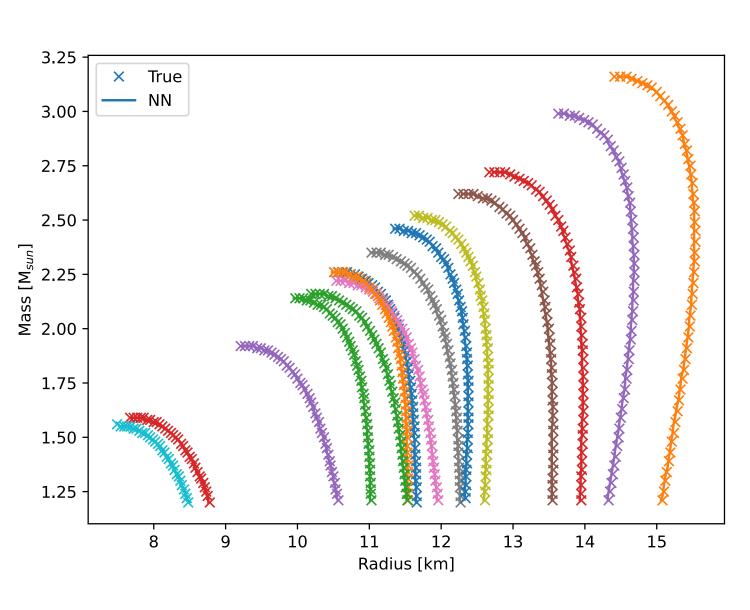


Learn EOS to M-R

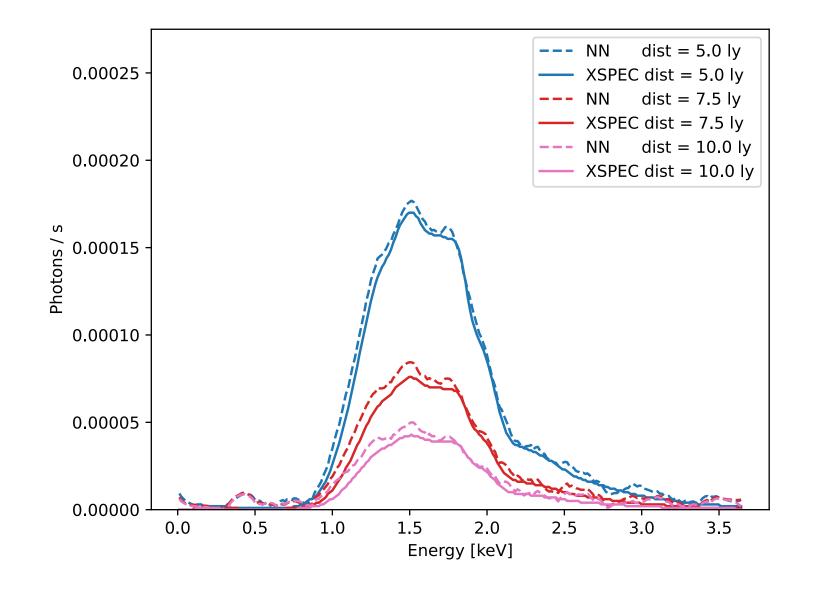
Learn {M,R,NPs} to Spectrum



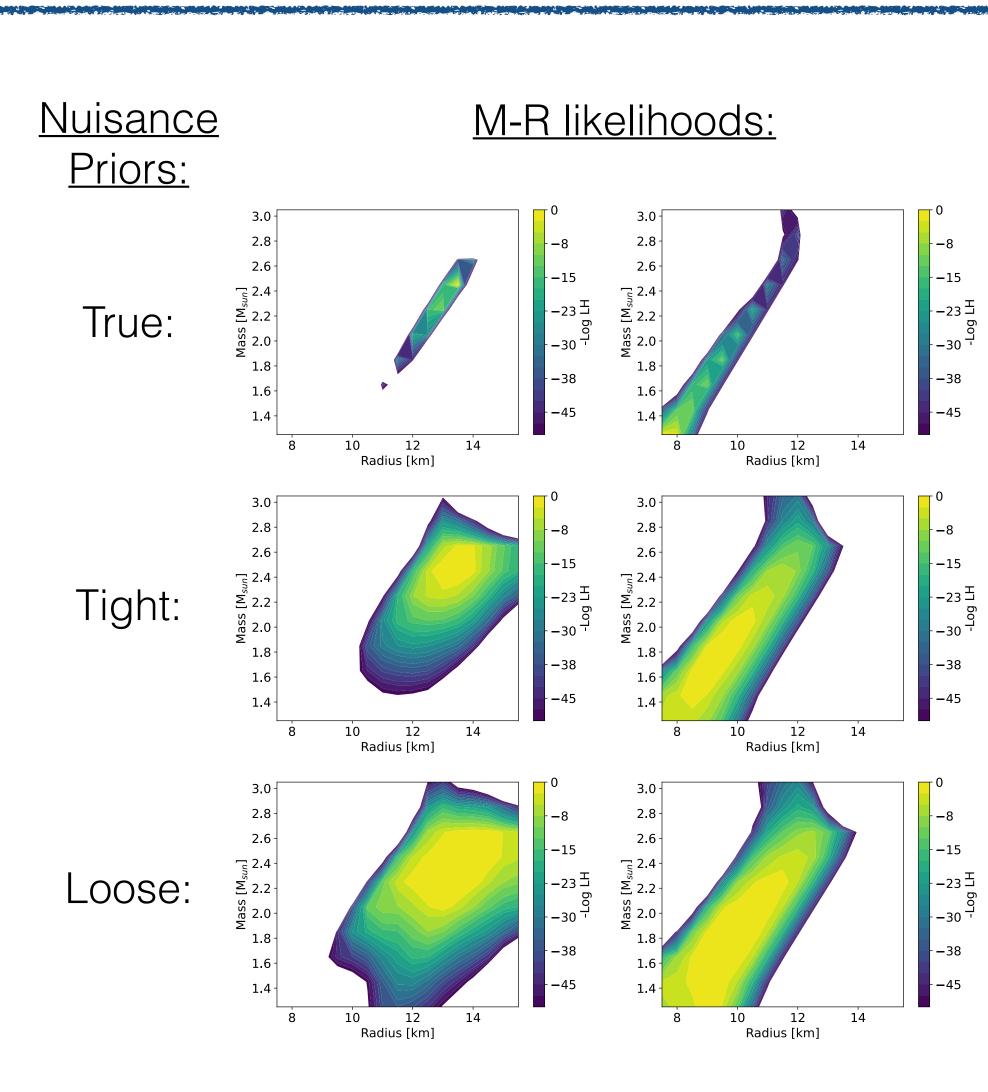
Intermediate steps remain interpretable physical quantities



Learn EOS to M-R



Learn {M,R,NPs} to Spectrum



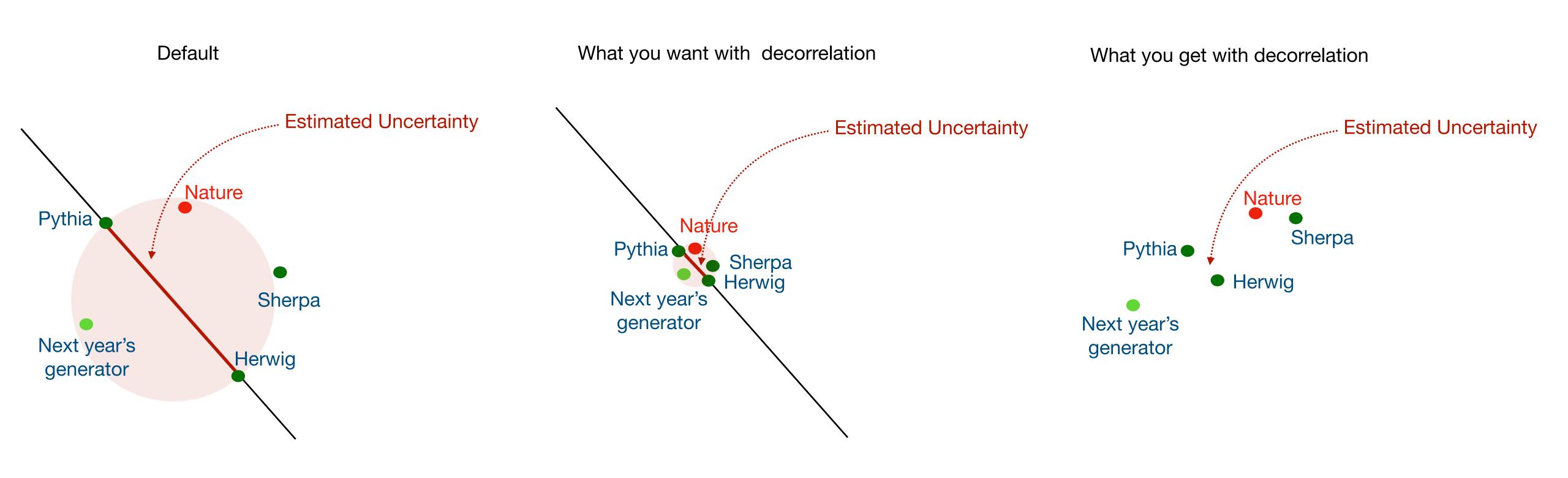
Back to particle physics

Back to particle physics

We also learnt what not to do ...

ML-decorrelating theory uncertainties

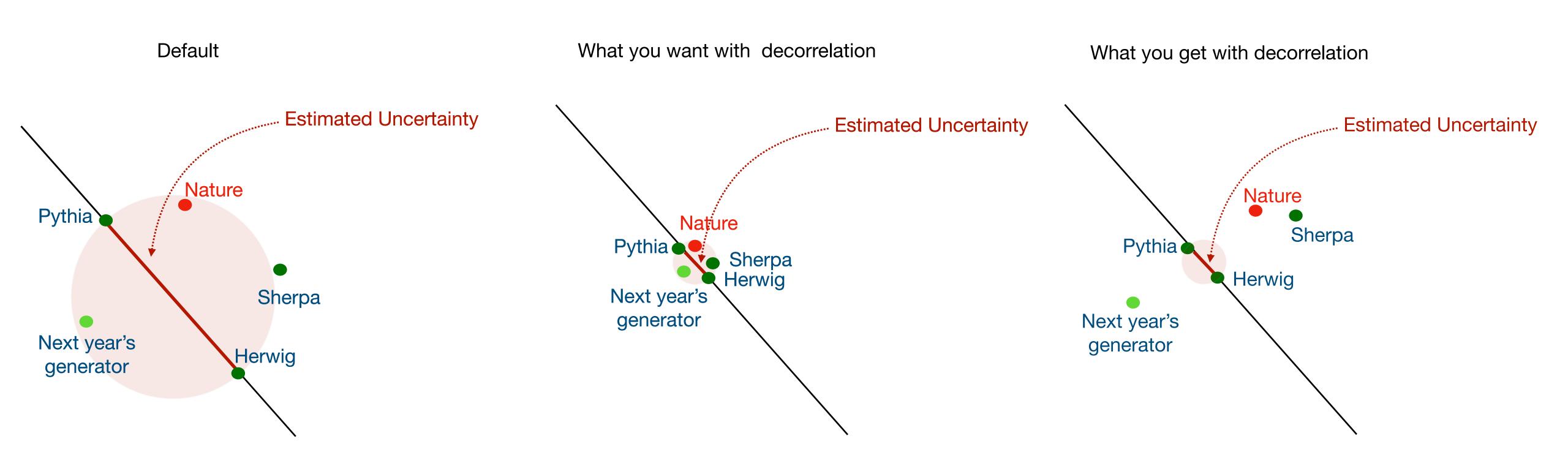
EPJC:s10052.022.10012.w: Aishik Ghosh, Benjamin Nachman



Instruction to ML: "Please shrink Pythia vs Herwig difference"

ML-decorrelating theory uncertainties

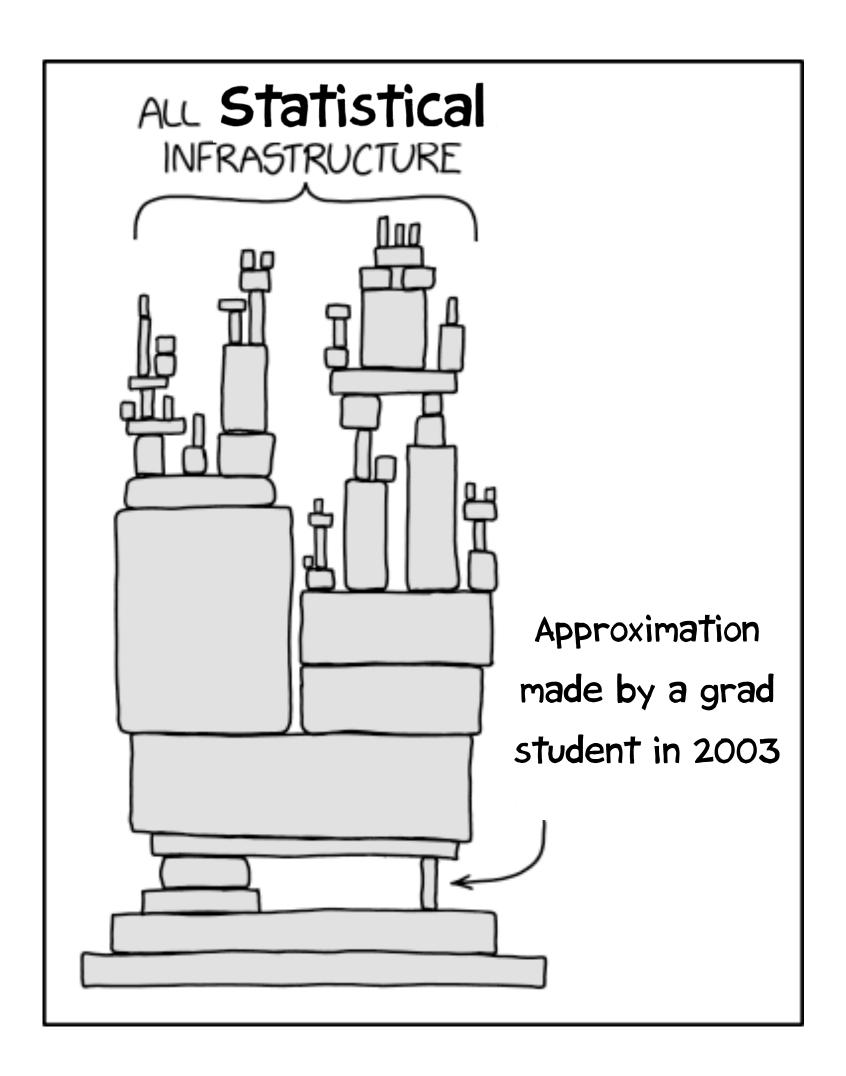
EPJC:s10052.022.10012.w: Aishik Ghosh, Benjamin Nachman



Instruction to ML: "Please shrink Pythia vs Herwig difference"

Model will learn to fool you!

Theory uncertainties



It's dangerous to use ML methods to mitigate theory uncertainties

But we continue to treat Δ_{theory} and Δ_{exp} on same footing in statistical fits

What even is their statistical behaviour?

Scale Uncertainties

Uncertainty of cross-section from truncating QFT series

Sensitivity to scale variation quantifies 'uncertainty'

Scale Uncertainties

Up:
$$\mu_{+} = 2 \; \mu_{0}$$

$$\mu_0 = \frac{H_T}{2} = \frac{1}{2} \sum_{\text{final state}} \sqrt{m^2 + p_T^2}$$

Uncertainty of cross-section from truncating QFT series Sensitivity to scale variation quantifies 'uncertainty'

Down:
$$\mu_{-} = \frac{1}{2} \mu_{0}$$

Questions

- How accurate are these scale uncertainties?
- Is 1/2 to 2 a good range?

Study pull distribution

$$t_{scale} = rac{\sigma_{NLO} - \sigma_{LO}}{\Delta \sigma_{LO\ scale}}$$

Questions

- How accurate are these scale uncertainties?
- Is 1/2 to 2 a good range?

Study pull distribution

$$t_{scale} = rac{\sigma_{NLO} - \sigma_{LO}}{\Delta \sigma_{LO\ scale}}$$

Madgraph paper

The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations

J. Alwall^a, R. Frederix^b, S. Frixione^b, V. Hirschi^c, F. Maltoni^d, O. Mattelaer^d, H.-S. Shao^e, T. Stelzer^f, P. Torrielli^g, M. Zaro^{hi}

Process Syntax		Cross section (pb)					
Vector boson +jets		LO 13 T	'eV	m NLO~13~TeV			
a.1 a.2 a.3 a.4	$egin{aligned} pp & ightarrow W^\pm \ pp & ightarrow W^\pm j \ pp & ightarrow W^\pm j j \ pp & ightarrow W^\pm j j j \end{aligned}$	<pre>p p > wpm p p > wpm j p p > wpm j j p p > wpm j j</pre>	$1.375 \pm 0.002 \cdot 10^{5}$ $2.045 \pm 0.001 \cdot 10^{4}$ $6.805 \pm 0.015 \cdot 10^{3}$ $1.821 \pm 0.002 \cdot 10^{3}$	$\begin{array}{c} +15.4\% \ +2.0\% \\ -16.6\% \ -1.6\% \\ +19.7\% \ +1.4\% \\ -17.2\% \ -1.1\% \\ +24.5\% \ +0.8\% \\ -18.6\% \ -0.7\% \\ +41.0\% \ +0.5\% \\ -27.1\% \ -0.5\% \end{array}$	$\begin{aligned} 1.773 &\pm 0.007 \cdot 10^5 \\ 2.843 &\pm 0.010 \cdot 10^4 \\ 7.786 &\pm 0.030 \cdot 10^3 \\ 2.005 &\pm 0.008 \cdot 10^3 \end{aligned}$	+5.2% $+1.9%$ $-9.4%$ $-1.6%$ $+5.9%$ $+1.3%$ $-8.0%$ $-1.1%$ $+2.4%$ $+0.9%$ $-6.0%$ $-0.8%$ $+0.9%$ $+0.6%$ $-6.7%$ $-0.5%$	
a.5 a.6 a.7 a.8	$egin{aligned} pp & ightarrow Z \ pp & ightarrow Zj \ pp & ightarrow Zjj \ pp & ightarrow Zjjj \end{aligned}$	p p > z p p > z j p p > z j p p > z j j p p > z j j j	$4.248 \pm 0.005 \cdot 10^{4}$ $7.209 \pm 0.005 \cdot 10^{3}$ $2.348 \pm 0.006 \cdot 10^{3}$ $6.314 \pm 0.008 \cdot 10^{2}$	$\begin{array}{c} +14.6\% \ +2.0\% \\ -15.8\% \ -1.6\% \\ +19.3\% \ +1.2\% \\ -17.0\% \ -1.0\% \\ +24.3\% \ +0.6\% \\ -18.5\% \ -0.6\% \\ +40.8\% \ +0.5\% \\ -27.0\% \ -0.5\% \end{array}$	$5.410 \pm 0.022 \cdot 10^{4}$ $9.742 \pm 0.035 \cdot 10^{3}$ $2.665 \pm 0.010 \cdot 10^{3}$ $6.996 \pm 0.028 \cdot 10^{2}$	$\begin{array}{c} +4.6\% & +1.9\% \\ -8.6\% & -1.5\% \\ +5.8\% & +1.2\% \\ -7.8\% & -1.0\% \\ +2.5\% & +0.7\% \\ -6.0\% & -0.7\% \\ +1.1\% & +0.5\% \\ -6.8\% & -0.5\% \end{array}$	
a.9 a.10	$\begin{array}{c} pp \rightarrow \gamma j \\ pp \rightarrow \gamma jj \end{array}$	p p > a j p p > a j j	$1.964 \pm 0.001 \cdot 10^4$ $7.815 \pm 0.008 \cdot 10^3$	+31.2% +1.7% $-26.0% -1.8%$ $+32.8% +0.9%$ $-24.2% -1.2%$	$5.218 \pm 0.025 \cdot 10^4$ $1.004 \pm 0.004 \cdot 10^4$	$\begin{array}{c} +24.5\% \ +1.4\% \\ -21.4\% \ -1.6\% \\ +5.9\% \ +0.8\% \\ -10.9\% \ -1.2\% \end{array}$	

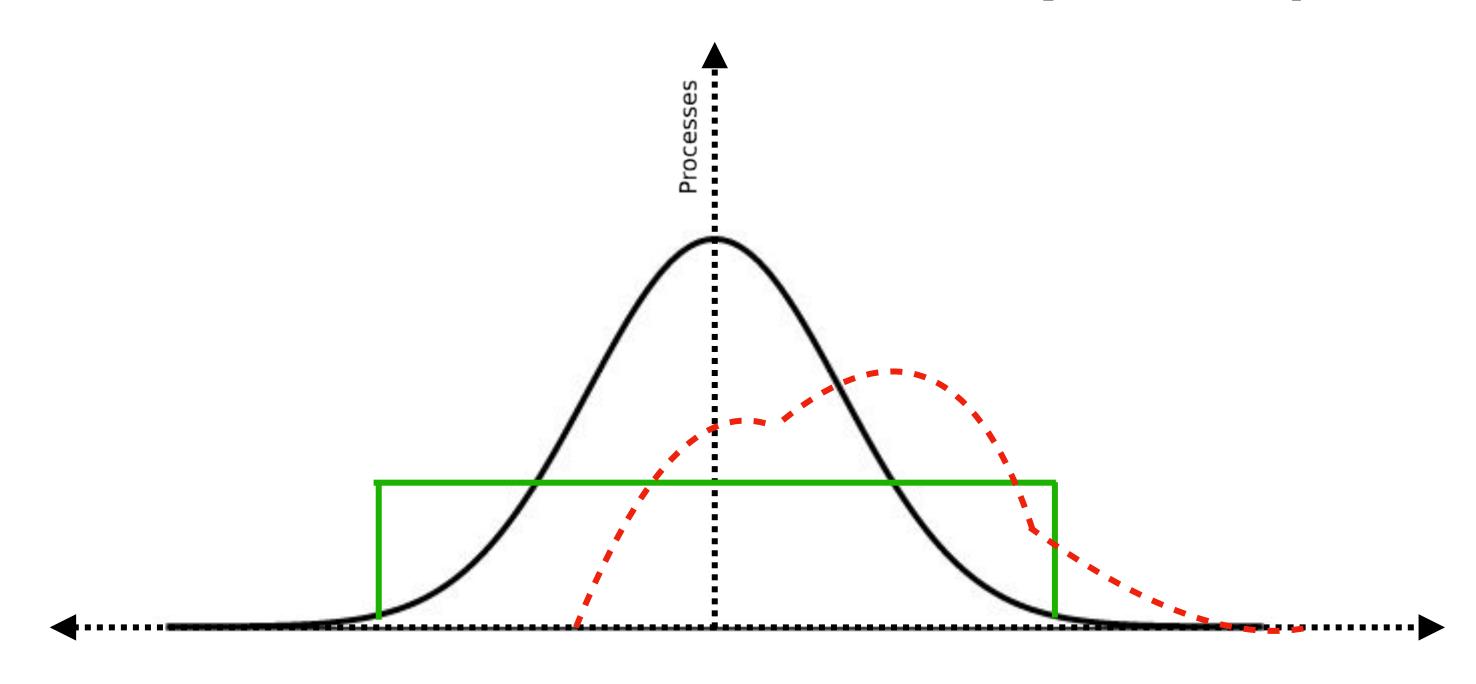
+127 more pp processes from 1405.0301!

(Not a random sampling)

Plot the pulls

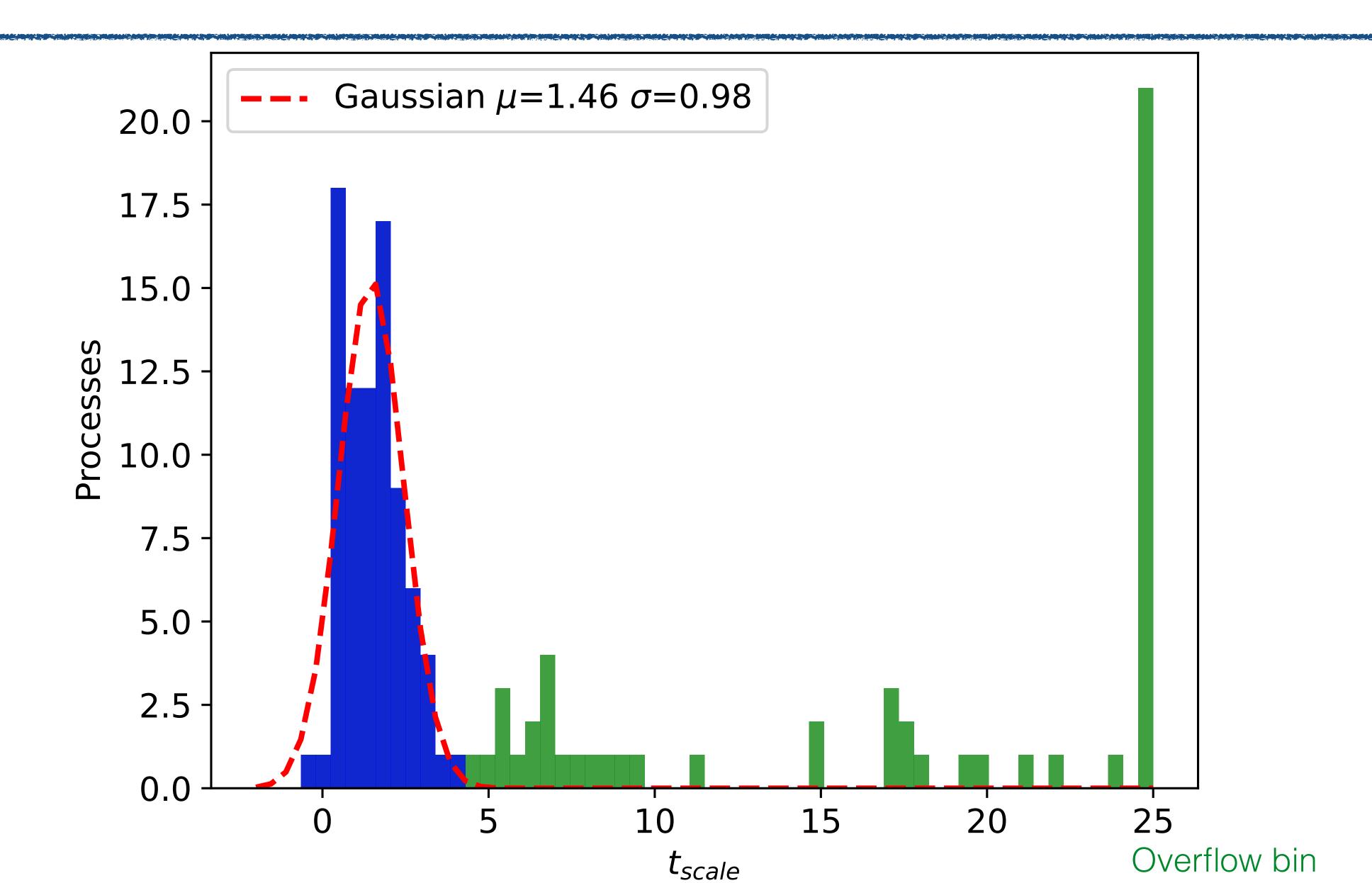
$$t_{scale} = \frac{\sigma_{NLO} - \sigma_{LO}}{\Delta \sigma_{LO \ scale}}$$

Which of these distributions do you expect?

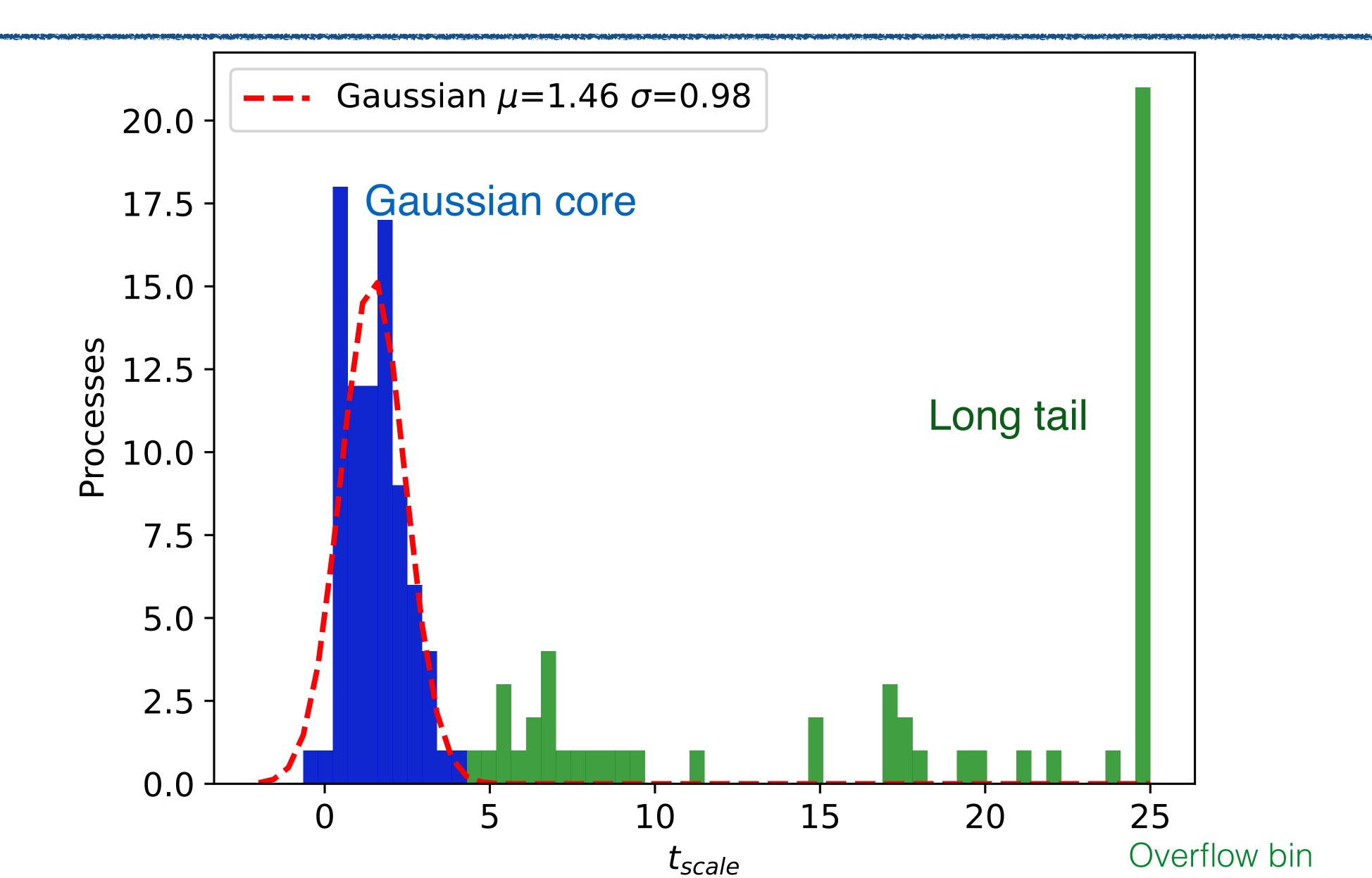


$$t_{scale} = \frac{\sigma_{NLO} - \sigma_{LO}}{\Delta \sigma_{LO \ scale}}$$

Pull distribution



Pull distribution



What processes aspula'e the tail?

Process	$n_{ m part}$	$\Delta\sigma/\sigma_0$	$\frac{\sigma_{\text{NLO}} - \sigma_0}{\Delta \sigma}$
			$\Delta\sigma$
p p > wpm	1	1.54×10^{-1}	1.84
p p > wpm j	2	1.97×10^{-1}	1.96
p p > wpm j j	3	2.45×10^{-1}	0.59
p p > wpm j j j	4	4.10×10^{-1}	0.25
p p > z	1	1.46×10^{-1}	1.87
p p > z j	2	1.93×10^{-1}	1.82
pp > z j j	3	2.43×10^{-1}	0.56
pp > z j j j	4	4.08×10^{-1}	0.27
pp > a j	2	3.12×10^{-1}	5.33
pp > a j j	3	3.28×10^{-1}	0.85
p p > w + w - wpm	3	1.00×10^{-3}	610.69
p p > z w+ w-	3	8.00×10^{-3}	· ·
p p > z z wpm	3	1.00×10^{-2}	85.00
pp>zzz	3	1.00×10^{-3}	302.75
p p > a w+ w-	3	1.90×10^{-2}	î.
pp > a a wpm	3	4.40×10^{-2}	¥
p p > a z wpm	3	0	1244.49
pp > azz	3	2.00×10^{-2}	17.24
1 1		^	a say o see of the second

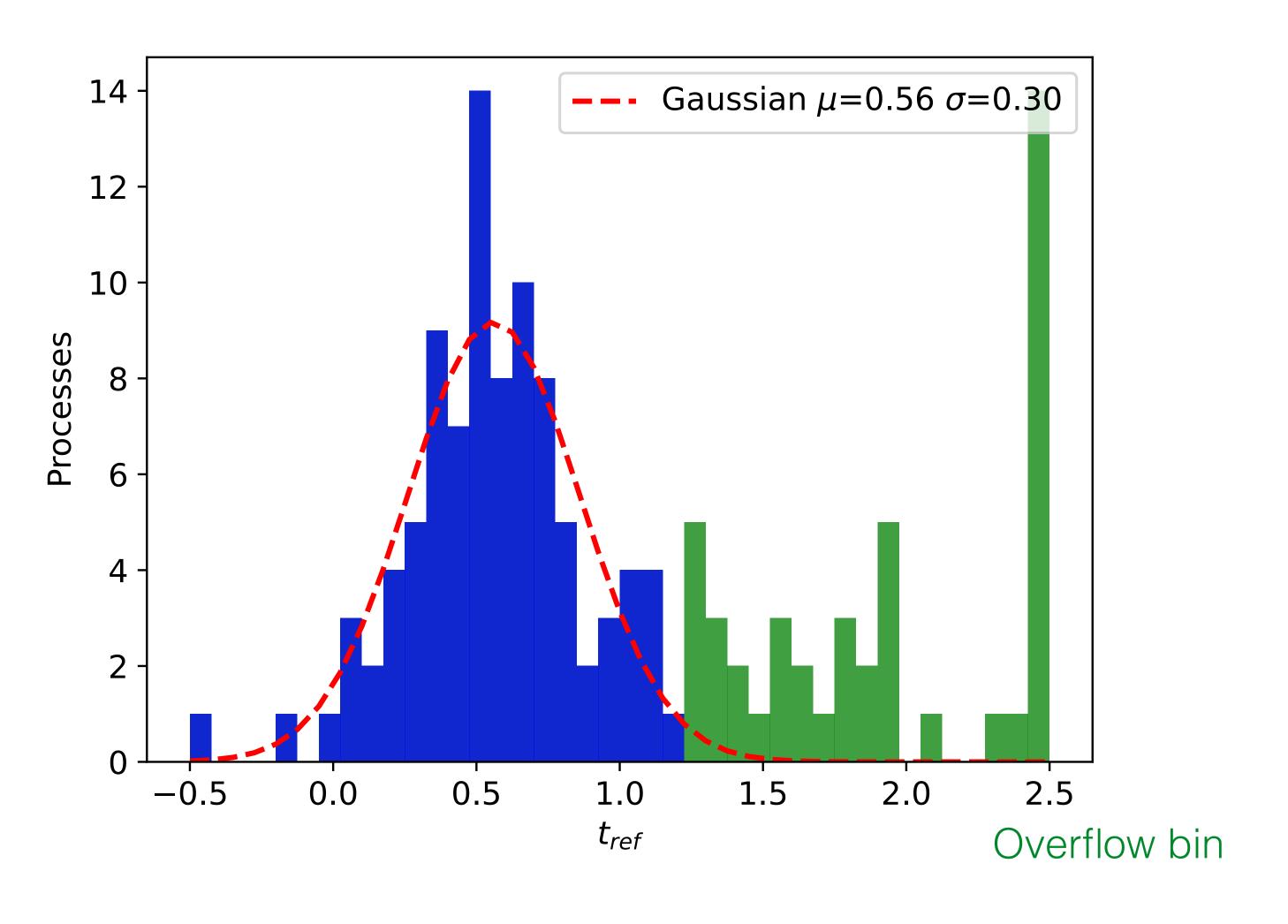
QCD processes follow (an expected) pattern

Process	$\frac{\Delta\sigma}{\sigma_0}$	n	$\frac{\Delta\sigma}{n\sigma_0}$
p p > j j p p > b b p p > t t p p > j j j p p > b b j p p > t t j p p > b b j j p p > t t j j p p > t t t j p p > t t t b b	$ \begin{vmatrix} +2.49 \times 10^{-1} & -1.88 \times 10^{-1} \\ +2.52 \times 10^{-1} & -1.89 \times 10^{-1} \\ +2.90 \times 10^{-1} & -2.11 \times 10^{-1} \\ +4.38 \times 10^{-1} & -2.84 \times 10^{-1} \\ +4.41 \times 10^{-1} & -2.85 \times 10^{-1} \\ +4.51 \times 10^{-1} & -2.90 \times 10^{-1} \\ +6.18 \times 10^{-1} & -3.56 \times 10^{-1} \\ +6.17 \times 10^{-1} & -3.56 \times 10^{-1} \\ +6.14 \times 10^{-1} & -3.56 \times 10^{-1} \\ +6.38 \times 10^{-1} & -3.65 \times 10^{-1} \\ +6.21 \times 10^{-1} & -3.57 \times 10^{-1} \end{vmatrix} $	2 2 3 3 4 4 4 4 4	$+1.24 \times 10^{-1} - 9.40 \times 10^{-2}$ $+1.26 \times 10^{-1} - 9.45 \times 10^{-2}$ $+1.45 \times 10^{-1} - 1.06 \times 10^{-1}$ $+1.46 \times 10^{-1} - 9.47 \times 10^{-2}$ $+1.47 \times 10^{-1} - 9.50 \times 10^{-2}$ $+1.50 \times 10^{-1} - 9.67 \times 10^{-2}$ $+1.54 \times 10^{-1} - 8.90 \times 10^{-2}$ $+1.53 \times 10^{-1} - 8.90 \times 10^{-2}$ $+1.60 \times 10^{-1} - 9.12 \times 10^{-2}$ $+1.55 \times 10^{-1} - 8.93 \times 10^{-2}$ $+1.47 \times 10^{-1} - 9.34 \times 10^{-2}$
average			+1.4/ × 10

Table 1: Scale dependence for LHC processes with only QCD particles in the final state. For each process, we report the relative scale uncertainty, the number of final state particles, and the per-particle relative scale uncertainty.

$$\frac{\Delta\sigma_{\text{ref}}}{\sigma_0} = n \times \left\langle \frac{\Delta\sigma}{n\sigma_0} \right\rangle_{\text{QCD}}$$

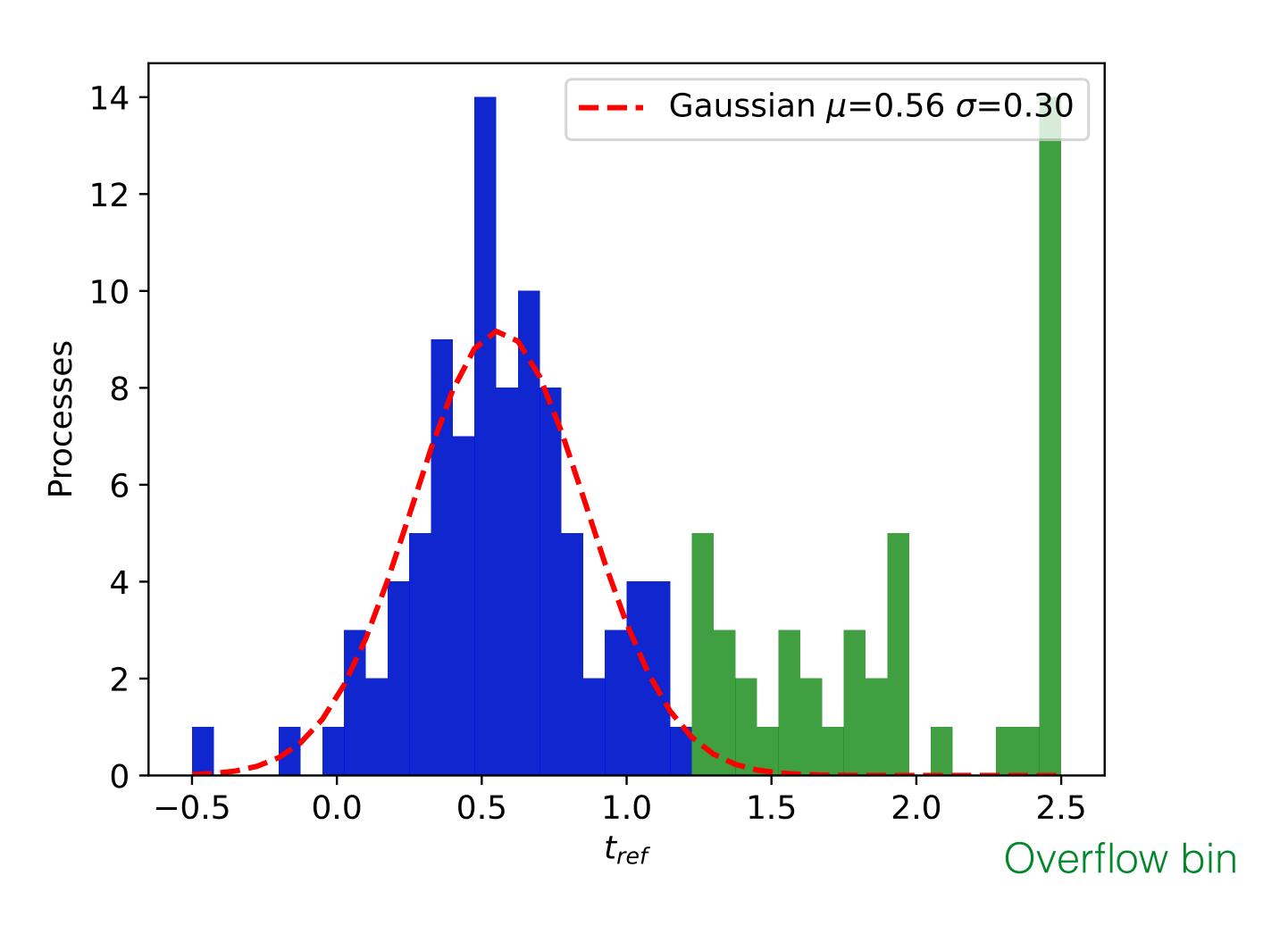
Make correction in UQ for EW processes

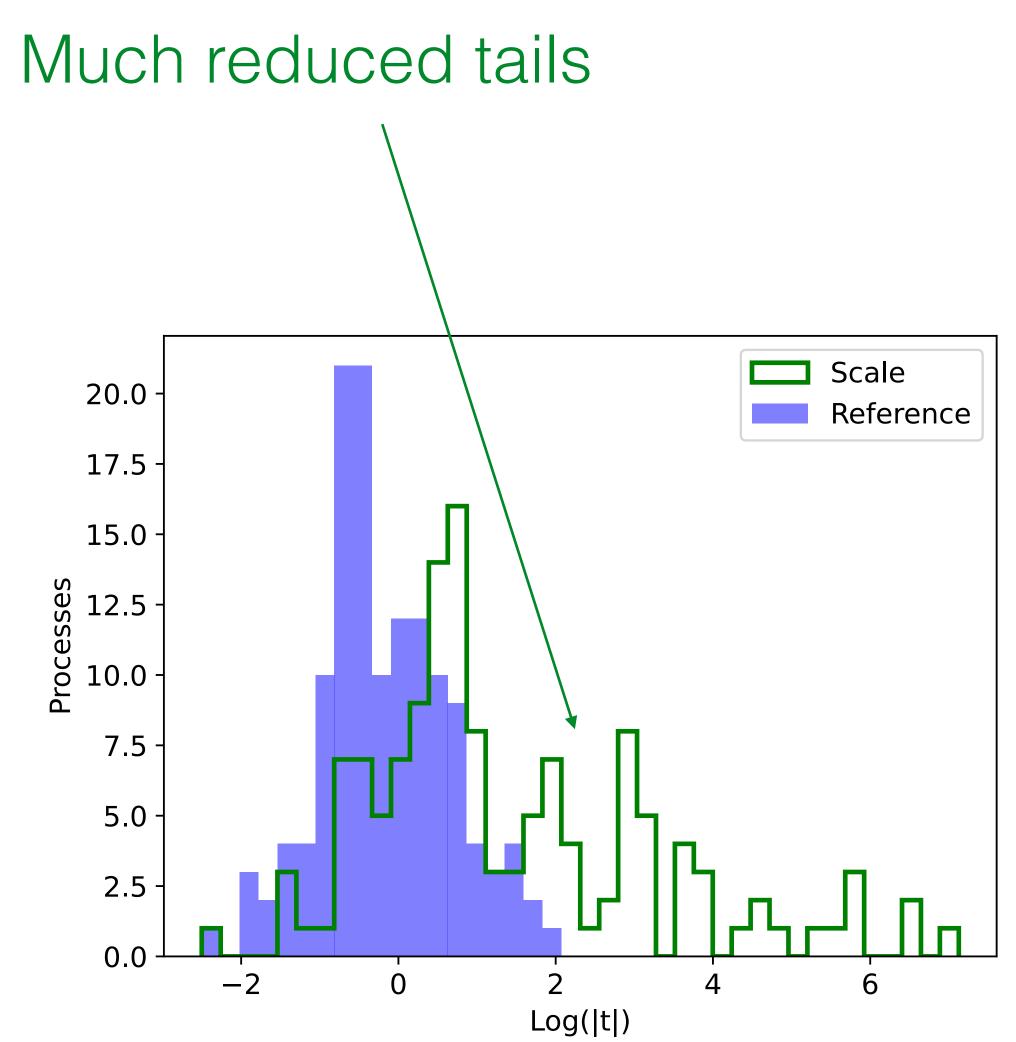


Much reduced tails

Tilman Plehn's 'reference process' method

Make correction in UQ for EW processes





Tilman Plehn's 'reference process' method

Leaves us wanting more ...

Would be even more interesting to repeat study for NLO → NNLO, differential distributions

Can we use ML to automatically find patterns of failure?

Why did we find a Gaussian-ish core?

Impact: A new method for cross-checks within experiment collaborations

Snowmass Whitepaper: Recommendations for the future

- Common language for uncertainty between ML and Physics communities
- Funding to test ML UQ methods for physics
- Create benchmark datasets for uncertainty tests
- Develop and study interpretability methods

Snowmass Whitepaper: Recommendations for the future

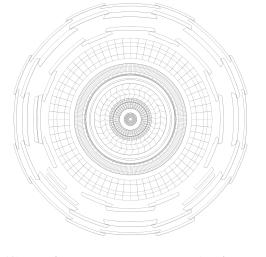
Snowmass 2021: Summary of past work and future roadmap

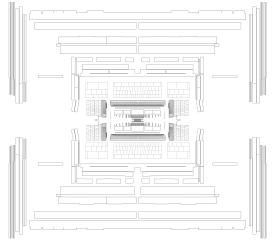
- Common language for uncertainty between ML and Physics communities
- Funding to test ML UQ methods for physics
- Create benchmark datasets for uncertainty tests
- Develop and study interpretability methods

Conclusion

- ML more sensitive to simulation artefacts → building better uncertainty quantification tools
- ML lets us better propagate experimental uncertainties and build analyses optimised for all possibilities: HEP, Astro
- Solutions have wider use cases
 - Tractable likelihoods
 - Optimise true objective with differentiable programming [Inferno, NEOS]
 - Uncertainty quantification of ML-simulators? [Performance metrics, Bayesian networks]
 - Learn physics from machine: Mapping ML into a human-readable space [CNN to EFPs]

And more cool solutions to come!





Thank you!

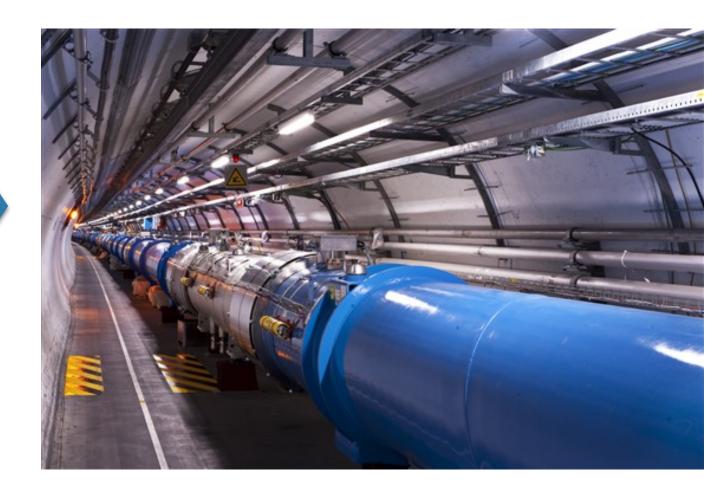
Known unknowns

Simulation using Standard Model of particle physics



Train ML models on simulation, apply on data

Unlabelled data from LHC



Detector state in sim: Z=1

Detector state in data: Z = ?

Systematic differences lead to systematic uncertainties

Make correction in UQ for EW processes

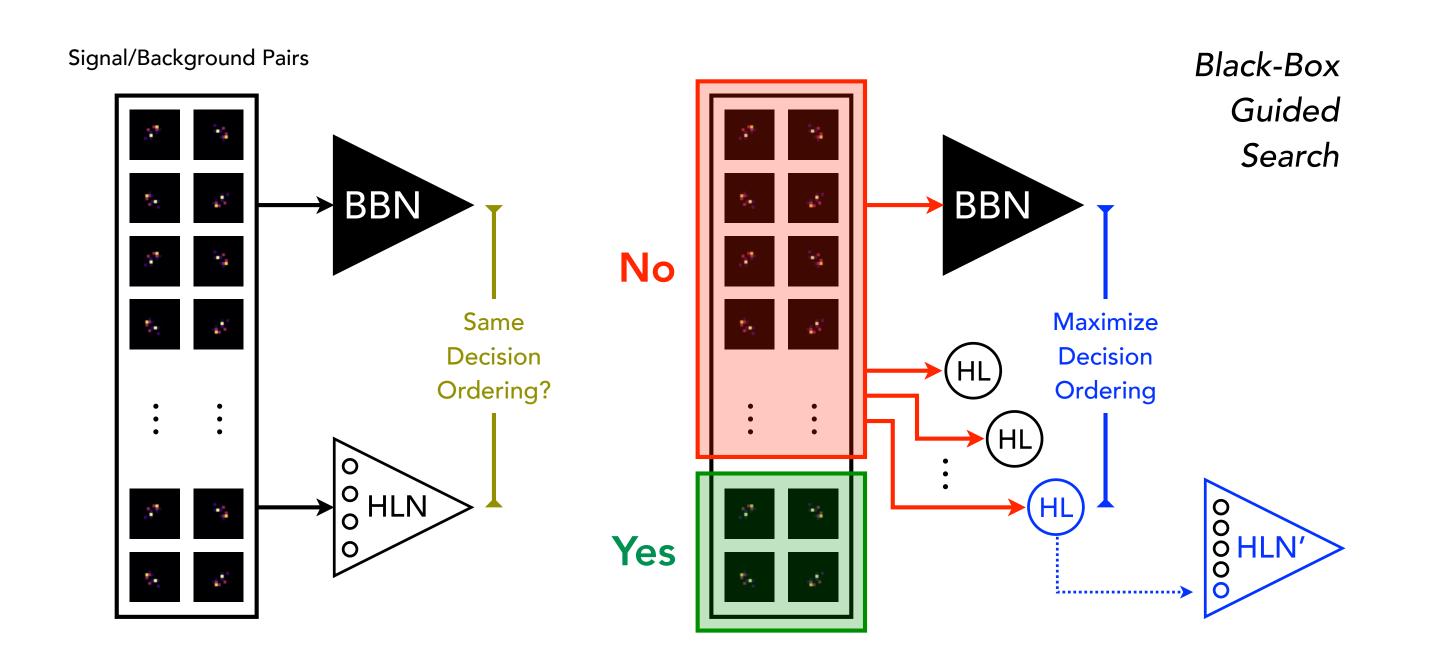
Process	$n_{\rm part}$	$\Delta\sigma/\sigma_0$	$\frac{\sigma_{ m NLO} - \sigma_0}{\Delta \sigma}$	$\Delta\sigma_{ m ref}/\sigma_0$	$rac{\sigma_{ m NLO} - \sigma_0}{\Delta \sigma_{ m ref}}$
p p > wpm	1	1.54×10^{-1}	1.84	1.47×10^{-1}	1.92
p p > wpm j	2	1.97×10^{-1}	1.96	2.94×10^{-1}	1.31
p p > wpm j j	3	2.45×10^{-1}	0.59	4.41×10^{-1}	0.33
p p > wpm j j j	4	4.10×10^{-1}	0.25	5.88×10^{-1}	0.18
p p > z	1	1.46×10^{-1}	1.87	1.47×10^{-1}	1.86
p p > z j	2	1.93×10^{-1}	1.82	2.94×10^{-1}	1.19
p p > z j j	3	2.43×10^{-1}	0.56	4.41×10^{-1}	0.31
p p > z j j j	4	4.08×10^{-1}	0.27	5.88×10^{-1}	0.19
p p > a j	2	3.12×10^{-1}	5.33	2.94×10^{-1}	5.66
рр > ајј	3	3.28×10^{-1}	TATOMINICAL CONTRACTOR	4.41×10^{-1}	0.63
p p > w+ w- wpm	3	1.00×10^{-3}	7	4.41×10^{-1}	1.39
p p > z w + w -	3	8.00×10^{-3}	92.39	4.41×10^{-1}	1.68
p p > z z wpm	3	1.00×10^{-2}	85.00	4.41×10^{-1}	1.93
p p > z z z	3	1.00×10^{-3}	302.75	4.41×10^{-1}	0.69
p p > a w + w -	3	1.90×10^{-2}	42.33	4.41×10^{-1}	1.82
p p > a a wpm	3	4.40×10^{-2}	47.24	4.41×10^{-1}	4.72
p p > a z wpm	3	1.00×10^{-3}	1244.49	4.41×10^{-1}	2.82
p p > a z z	3	2.00×10^{-2}	17.24	4.41×10^{-1}	0.78

Surviving tails

Process	$n_{ m part}$	$\Delta\sigma/\sigma_0$	$\frac{\sigma_{\rm NLO}-\sigma_0}{\Delta\sigma}$	$\Delta\sigma_{ m ref}/\sigma_0$	$\frac{\sigma_{ m NLO}-\sigma_0}{\Delta\sigma_{ m ref}}$
p p > h	1 3.	48 × 10 ⁻¹	3.02	1.47×10^{-1}	7.15

Large corrections loop-induced 2->1 process

Mapping machine-learned physics into a human-readable space

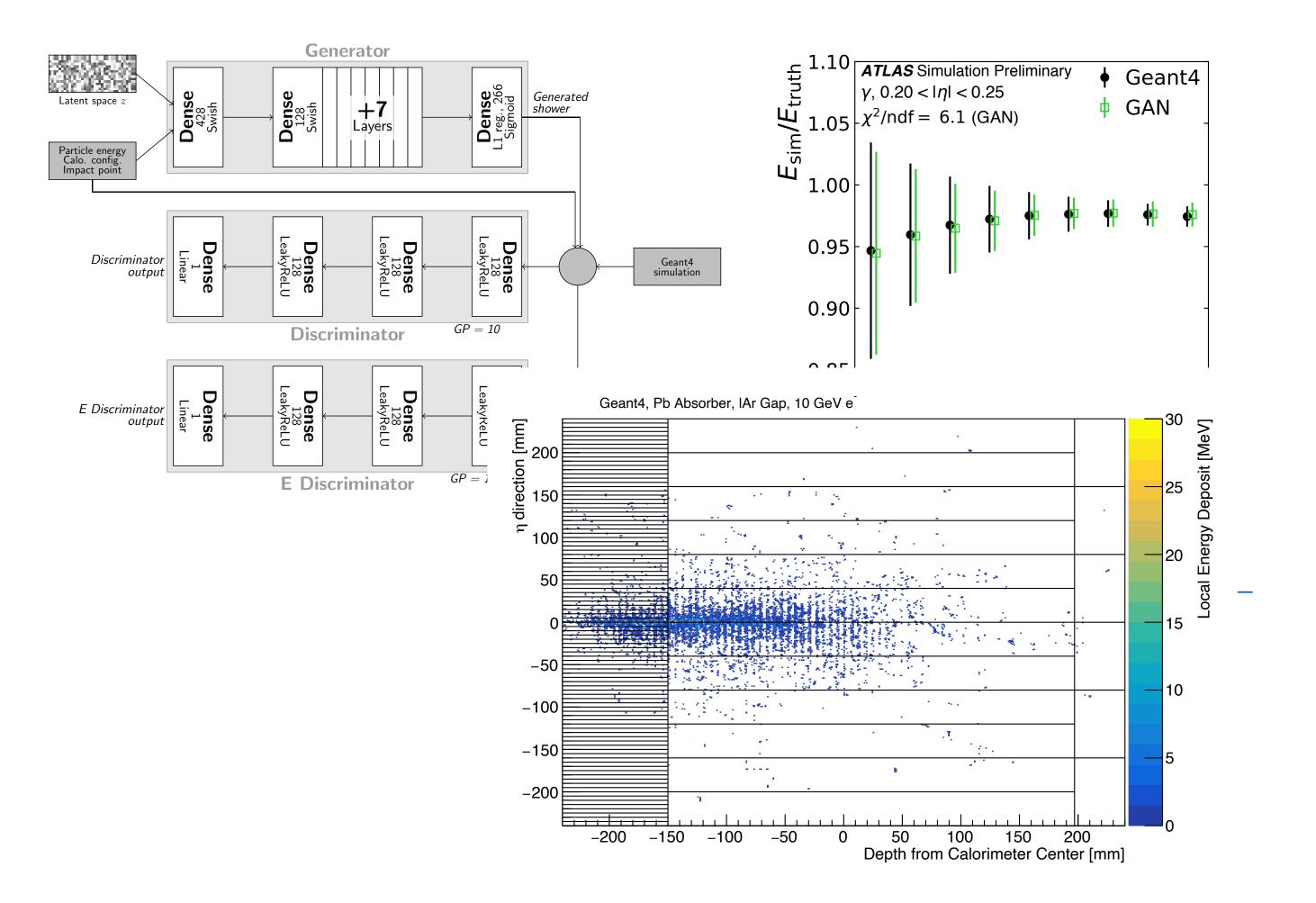


Rank	EFP	κ	β	Chrom #	$ADO[EFP, CNN]_{X_6}$	AUC[EFP]	${\rm ADO[6HL+EFP,CNN]}_{X_{\rm all}}$	AUC[6HL + EFP]
1	\	2	$\frac{1}{2}$	3	0.6207	0.8031	0.9714	0.9528 ± 0.0003
2		2	$\frac{1}{2}$	3	0.6205	0.8203	0.9714	0.9524
3	•	0	_	1	0.6205	0.6737	0.9715	0.9525
4		2	$\frac{1}{2}$	3	0.6199	0.8301	0.9715	0.9527
5		2	$\frac{1}{2}$	3	0.6197	0.8290	0.9714	0.9527
6		2	$\frac{1}{2}$	3	0.6196	0.8251	0.9715	0.9522
7	•	0	$\frac{1}{2}$	2	0.6187	0.7511	0.9715	0.9526
8		2	$\frac{1}{2}$	3	0.6184	0.8257	0.9712	0.9527
9	\	2	$\frac{1}{2}$	3	0.6182	0.8090	0.9714	0.9527
10		2	$\frac{1}{2}$	3	0.6180	0.8314	0.9714	0.9526
60	•	0	1	2	0.6163	0.7194	0.9715	0.9525
341	\Diamond	-1	$\frac{1}{2}$	4	0.6142	0.6286	0.9714	0.9509
589		0	2	2	0.6109	0.7579	0.9714	0.9523
3106	•	-1	_	1	0.5891	0.5882	0.9714	0.9510
3519		$\frac{1}{2}$	$\frac{1}{2}$	2	0.5664	0.7698	0.9715	0.9524
3521	•	$\frac{1}{2}$	_	1	0.5663	0.7093	0.9714	0.9522
5531		1	2	1	0.5290	0.7454	0.9714	0.9507
5554	•	1	$\frac{1}{2}$	2	0.5279	0.8210	0.9713	0.9505
5610	•	2	_	1	0.5245	0.7117	0.9714	0.9507
5657		1	1	3	0.5224	0.8257	0.9712	0.9506
5793		1	1	2	0.5191	0.8640	0.9714	0.9505
6052		1	2	3	0.5153	0.8500	0.9716	0.9504
7438	•	1	2	2	0.5011	0.8835	0.9716	0.9506

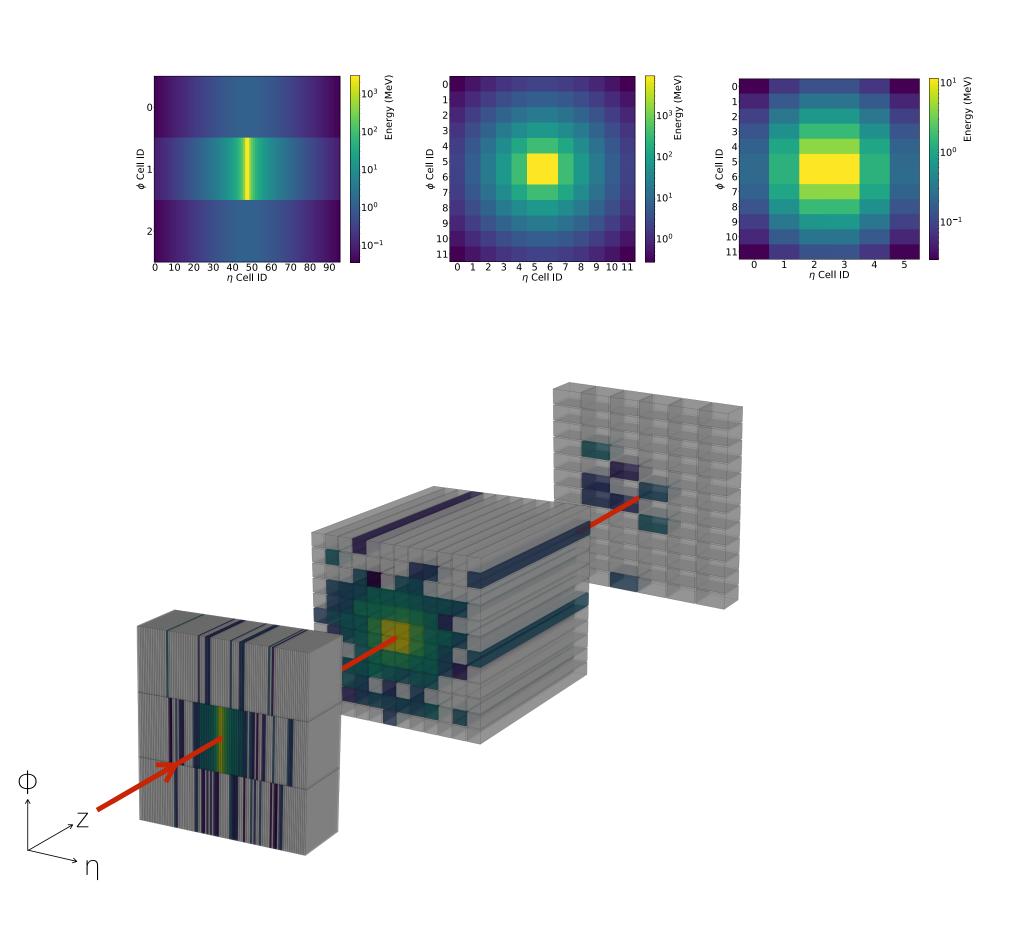
Performance Metrics for Generative Models

Generative Models for Simulation

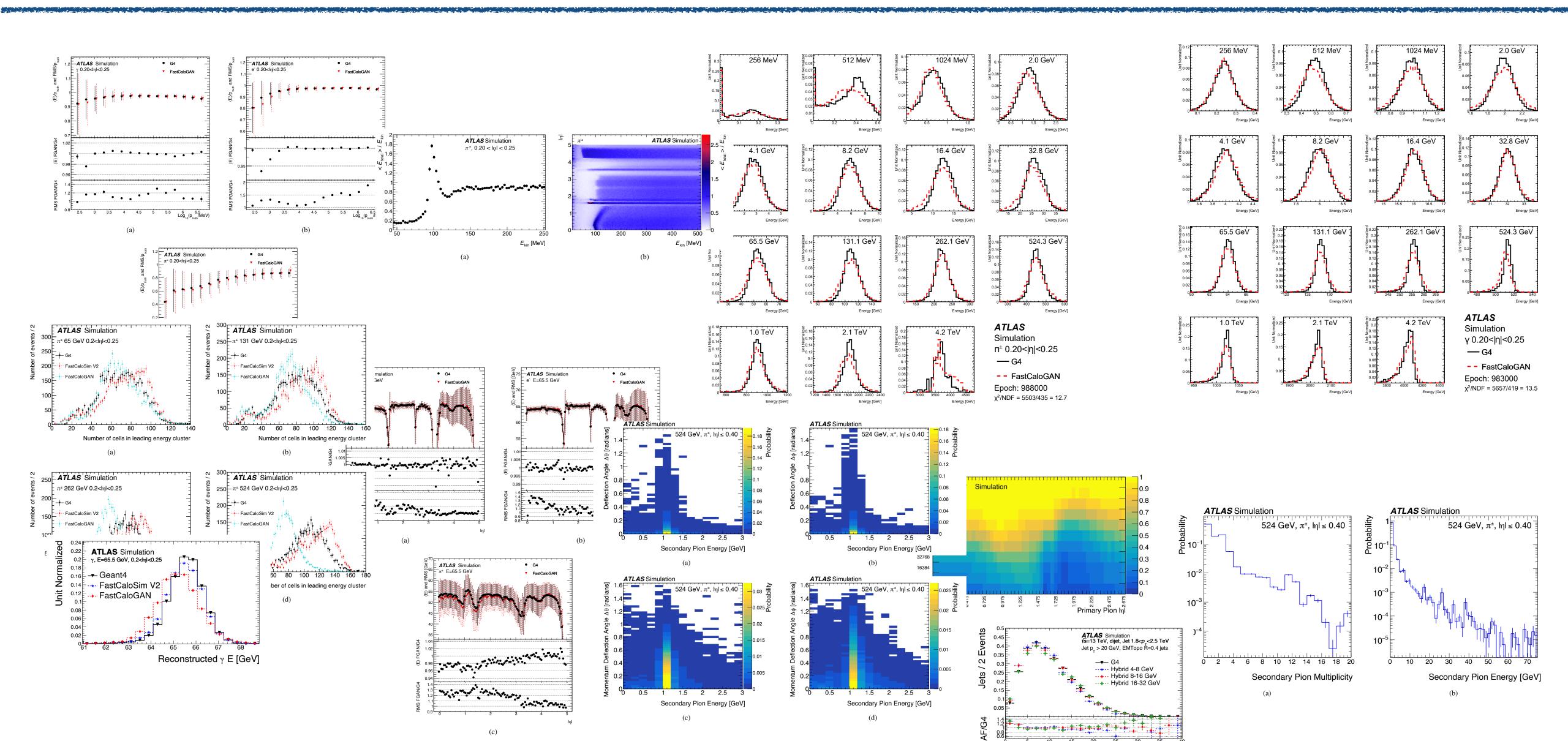
Ghosh, ATLAS Collaboration, 2019



Paganini et al.



Evaluating Fast Calo Simulators



Can we automise the evaluation?

Krause and Shih, 2021

5.4 Classifier metrics

In much of the GAN literature (see e.g. [8]), a common metric is to train classifiers to distinguish between different categories of data (e.g. e^+ vs. π^+), and to see if there is any difference in classifier performance when real data and generated data are interchanged. For example, one might train a classifier on e^+ vs. π^+ GEANT4 images, and compare this to a classifier trained on e^+ vs. π^+ GAN images. If the classifier trained on real images performs similarly to the classifier trained on generated images, then this is evidence that the generated images are approximating the real images well. One can repeat this test for different combinations of real and generated data.

The ultimate test of whether $p_{\text{generated}}(x) = p_{\text{data}}(x)$ would be a direct binary classifier between real and generated images of the *same* type. If the generated and true probability

Can we automise the evaluation?

Krause and Shih, 2021

5.4 Classifier metrics

In much of the GAN literature (see e.g. [8]), a common metric is to train classifiers to distinguish between different categories of data (e.g. e^+ vs. π^+), and to see if there is any difference in classifier performance when real data and generated data are interchanged. For example, one might train a classifier on e^+ vs. π^+ GEANT4 images, and compare this to a classifier trained on e^+ vs. π^+ GAN images. If the classifier trained on real images performs similarly to the classifier trained on generated images, then this is evidence that the generated images are approximating the real images well. One can repeat this test for different combinations of real and generated data.

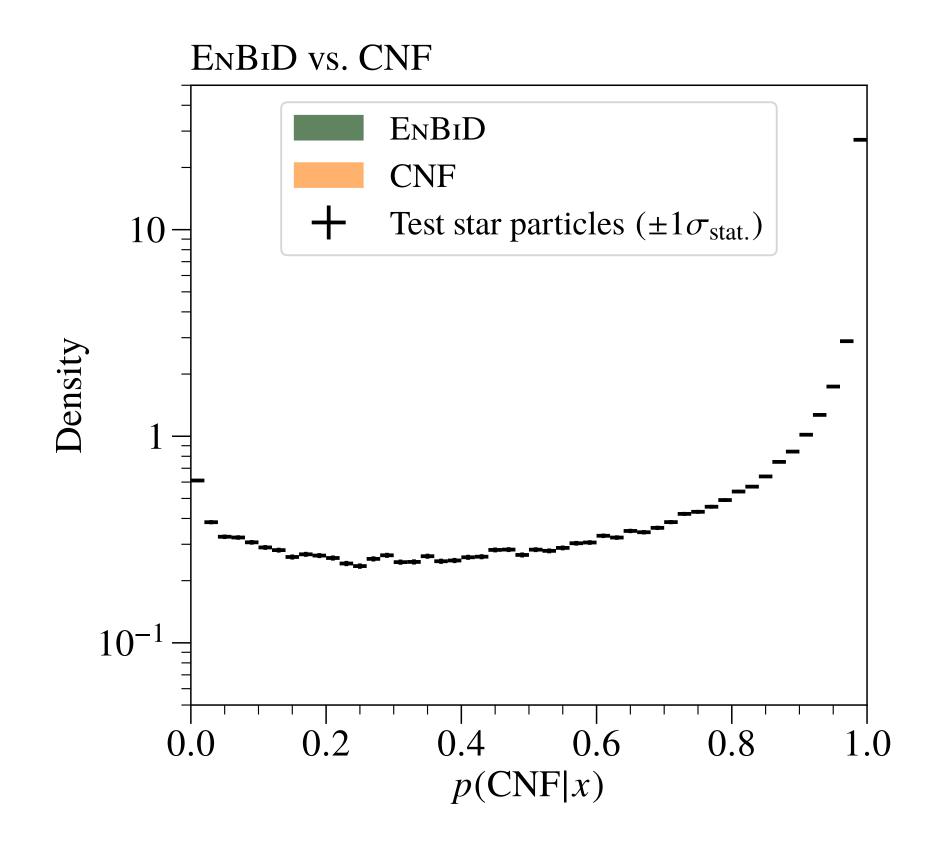
The ultimate test of whether $p_{\text{generated}}(x) = p_{\text{data}}(x)$ would be a direct binary classifier between real and generated images of the *same* type. If the generated and true probability

Another classifier test

Lim et al, 2022

Compare two generative models:

Classify generative model1 vs model2, check if test dataset agrees better with one or the other



A comparison of metrics

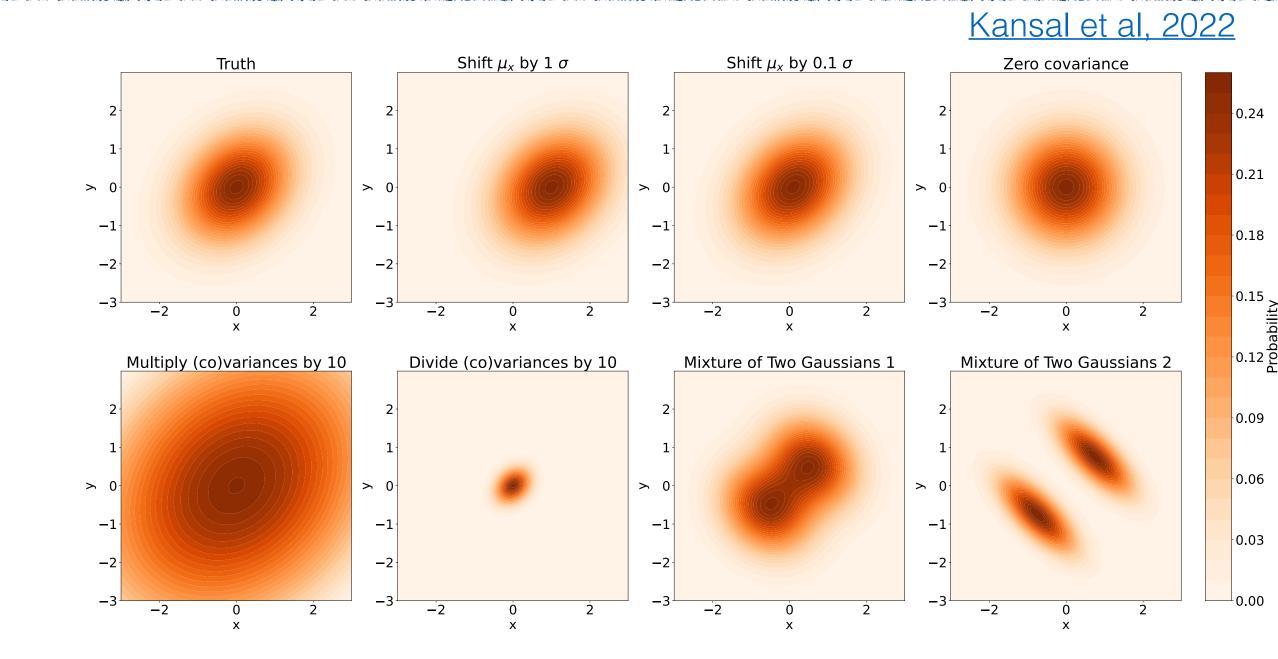
On the Evaluation of Generative Models in High Energy Physics

Raghav Kansal, * Anni Li, and Javier Duarte, University of California San Diego, La Jolla, CA 92093, USA

Nadezda Chernyavskaya, Maurizio Pierini European Center for Nuclear Research (CERN), 1211 Geneva 23, Switzerland

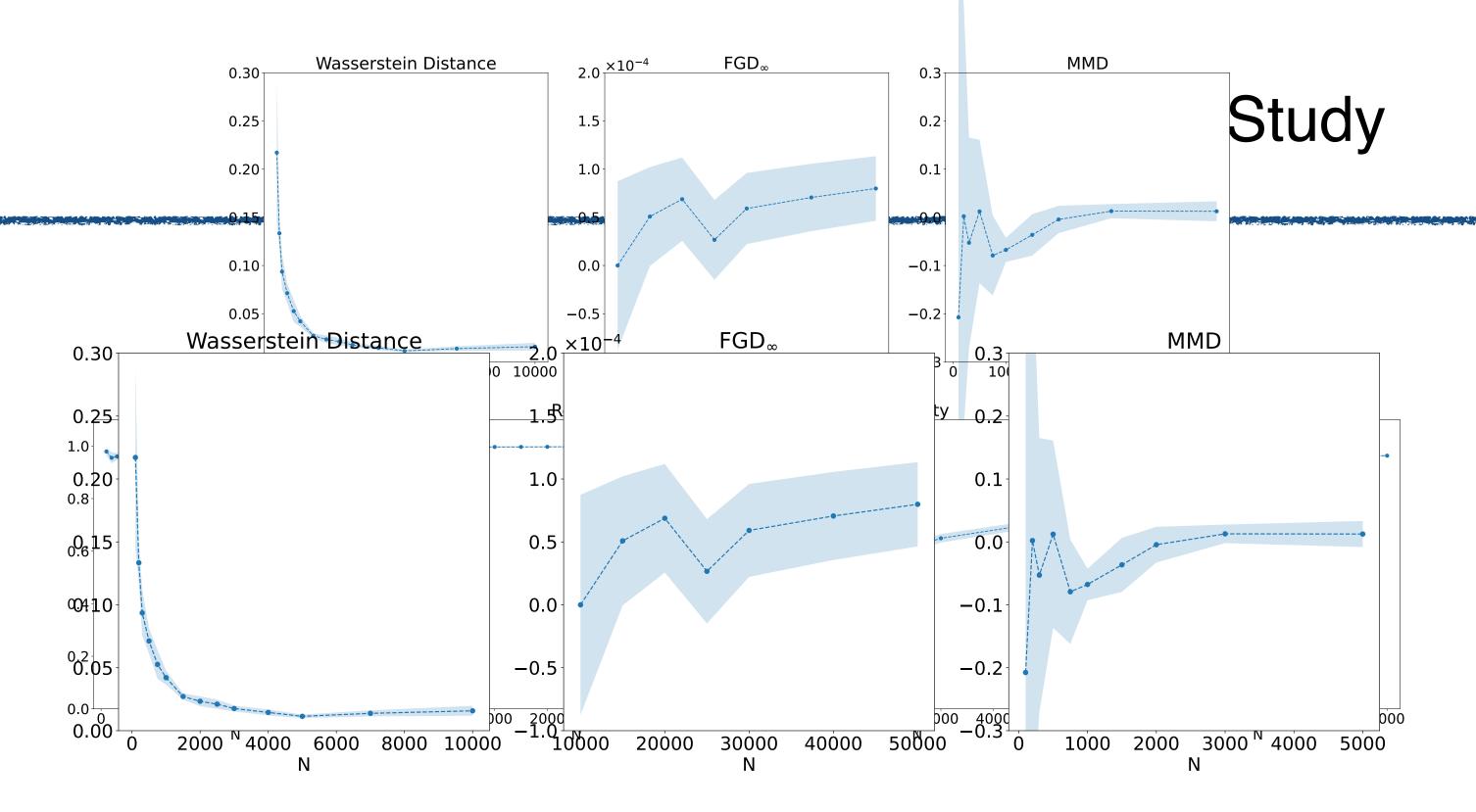
Breno Orzari, Thiago Tomei Universidade Estadual Paulista, São Paulo/SP, CEP 01049-010, Brazil

(Dated: November 21, 2022)



Detailed comparison on Gaussian toys where you have full control

Application on jet dataset with hand designed distortions



- FGD_{∞} , MMD unbiased
- W too expensive for large N

Metric	Truth	Shift μ_x by 1σ	Shift μ_x by 0.1σ	Zero covariance	Multiply (co)variances by 10	Divide (co)variances by 10	Mixture of Two Gaussians 1	Mixture of Two Gaussians 2
Wasserstein	0.016 ± 0.004	1.14 ± 0.02	0.043 ± 0.008	0.077 ± 0.006	9.8 ± 0.1	0.97 ± 0.01	0.036 ± 0.003	$\boldsymbol{0.191 \pm 0.005}$
$FGD_{\infty} \times 10^3$	0.08 ± 0.03	$\textbf{1011} \pm \textbf{1}$	11.0 ± 0.1	32.3 ± 0.2	9400 ± 8	935.1 ± 0.7	0.07 ± 0.03	0.03 ± 0.03
MMD	0.01 ± 0.02	16.4 ± 0.9	0.07 ± 0.04	0.40 ± 0.08	$19\mathrm{k}\pm1\mathrm{k}$	4.3 ± 0.1	0.06 ± 0.02	0.35 ± 0.03
Precision	0.972 ± 0.005	0.91 ± 0.01	0.976 ± 0.004	0.969 ± 0.006	0.34 ± 0.01	1.0 ± 0.0	0.975 ± 0.003	0.9976 ± 0.0007
Recall	0.997 ± 0.001	0.992 ± 0.003	0.997 ± 0.001	0.9976 ± 0.0006	0.998 ± 0.001	0.58 ± 0.02	0.996 ± 0.001	0.9970 ± 0.0009
Density	3.23 ± 0.06	2.48 ± 0.08	3.19 ± 0.07	3.1 ± 0.1	0.60 ± 0.02	5.7 ± 0.3	2.99 ± 0.09	0.989 ± 0.009
Coverage	0.876 ± 0.002	0.780 ± 0.006	0.872 ± 0.005	0.872 ± 0.004	0.60 ± 0.01	0.406 ± 0.008	0.871 ± 0.002	0.956 ± 0.006

 FGD_{∞} most promising (but no sensitivity to higher moments, requires extrapolation)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 $\text{Jet } m/p_{ au}$

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 Jet m/p_T

Jet Study

Metric	Truth	Smeared	Shifted	Removing tail	Particle features smeared	$\eta^{ m rel}$ smeared	$p_{ m T}^{ m rel}$ smeared	$p_{ m T}^{ m rel}$ shifted
$W_1^M \times 10^3$	0.28 ± 0.05	2.1 ± 0.2	6.0 ± 0.3	0.6 ± 0.2	1.7 ± 0.2	0.9 ± 0.3	0.5 ± 0.2	5.8 ± 0.2
Wasserstein EFP	0.02 ± 0.01	0.09 ± 0.05	0.10 ± 0.02	0.016 ± 0.007	0.19 ± 0.08	0.03 ± 0.01	0.03 ± 0.02	0.06 ± 0.02
$FGD_{\infty} EFP \times 10^3$	0.01 ± 0.02	21.5 ± 0.3	26.8 ± 0.3	2.31 ± 0.07	23.4 ± 0.3	$\boldsymbol{3.59 \pm 0.09}$	2.29 ± 0.05	28.9 ± 0.2
MMD EFP $\times 10^3$	-0.006 ± 0.005	0.17 ± 0.06	0.9 ± 0.1	0.03 ± 0.02	0.35 ± 0.09	0.08 ± 0.05	0.01 ± 0.02	1.8 ± 0.1
Precision EFP	0.9 ± 0.1	0.94 ± 0.04	0.978 ± 0.005	0.88 ± 0.08	0.7 ± 0.1	0.94 ± 0.06	0.7 ± 0.1	0.79 ± 0.09
Recall EFP	0.9 ± 0.1	0.88 ± 0.07	0.97 ± 0.01	0.92 ± 0.06	0.83 ± 0.05	0.92 ± 0.07	0.8 ± 0.1	0.8 ± 0.1
Wasserstein PN	1.65 ± 0.06	1.7 ± 0.1	2.4 ± 0.4	1.71 ± 0.08	4.5 ± 0.1	1.79 ± 0.05	4.0 ± 0.4	7.6 ± 0.2
$FGD_{\infty} PN \times 10^3$	0.8 ± 0.7	40 ± 2	193 ± 9	5.0 ± 0.9	1250 ± 10	20 ± 1	1230 ± 10	$\textbf{3640} \pm \textbf{10}$
MMD PN $\times 10^3$	-2 ± 2	4 ± 8	80 ± 10	-1 ± 4	500 ± 100	3 ± 2	560 ± 60	1100 ± 40
Precision PN	0.68 ± 0.07	0.64 ± 0.04	0.71 ± 0.06	0.73 ± 0.03	0.09 ± 0.04	0.75 ± 0.08	0.08 ± 0.04	0.39 ± 0.08
Recall PN	0.70 ± 0.05	0.61 ± 0.04	0.61 ± 0.08	0.73 ± 0.06	0.014 ± 0.009	0.7 ± 0.1	0.01 ± 0.01	0.57 ± 0.09
Classifier LLF AUC	0.50	0.52	0.54	0.50	0.97	0.81	0.93	0.99
Classifier HLF AUC	0.50	0.53	0.55	0.50	0.84	0.64	0.74	0.92

Kansal et al, 2022

- FGD_{∞} on EFPs does quite well in these tests
- Would be interesting to see it used and stress tested!

Bayesian Generative Models

Butter et al.

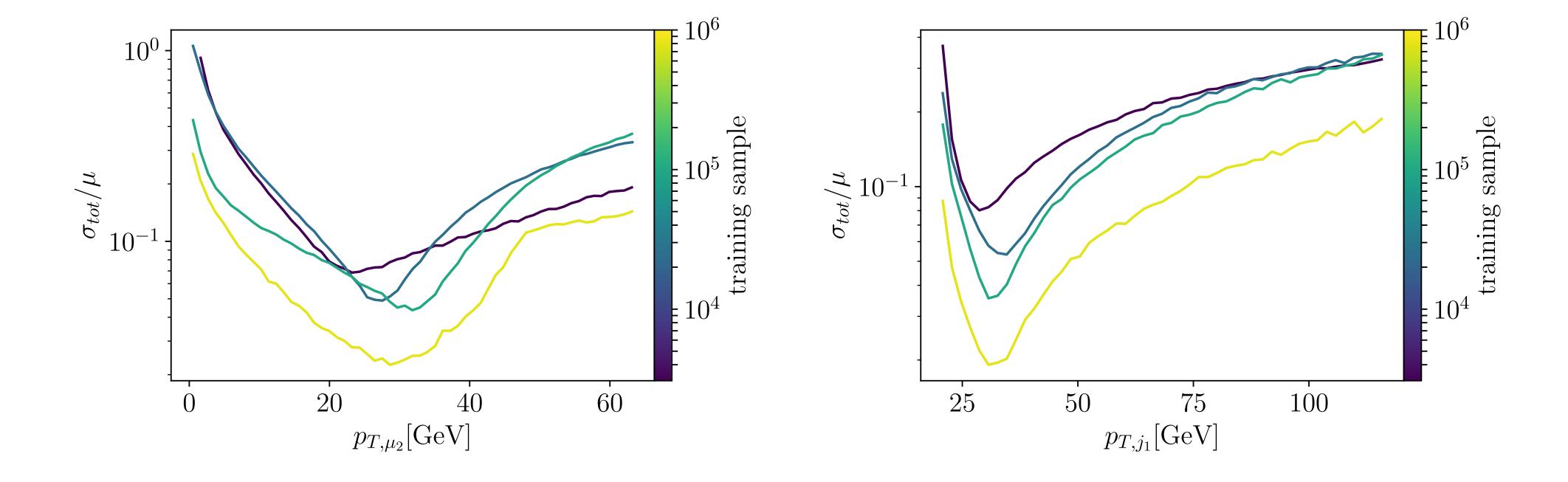
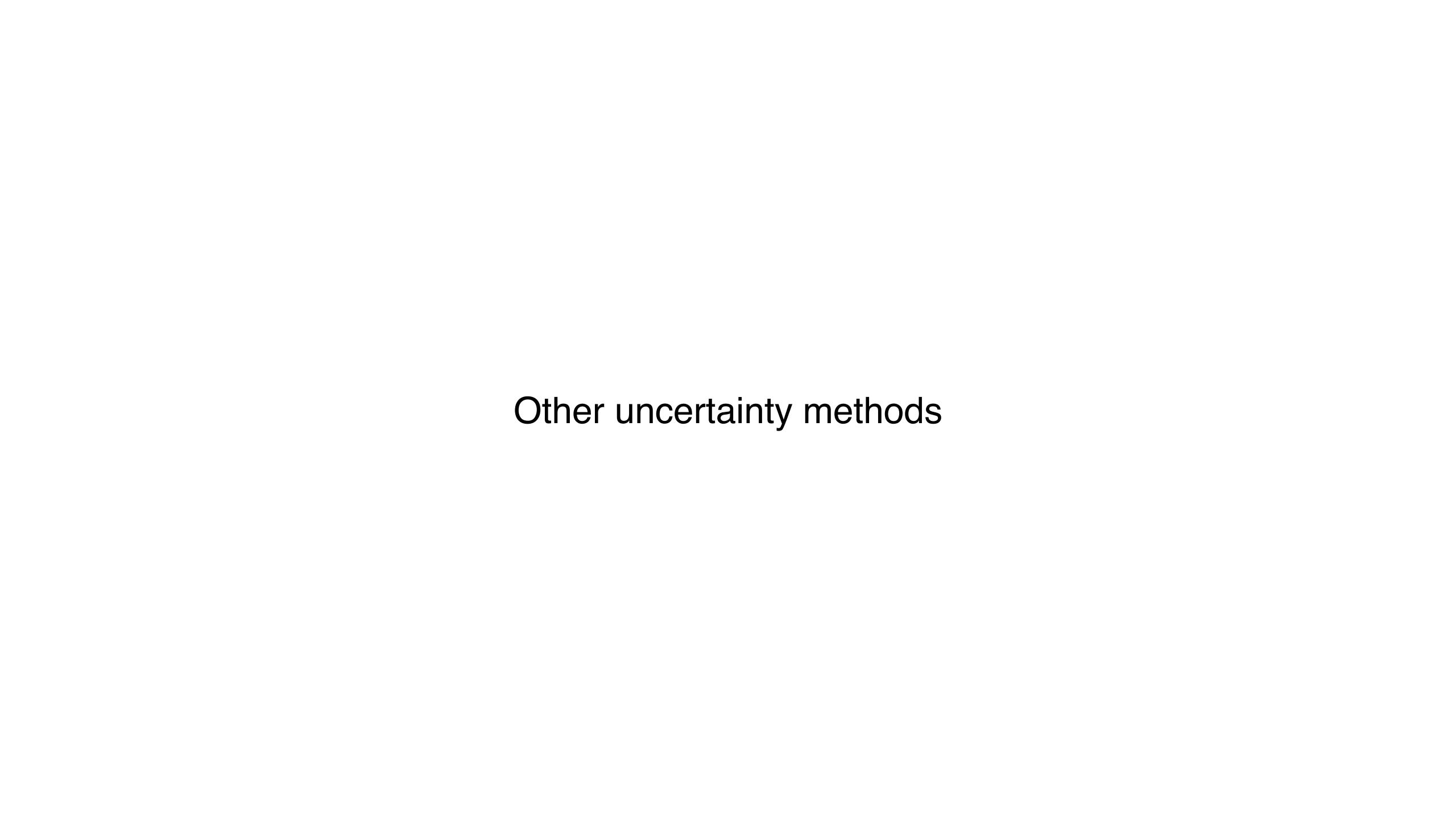


Figure 12: Relative uncertainty from the BINN for the Z+1 jet sample, as a function of the size of the training sample.



Differentiable Programming: Optimise your final objective directly

Simpson et al.

Following Inferno [de Castro et al.]

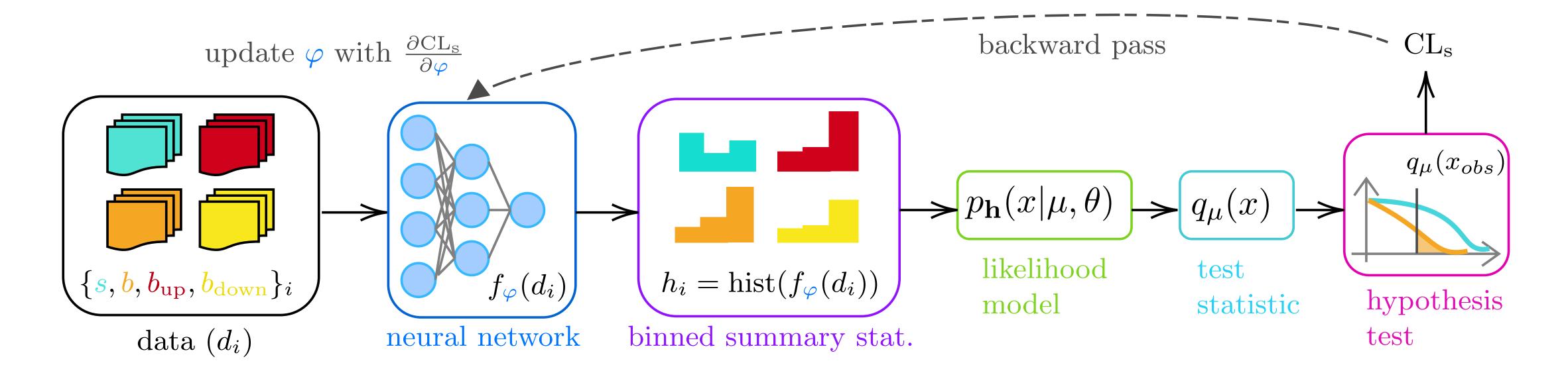


Figure 1. The pipeline for **neos**. The dashed line indicating the backward pass involves updating the weights φ of the neural network via gradient descent.

Unfolding with nuisance parameters

Chan and Nachman arXiv:2302.05390

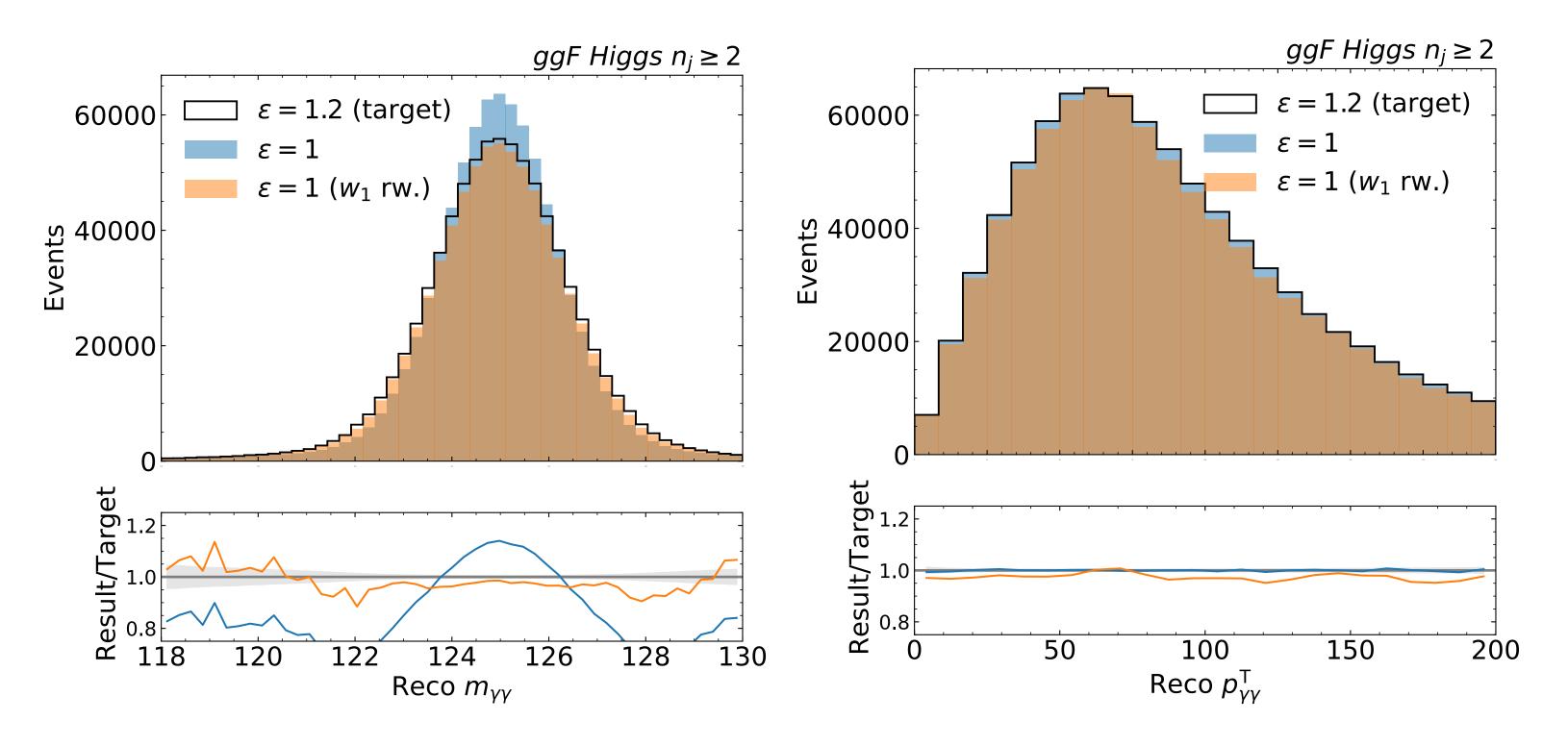
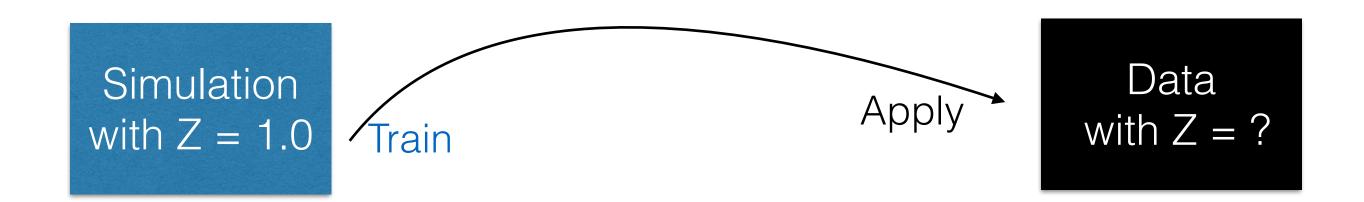


FIG. 6. Higgs boson cross section: the nominal detector-level spectra $m_{\gamma\gamma}$ (left) and $p_{\gamma\gamma}^{\rm T}$ (right) with $\epsilon_{\gamma} = 1$ reweighted by the trained w_1 conditioned at $\epsilon_{\gamma} = 1.2$ and compared to the spectra with $\epsilon_{\gamma} = 1.2$.

More on uncertainty-aware networks

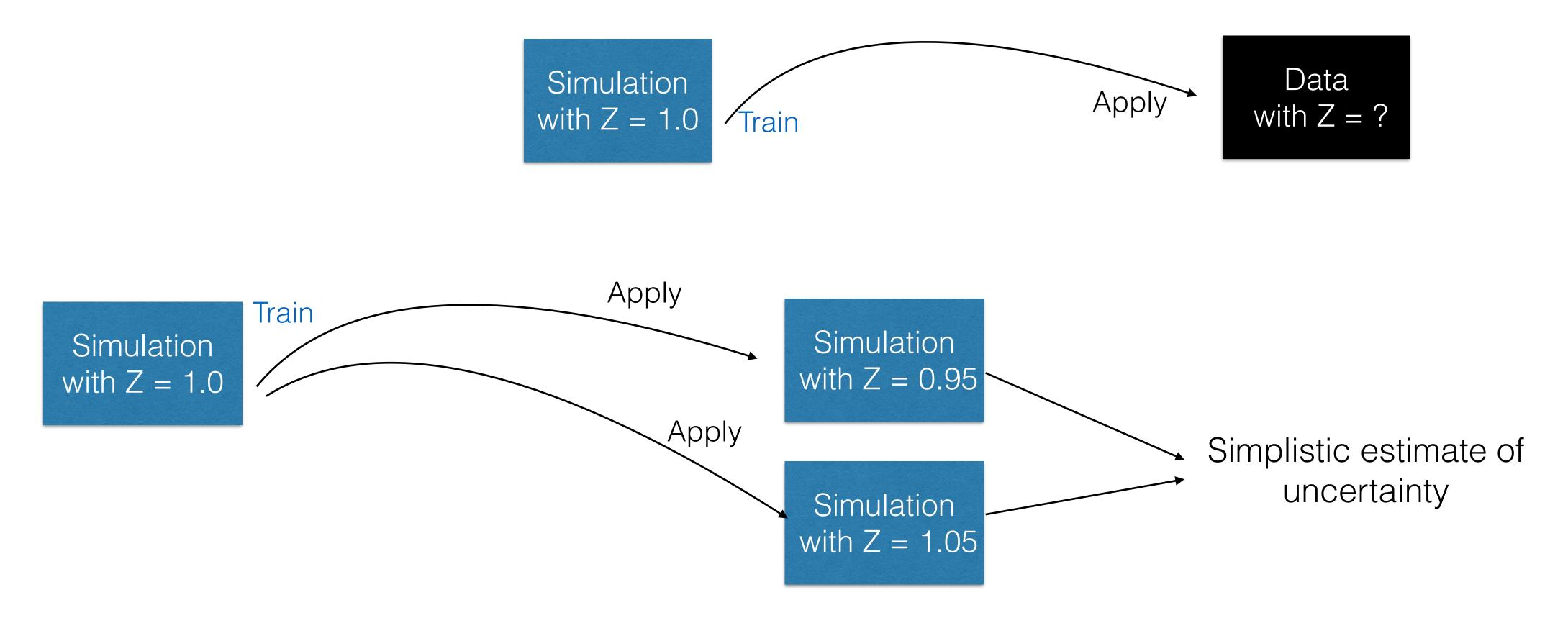
Baseline Approach to Uncertainty Quantification

Train AI classifier on nominal data (assume detector state Z=1) and estimate uncertainties using alternate simulations



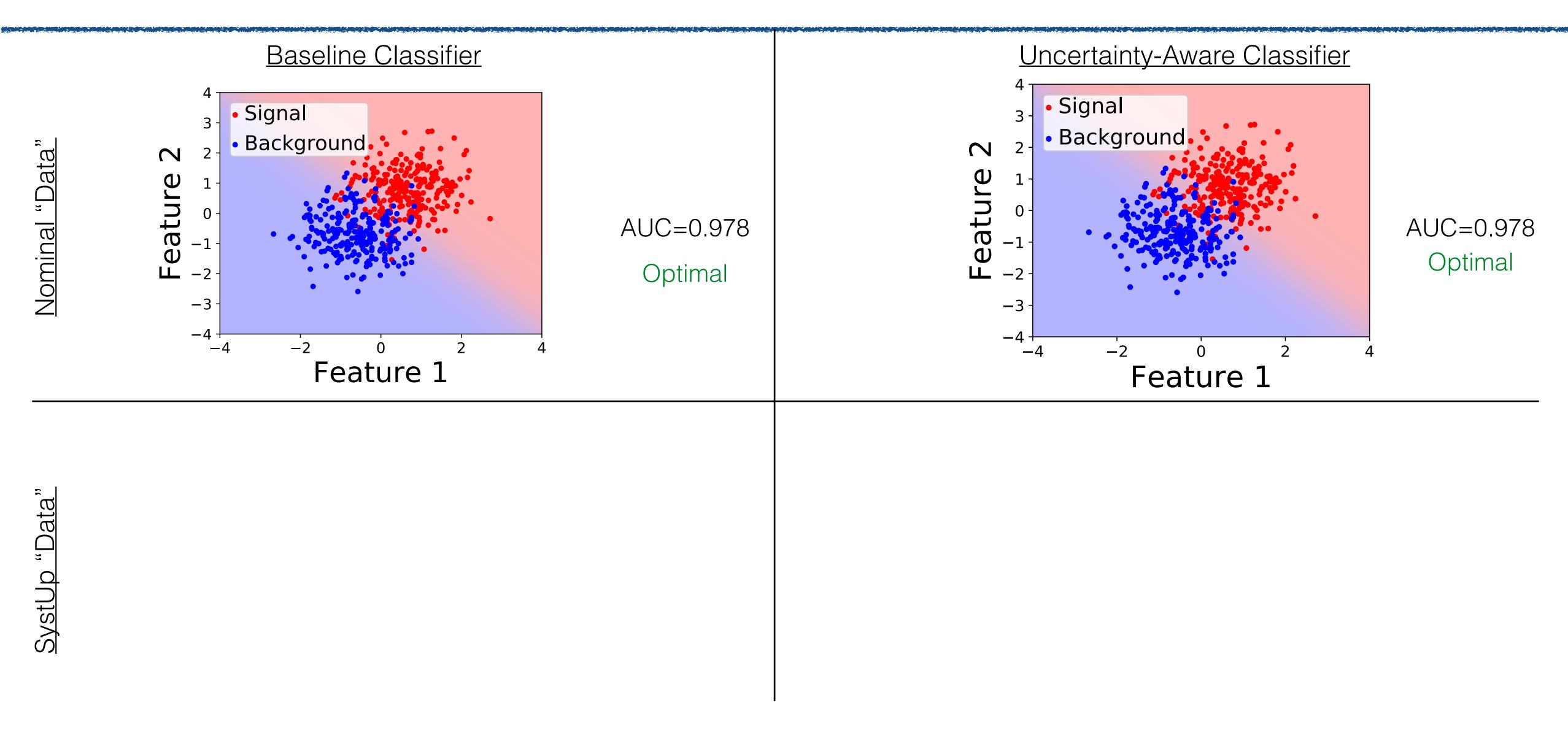
Baseline Approach to Uncertainty Quantification

Train AI classifier on nominal data (assume detector state Z=1) and estimate uncertainties using alternate simulations

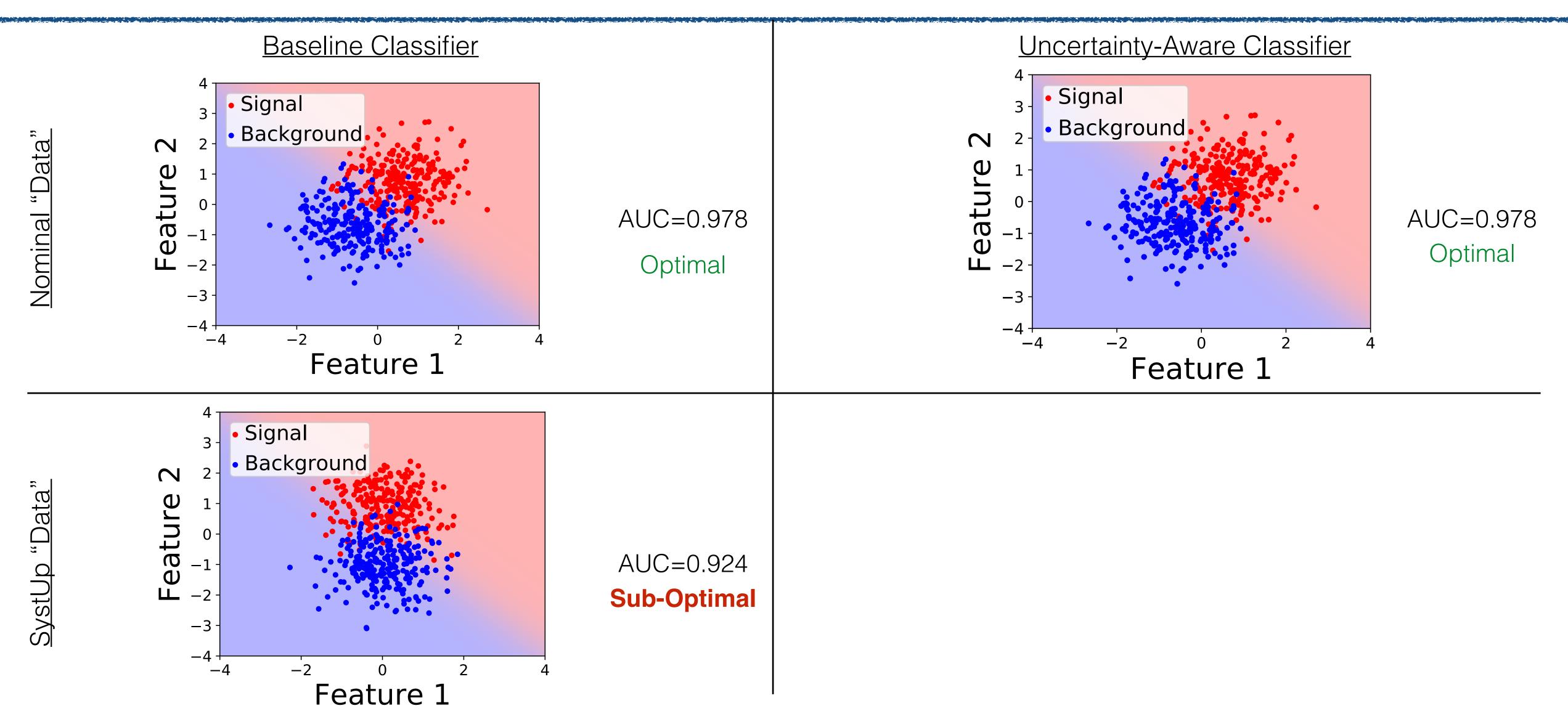


Full statistical treatment → Expensive 'Profile Likelihood'

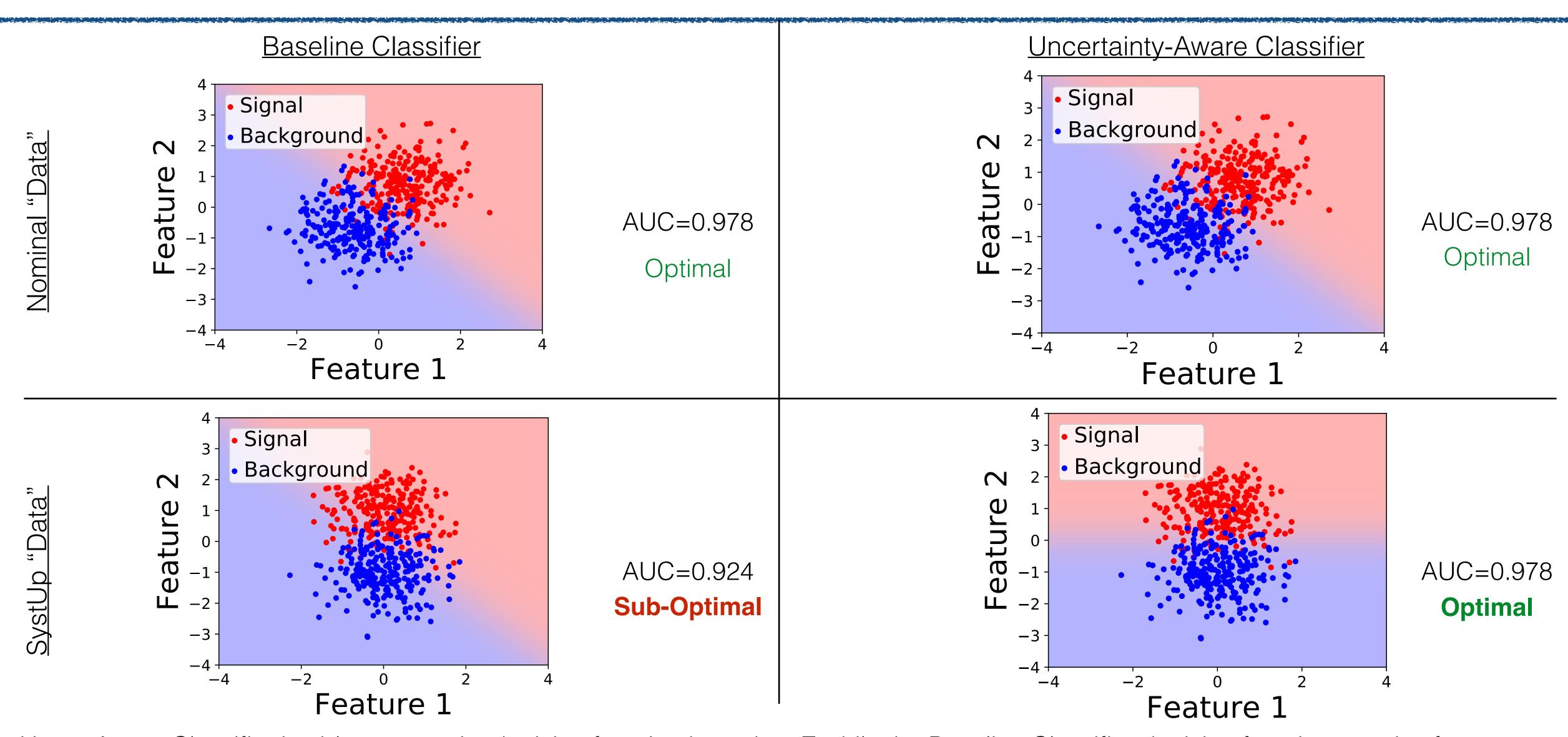
Nominal and Systematic Up Examples



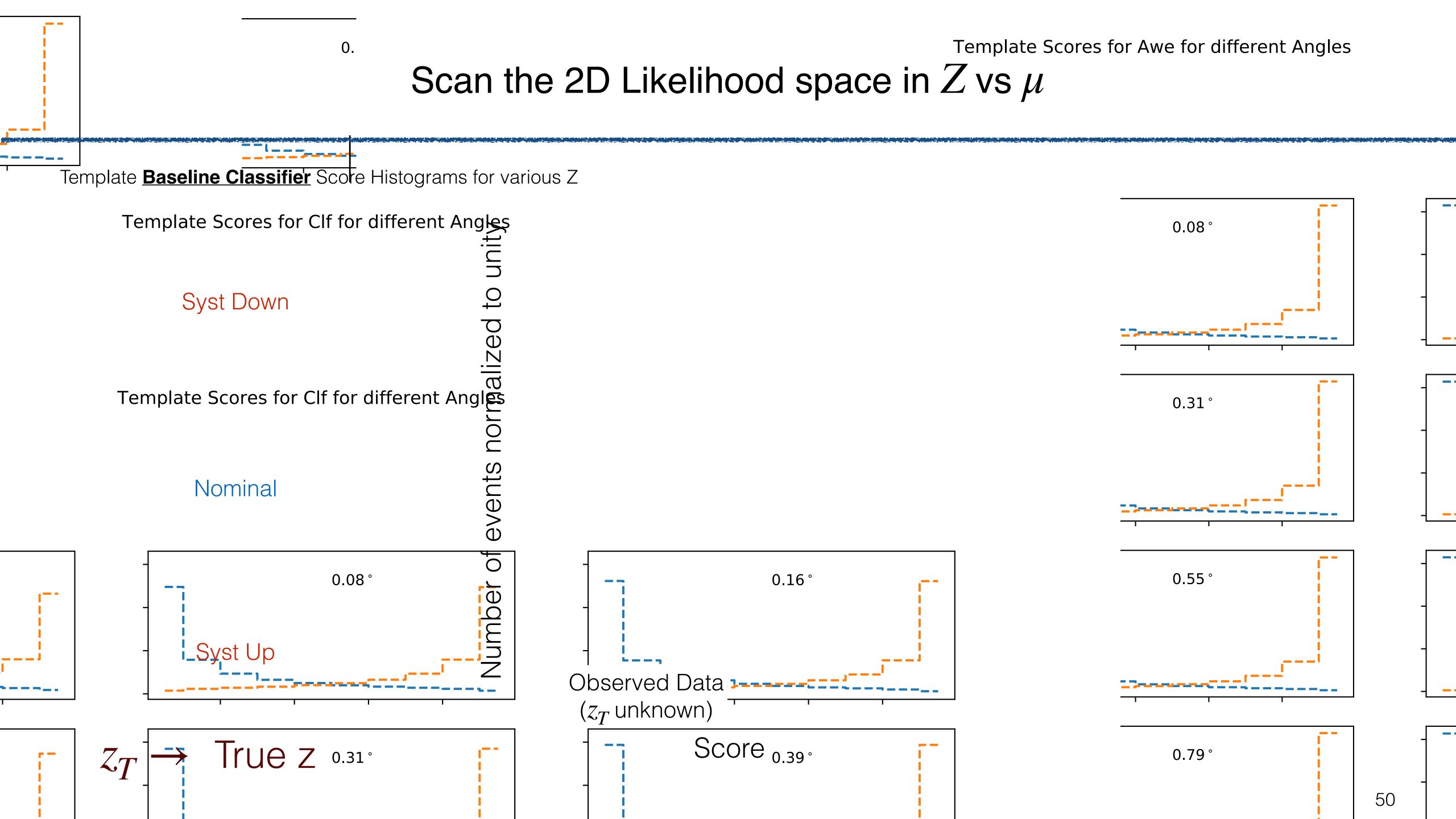
Nominal and Systematic Up Examples

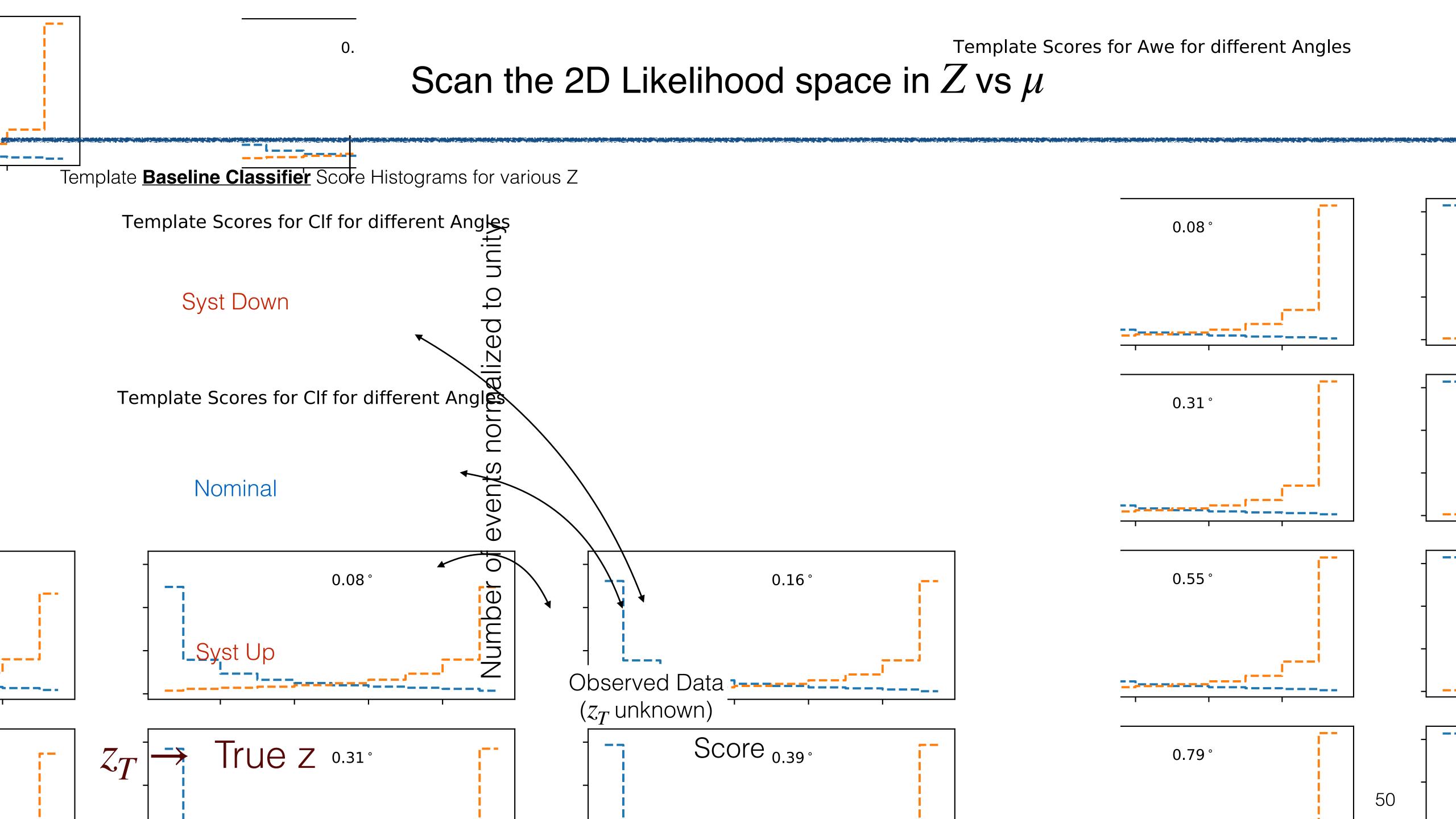


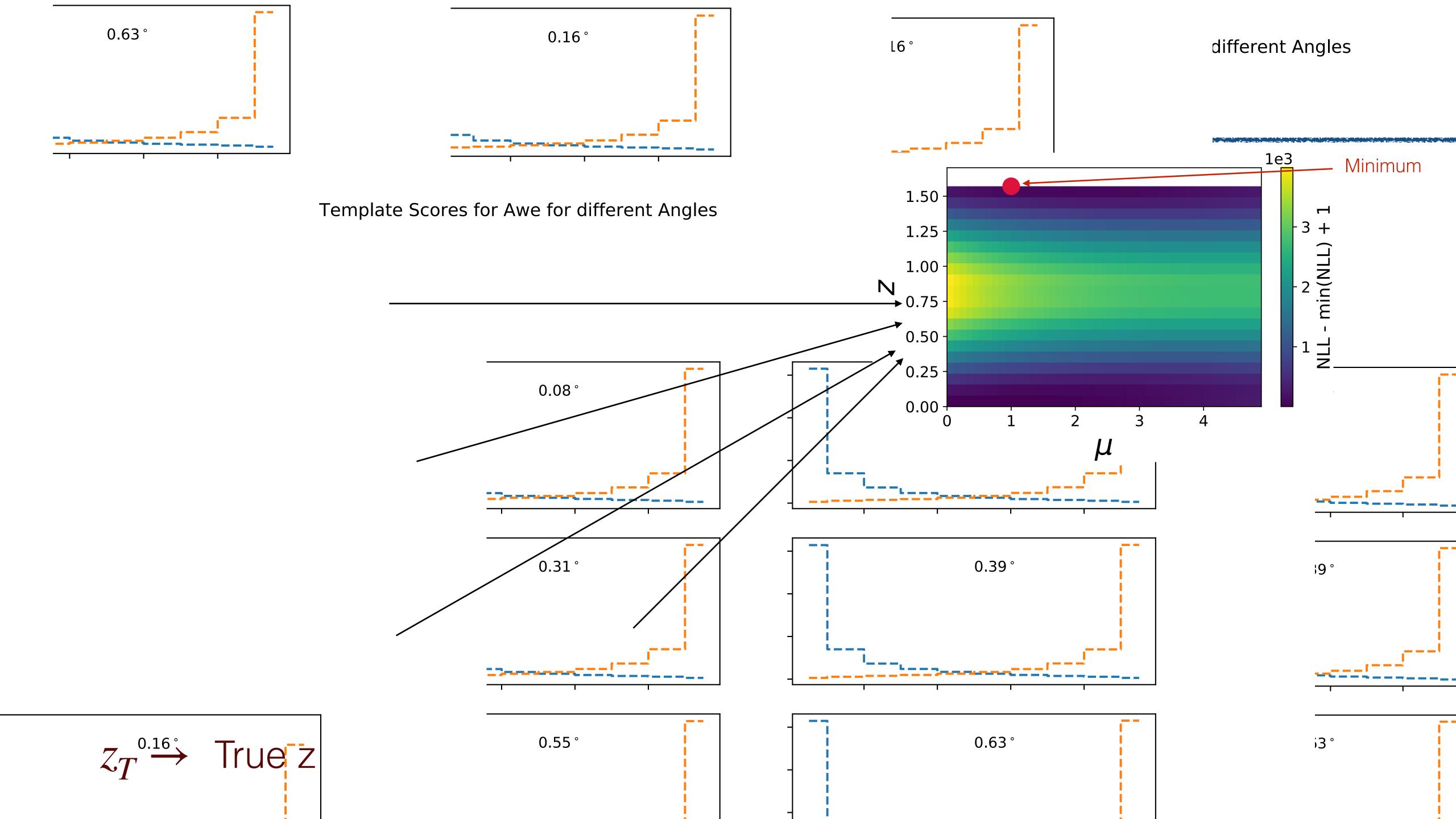
Nominal and Systematic Up Examples



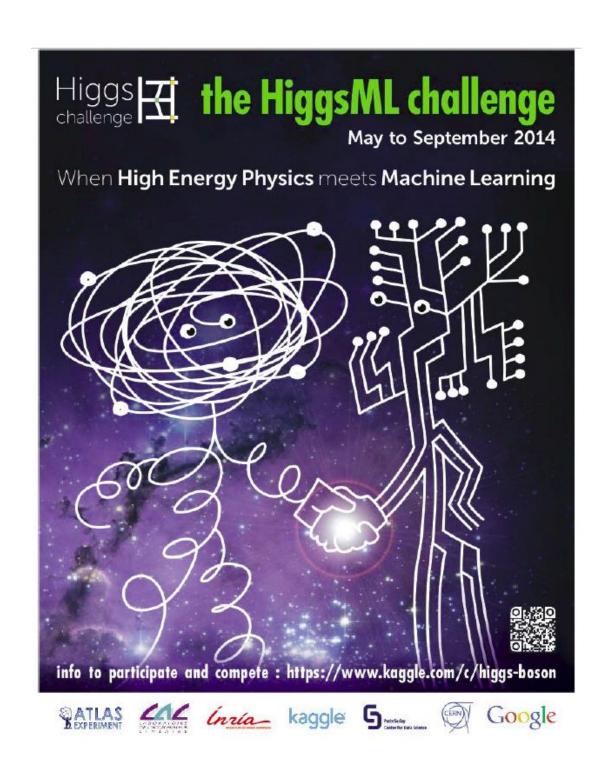
Uncer-Aware Classifier is able to rotate its decision function based on Z while the Baseline Classifier decision function remains frozen49



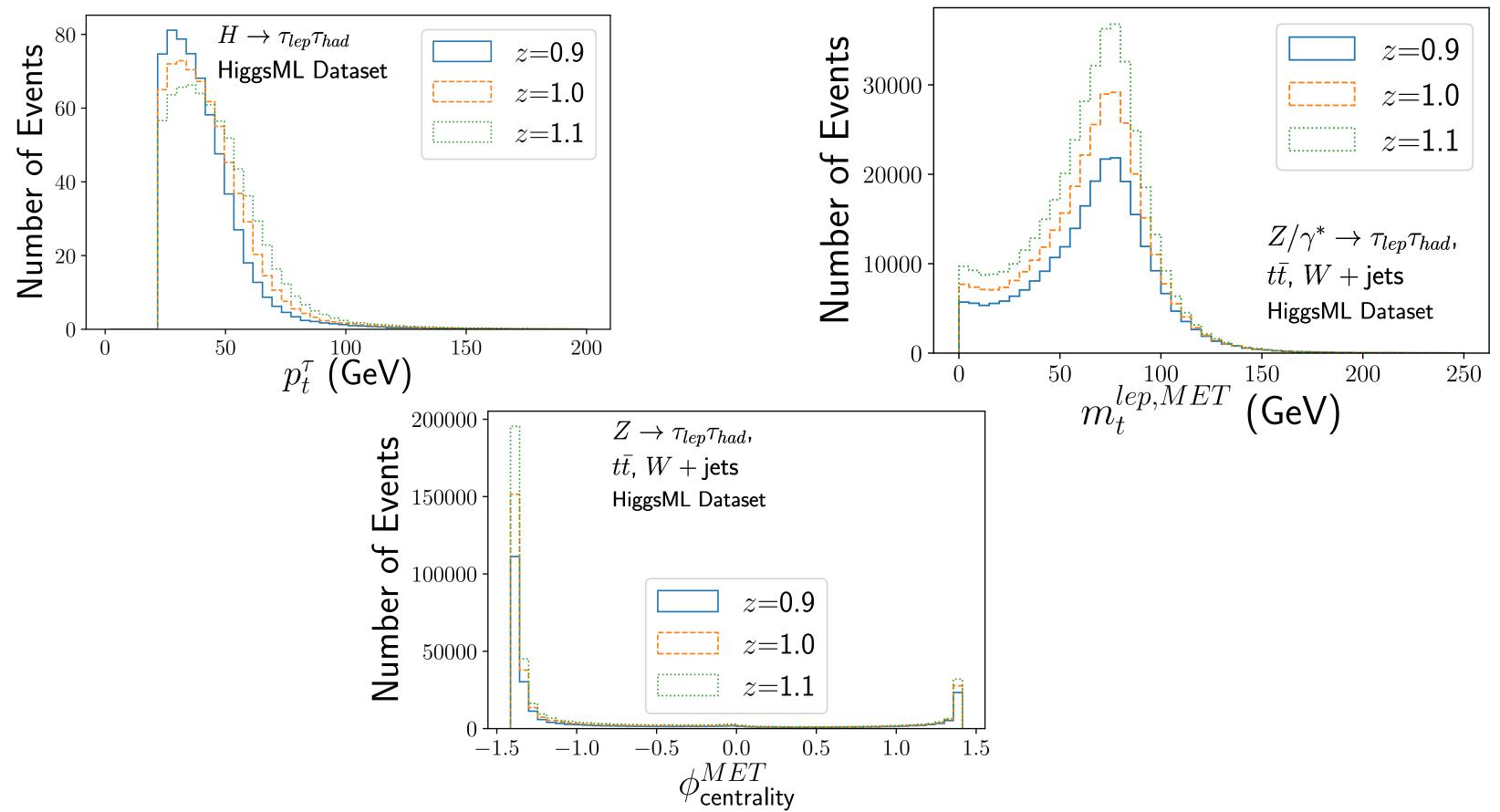




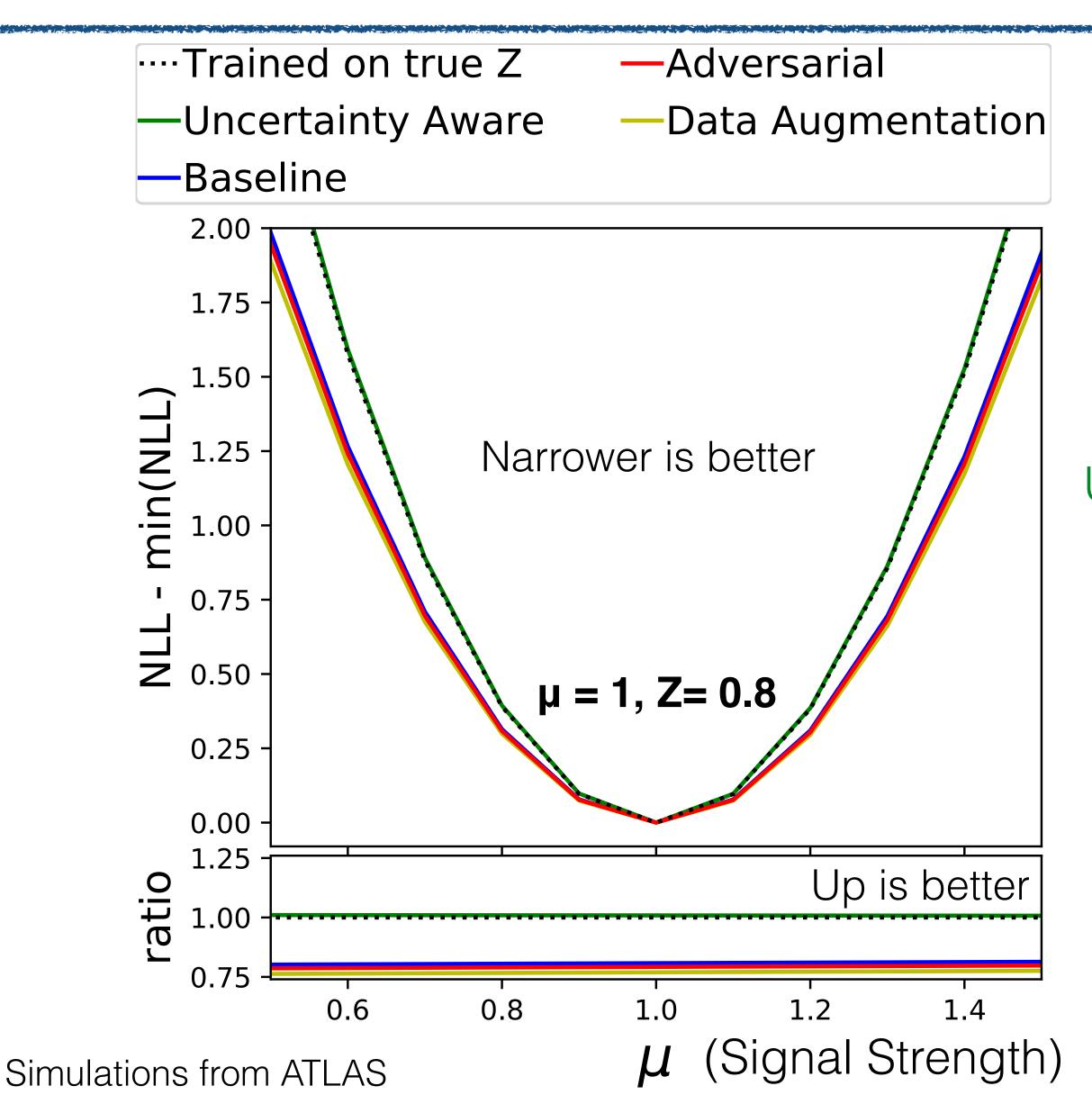
Physics Data: HiggsML + Tau Energy Scale (TES) Uncertainty



Parameter of Interest is Higgs signal strength μ , and TES is the nuisance parameter Z



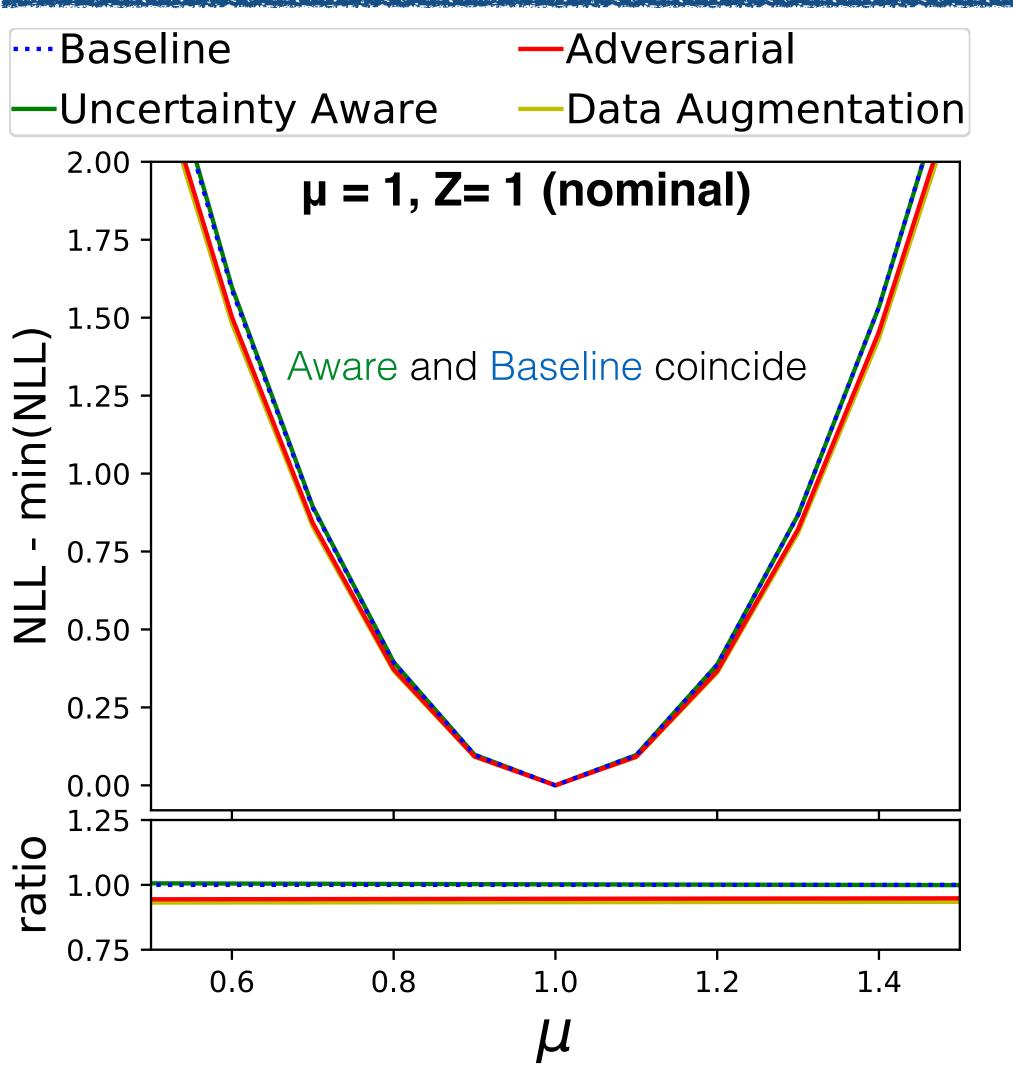
Physics Data: HiggsML + Tau Energy Scale (TES) Uncertainty

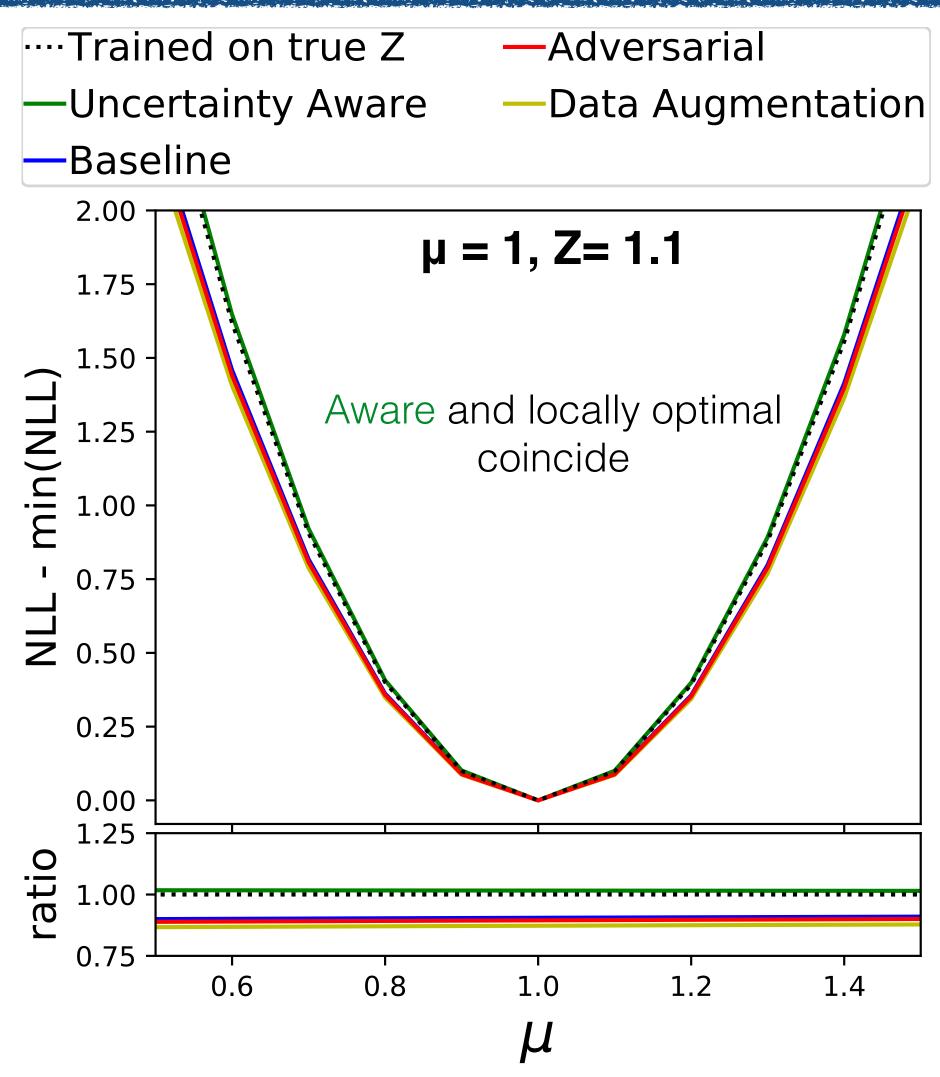


Uncertainty-Aware coincides with classifier trained on true Z

⇒ Can't get much better than that!

Test performance for "observed" data at nominal and above nominal Z

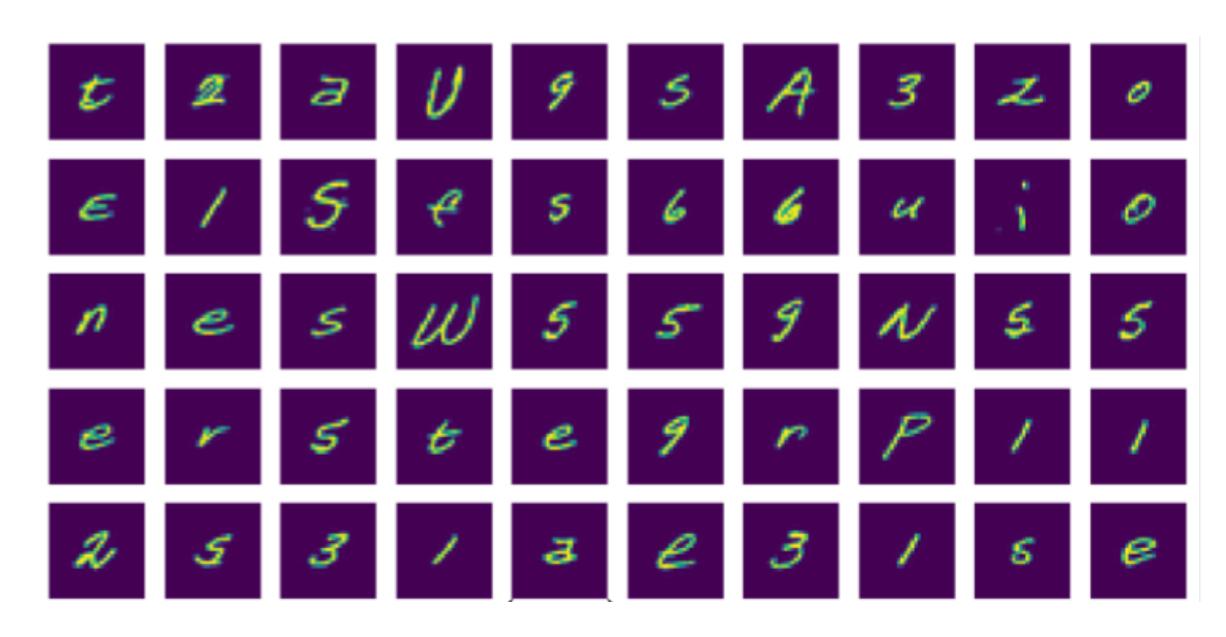




In every case the Aware Classifier is as good as the optimal one, no other technique matches its performance everywhere

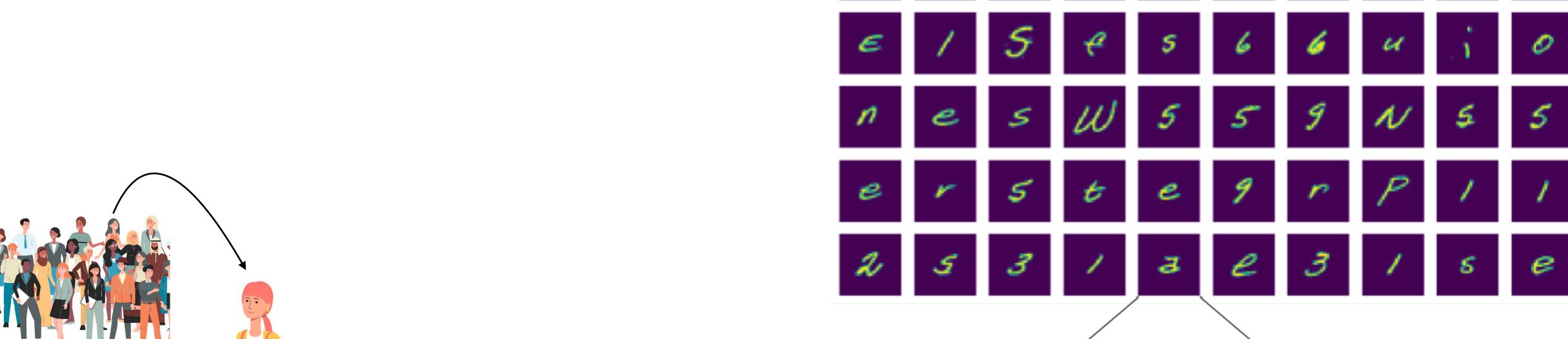
- ML researchers assume i.i.d
- This technique exploits correlations between samples a different paradigm
- Interesting applications outside of physics

- ML researchers assume i.i.d
- This technique exploits correlations between samples a different paradigm
- Interesting applications outside of physics

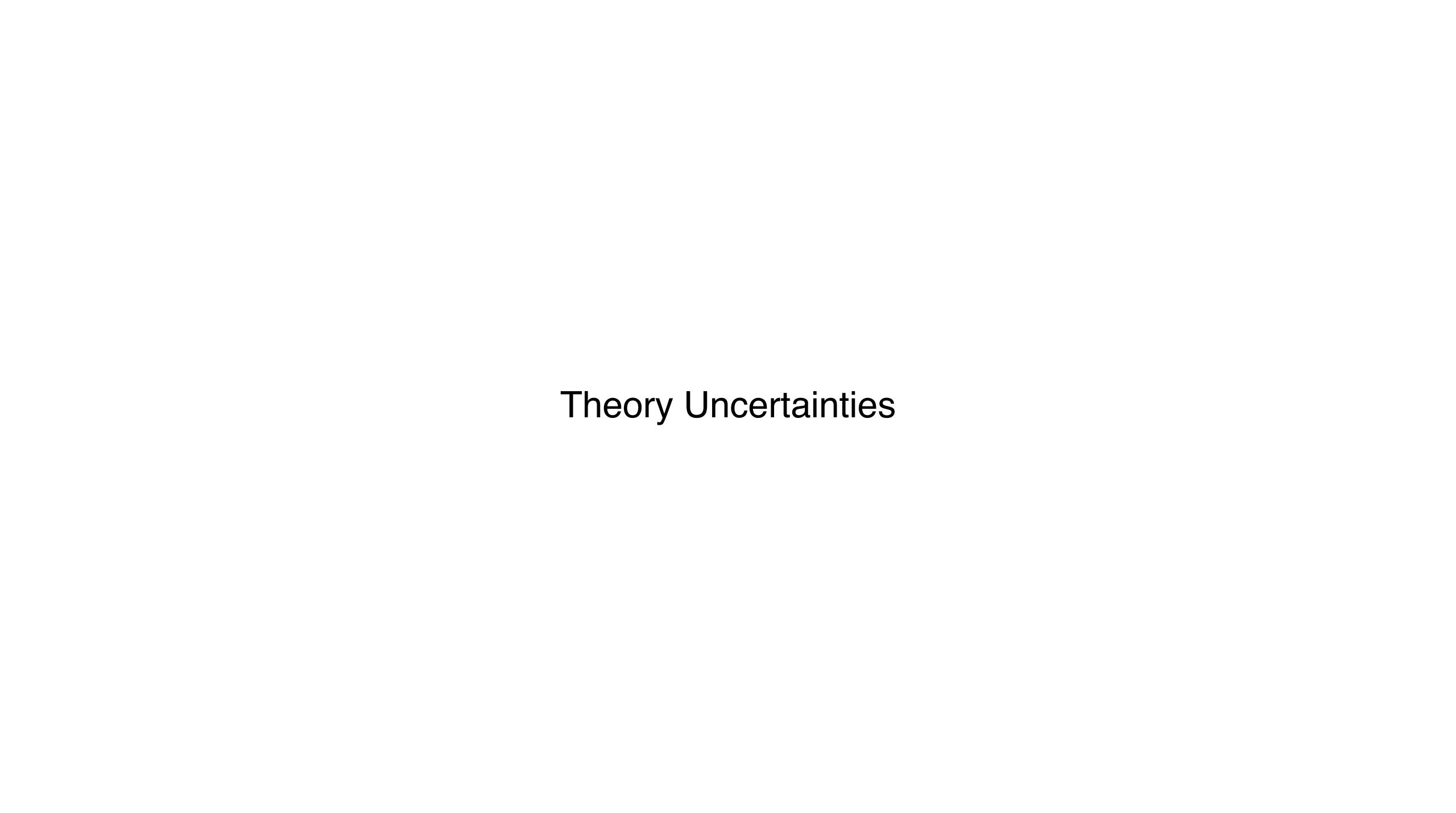


arXiv:2007.02931

- ML researchers assume i.i.d
- This technique exploits correlations between samples a different paradigm
- Interesting applications outside of physics



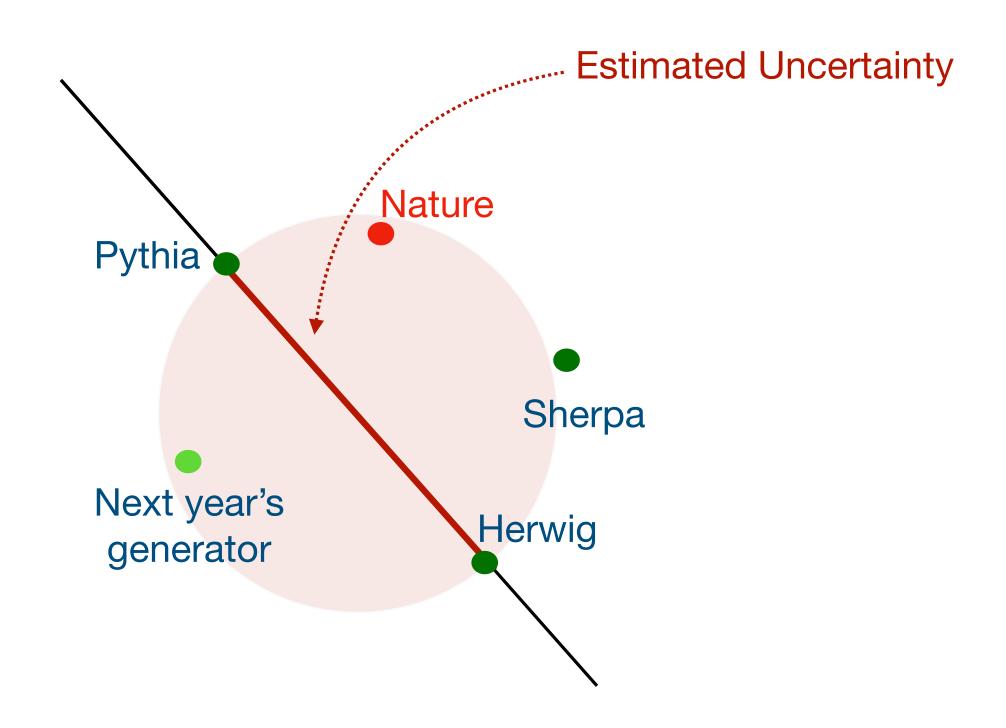
For my handwriting this is '2', for yours it might be 'a' ARM: Adapt to the individual + classify



What are they?

Theory uncertainties often describe our <u>lack of understanding / ability to calculate</u>

No statistical origin for them (such as auxiliary measurement)



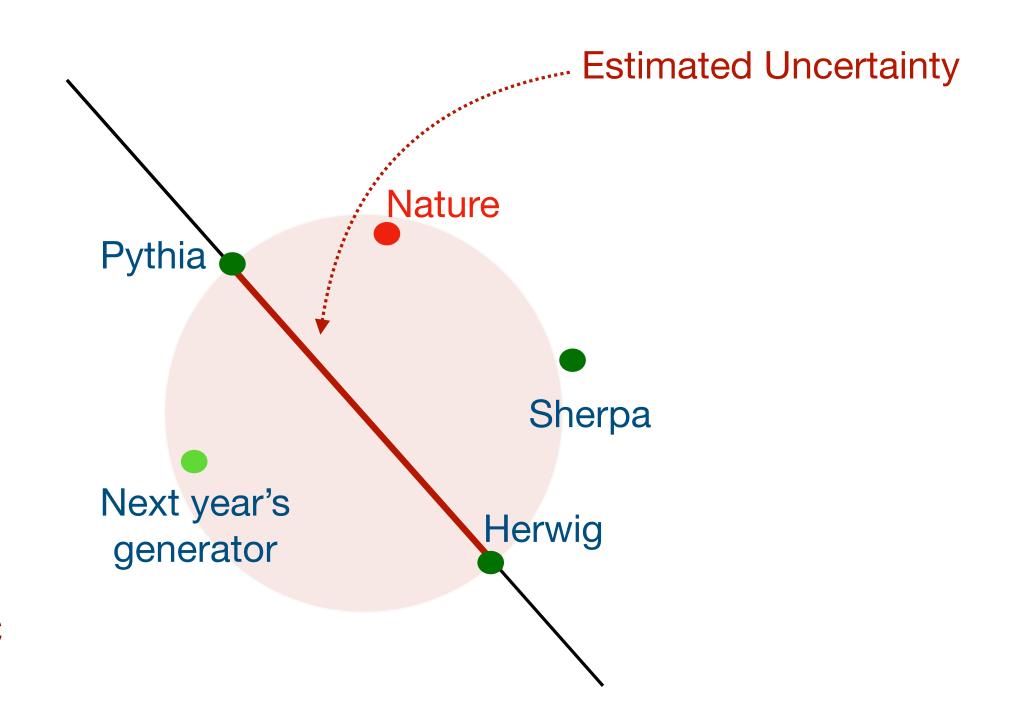
What are they?

Theory uncertainties often describe our <u>lack of understanding /</u> <u>ability to calculate</u>

No statistical origin for them (such as auxiliary measurement)

Eg. <u>Hadronisation</u>:

- Few different packages to simulate it
- None are correct!
- Use difference in performance of your data analysis algorithm on Pythia simulator vs Herwig simulator ad-hoc estimate of uncertainty



Goodhart's Law

When a measure becomes a target, it ceases to be a good measure

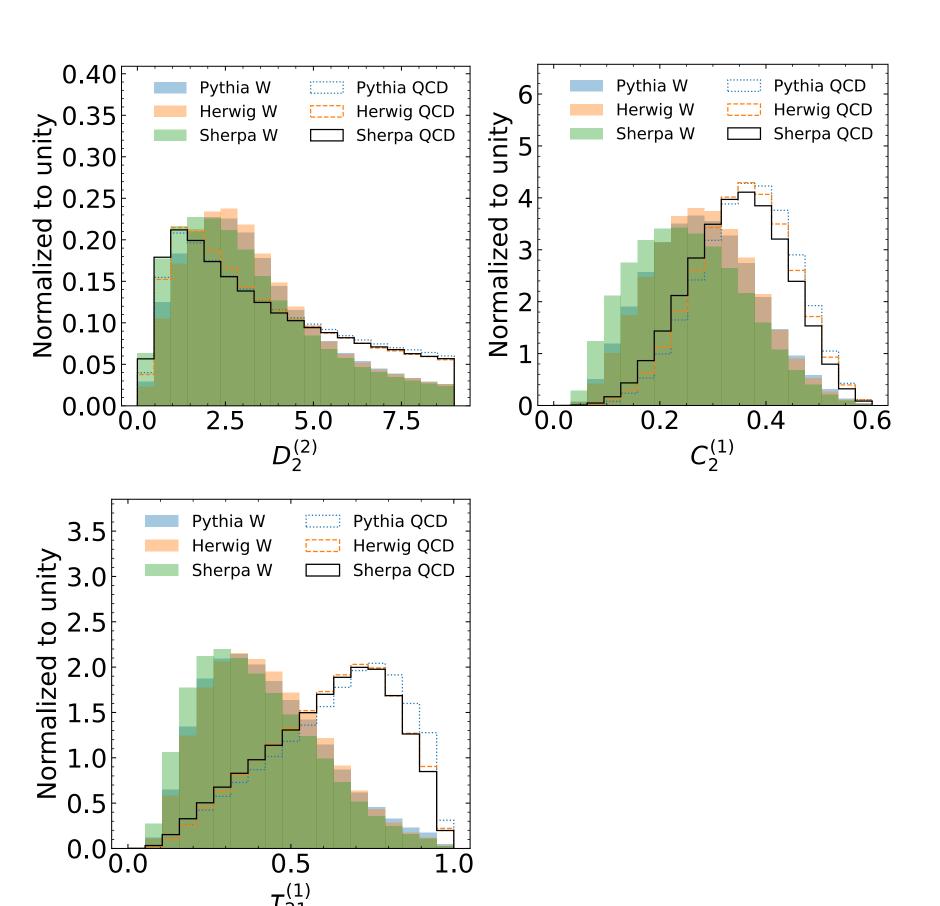
=> Dangerous to optimise proxy metrics of uncertainty

Case Study 1: Two-point uncertainty (fragmentation modelling)

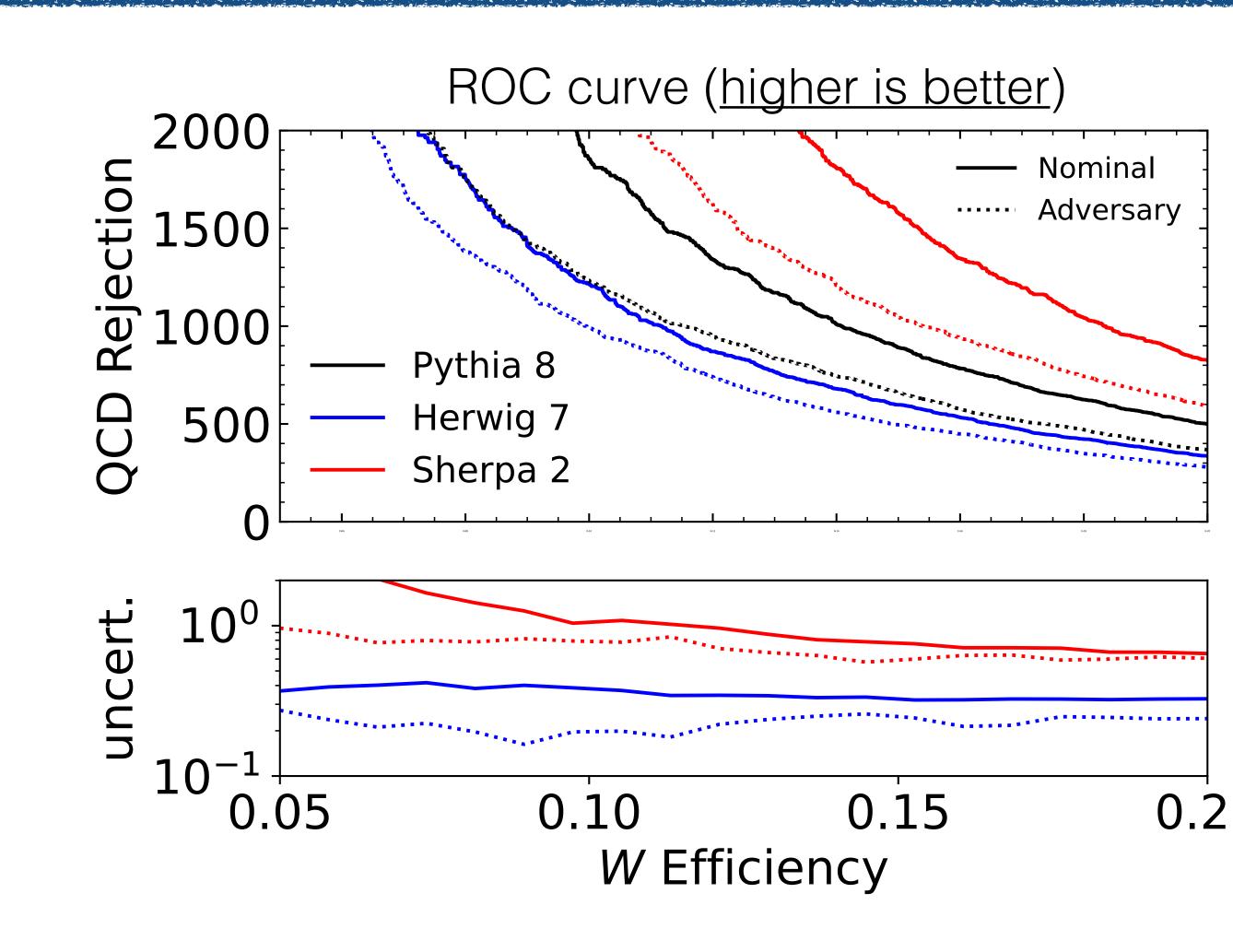
Goal: W jets vs QCD jets

Decorrelation: Reduce difference in performance on Herwig vs Pythia

Cross-check: Test uncertainty estimate from {Herwig vs Pythia} using Sherpa



Case Study 1: Two-point uncertainty - Result

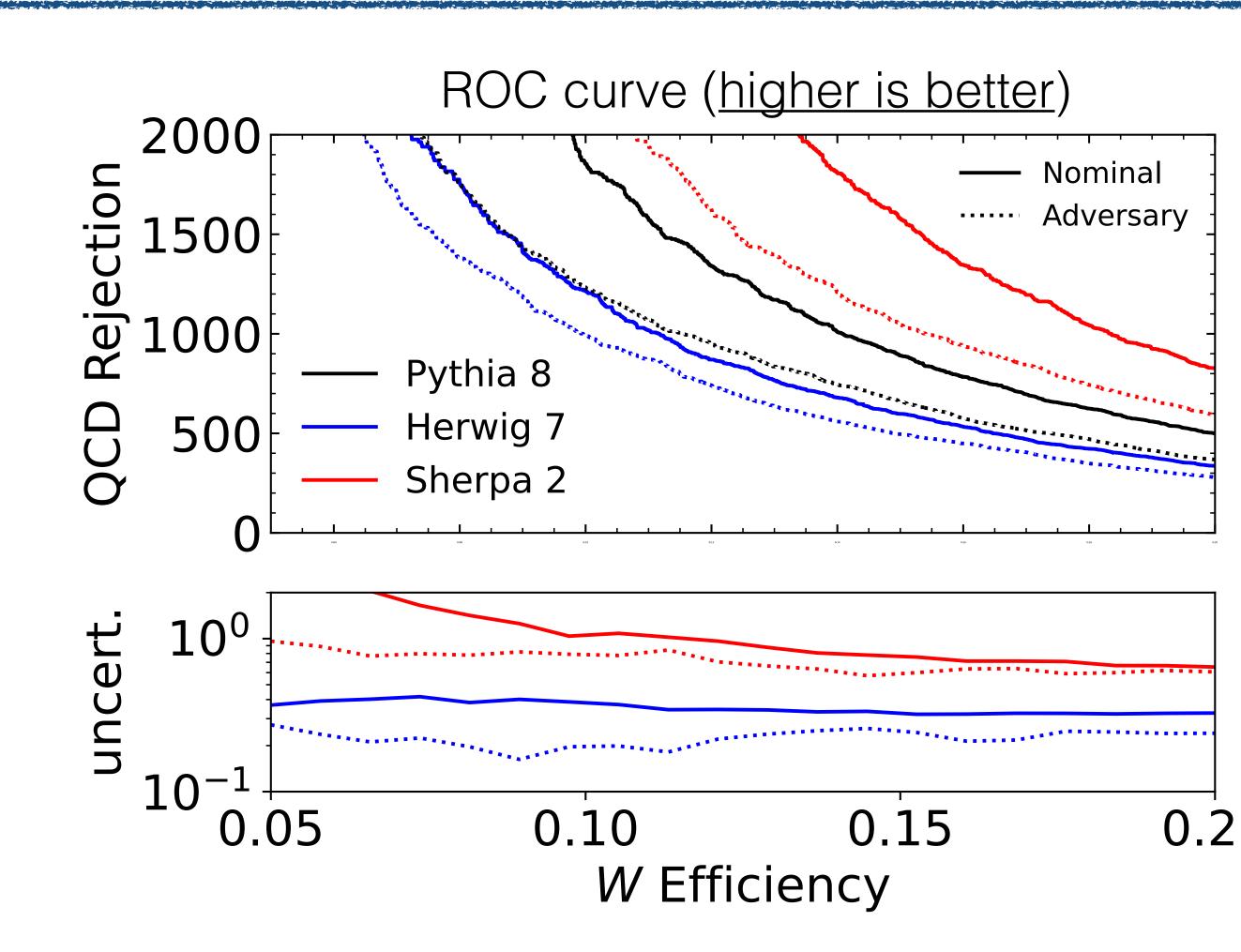


Case Study 1: Two-point uncertainty - Result

Adversary successfully <u>sacrifices separation</u> <u>power</u> in order to reduce difference in performance between <u>Herwig</u> and <u>Pythia</u>

Cross-check with **Sherpa** reveals <u>uncertainty</u> <u>severely underestimated</u> by usual **Herwig** vs **Pythia** comparison

In an typical LHC analysis, a cross-check with third generator rarely performed, similar to prior work suggesting decorrelation for theory uncertainties

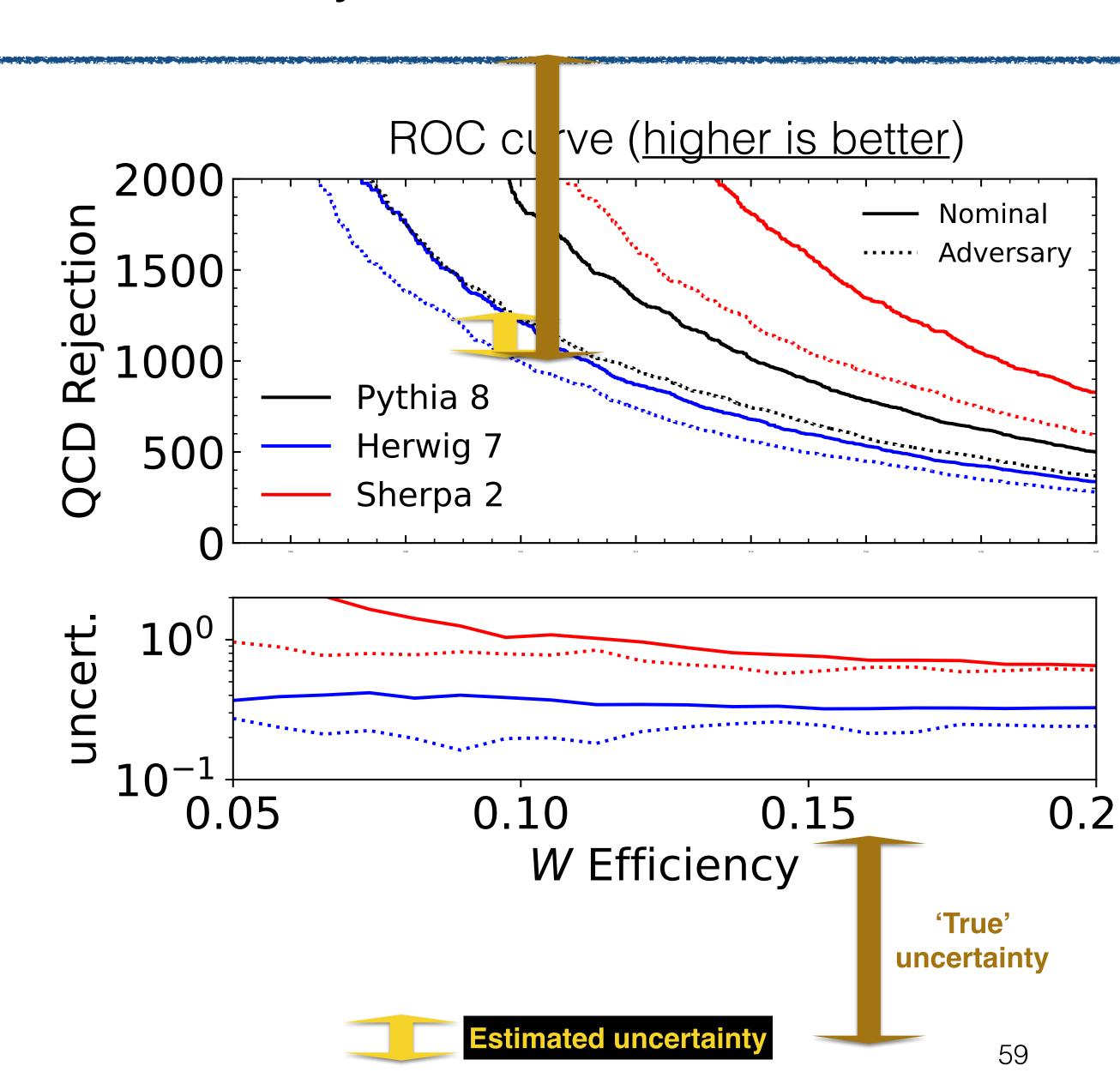


Case Study 1: Two-point uncertainty - Result

Adversary successfully <u>sacrifices separation</u> <u>power</u> in order to reduce difference in performance between <u>Herwig</u> and <u>Pythia</u>

Cross-check with **Sherpa** reveals <u>uncertainty</u> <u>severely underestimated</u> by usual **Herwig** vs **Pythia** comparison

In an typical LHC analysis, a cross-check with third generator rarely performed, similar to prior work suggesting decorrelation for theory uncertainties



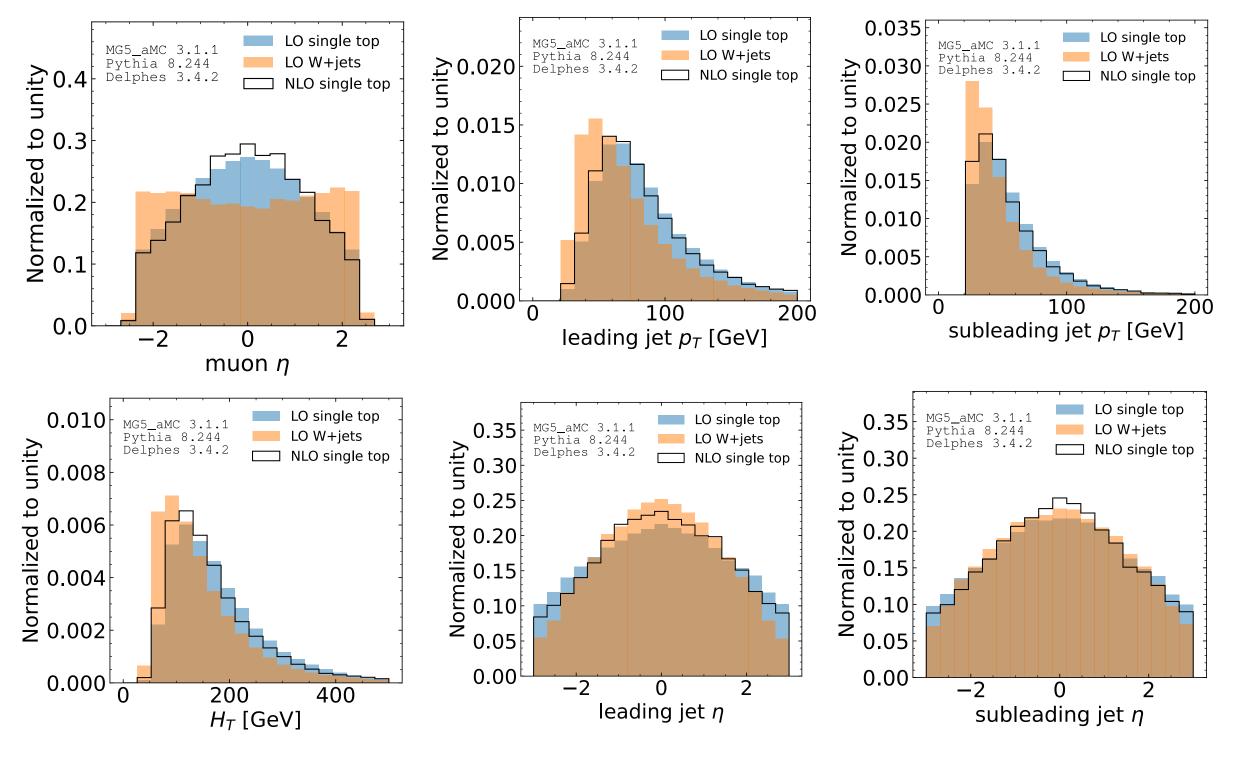
Case Study 2: Higher-order corrections

- We can't calculate QFT to infinite order
- Artefact of truncation of series: Varying certain unphysical scales changes predictions
- Uncertainty quantification: Vary scales (renormalization scale, factorisation scale) between 1/2 to 2 in MC, see change in prediction

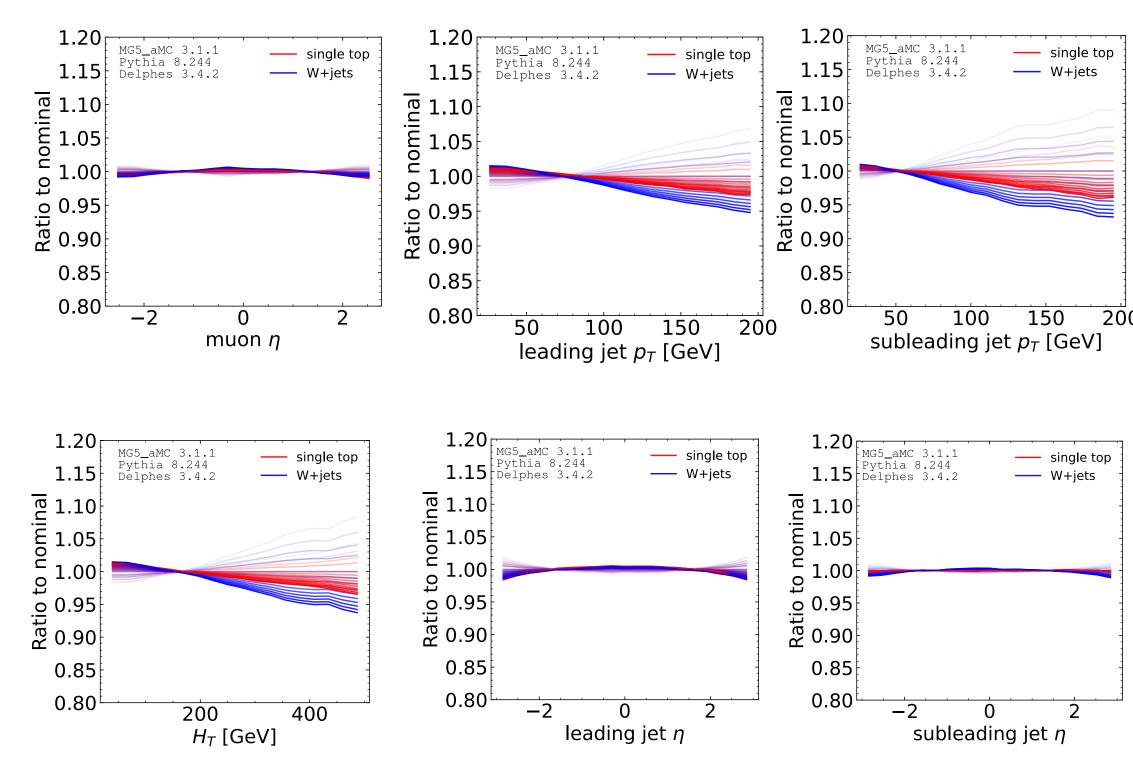
Scale uncertainty – Problem Setup

Goal: Single top vs W+Jets

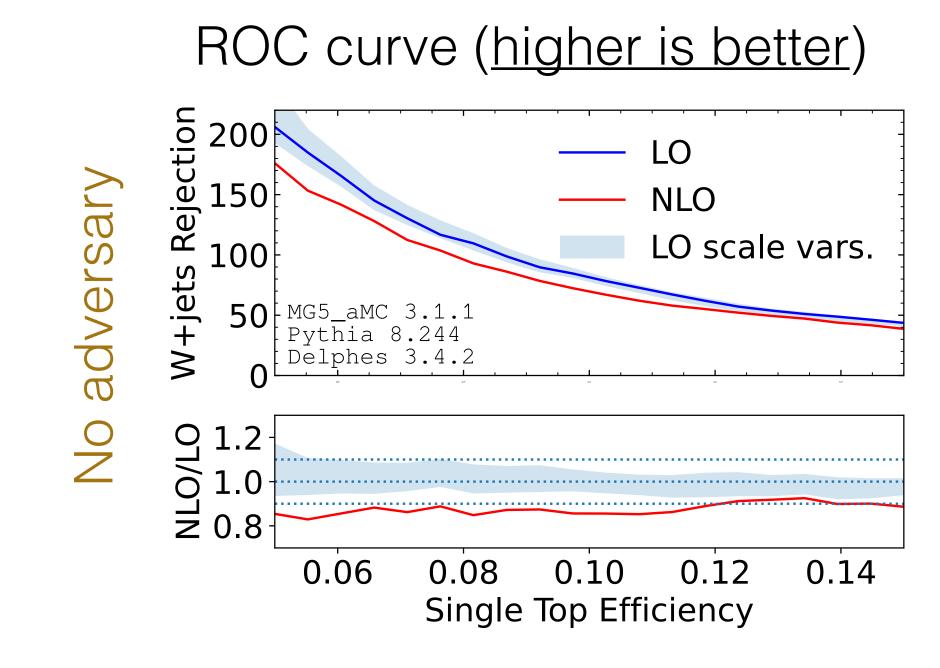
Decorrelation: Reduce difference in performance on scale variations at LO Cross-check: Test uncertainty estimate from {scale variations at LO} using NLO

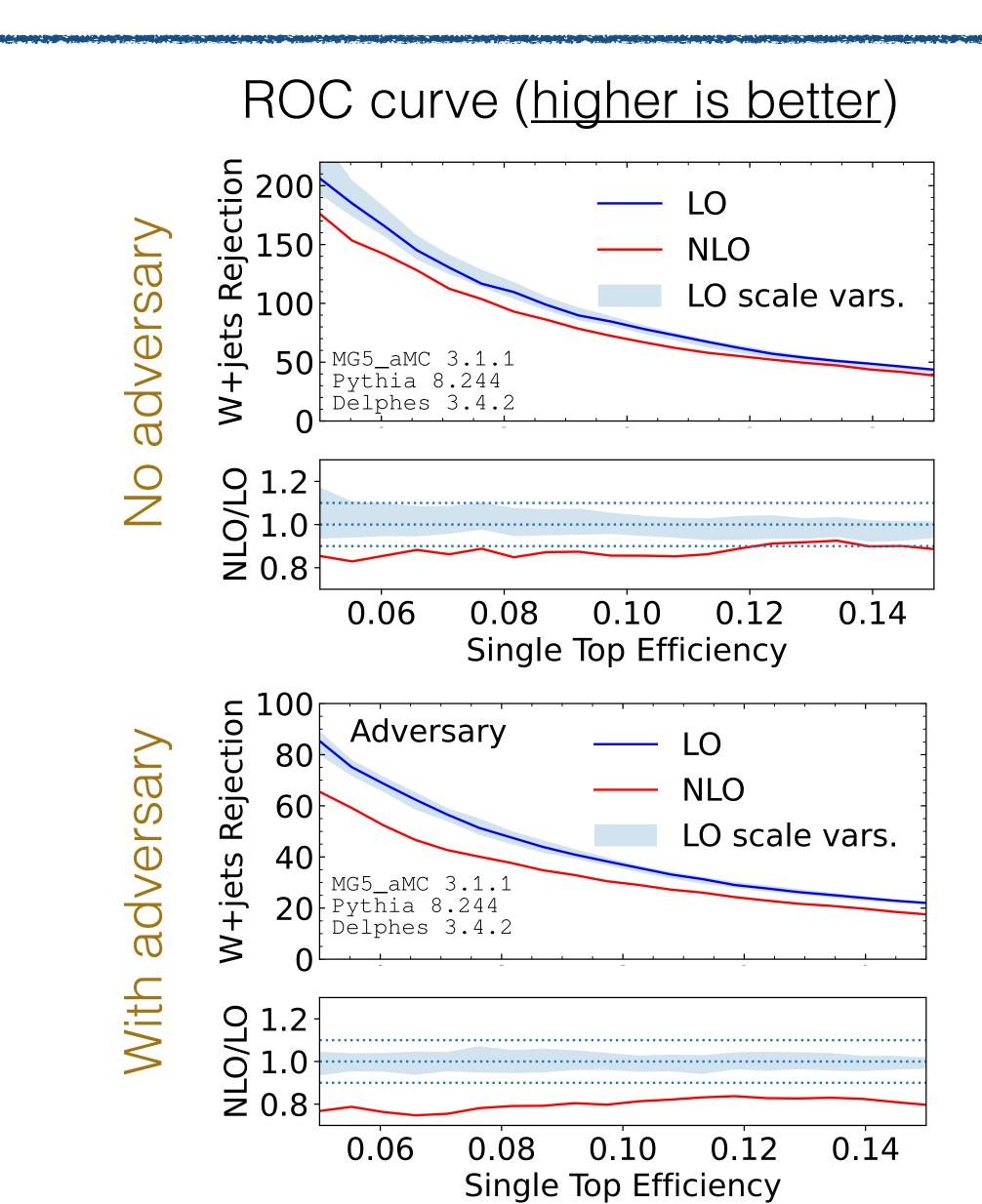


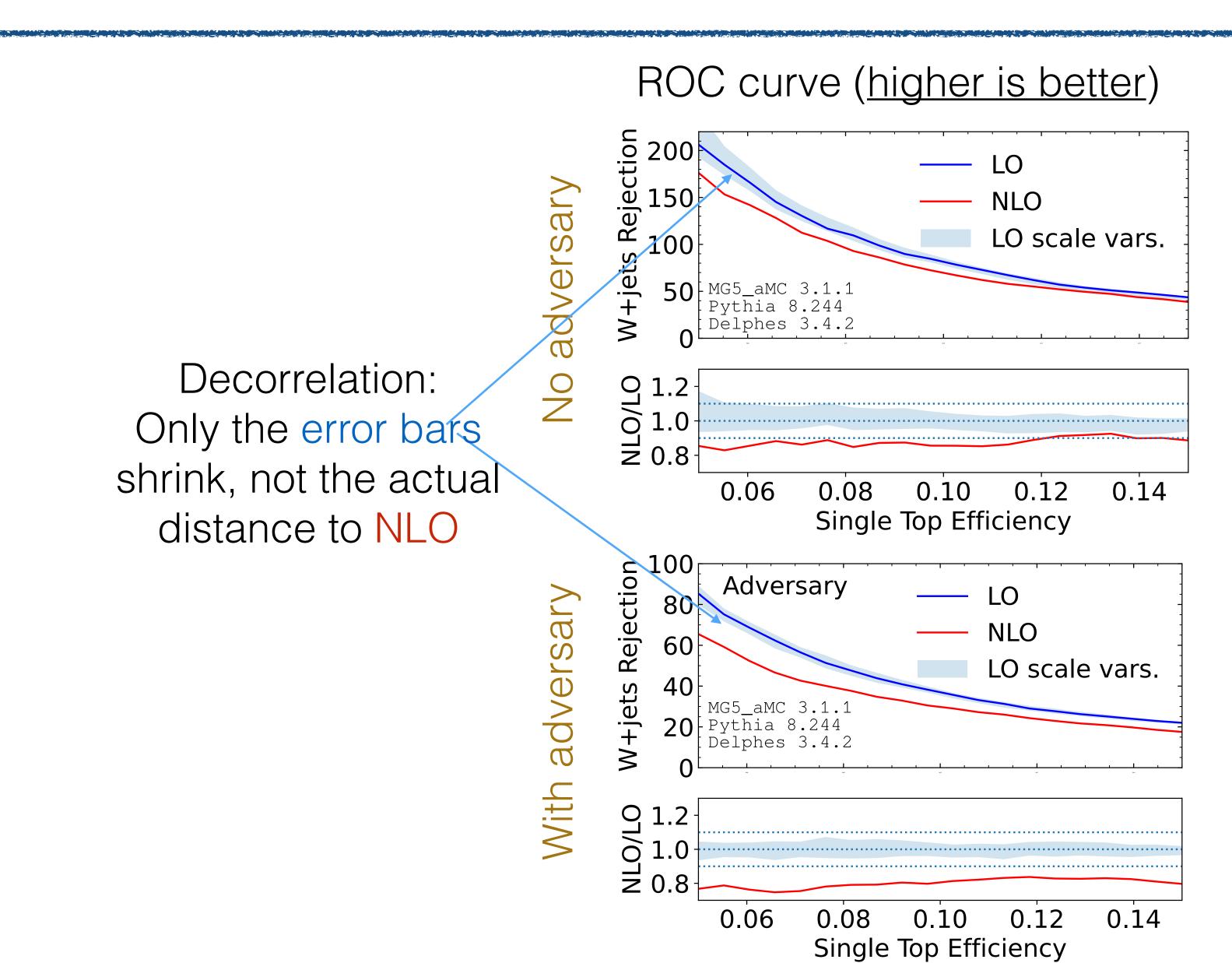
NLO vs LO



Factorisation scale variations going from 1/2 to 2





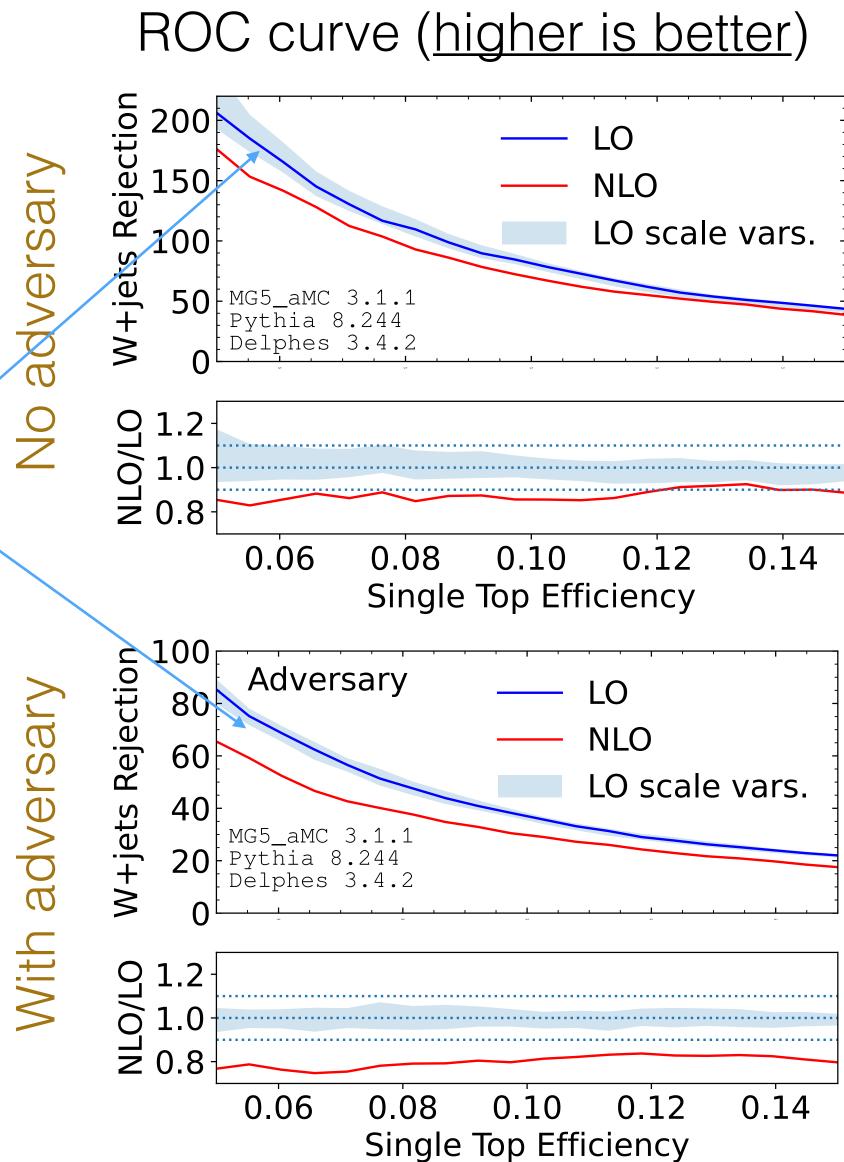


Adversary successfully <u>sacrifices</u>
separation power in order to reduce difference in performance between scale variations

Cross-check with NLO reveals <u>uncertainty</u> <u>severely underestimated</u> by decorrelation approach

In an typical LHC analysis, a cross-check with higher-order usually unavailable

Decorrelation: Only the error bars shrink, not the actual distance to NLO

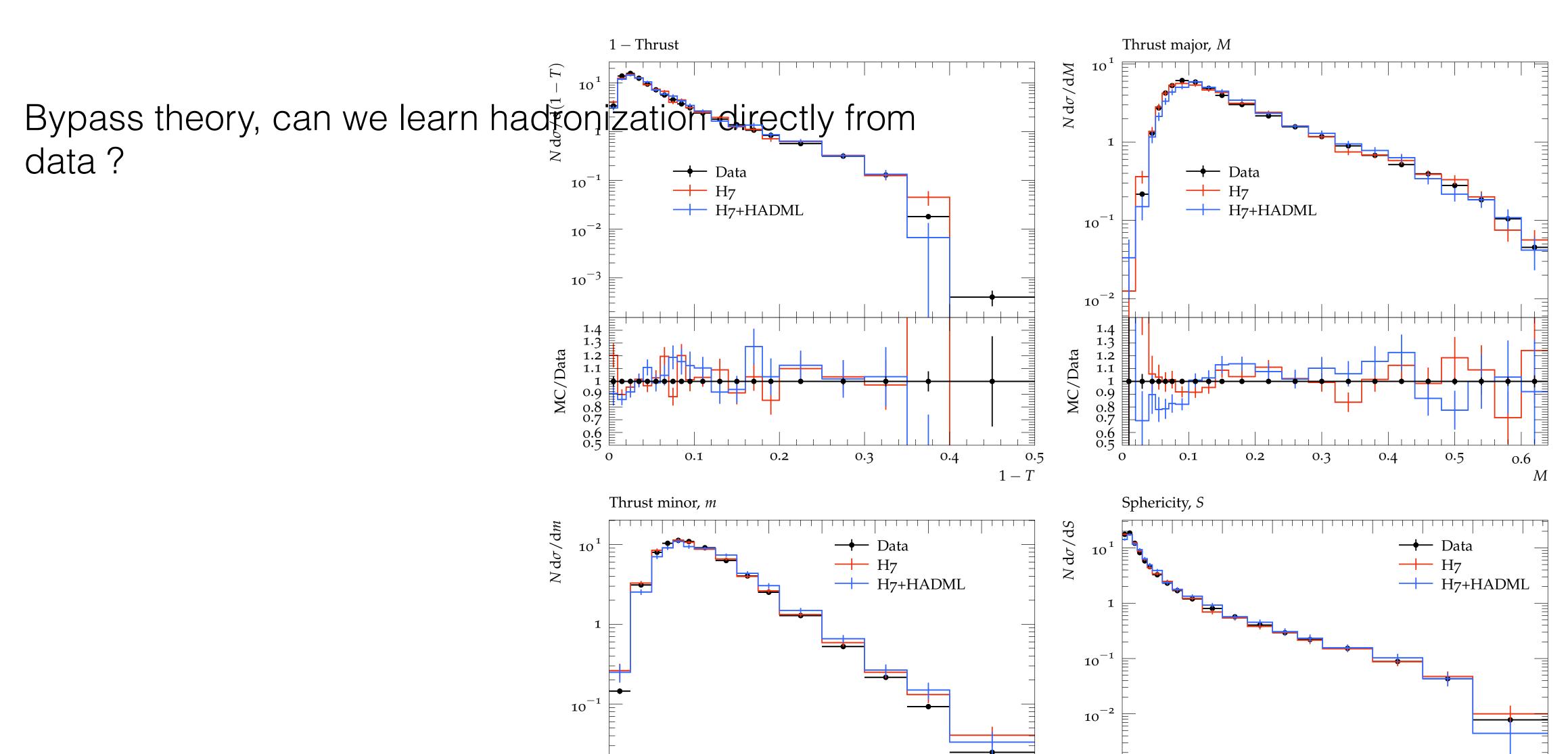


Universe is a perfect simulator

PRD.106.096020: Aishik Ghosh, Xiangyang Ju, Benjamin Nachman, and Andrzej Siodmok

Universe is a perfect simulator

PRD.106.096020: Aishik Ghosh, Xiangyang Ju, Benjamin Nachman, and Andrzej Siodmok

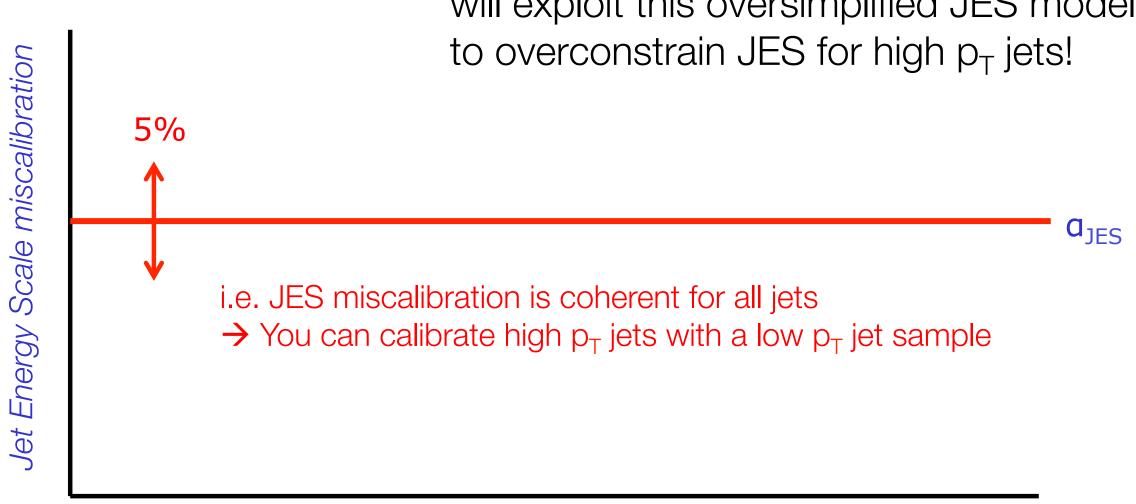


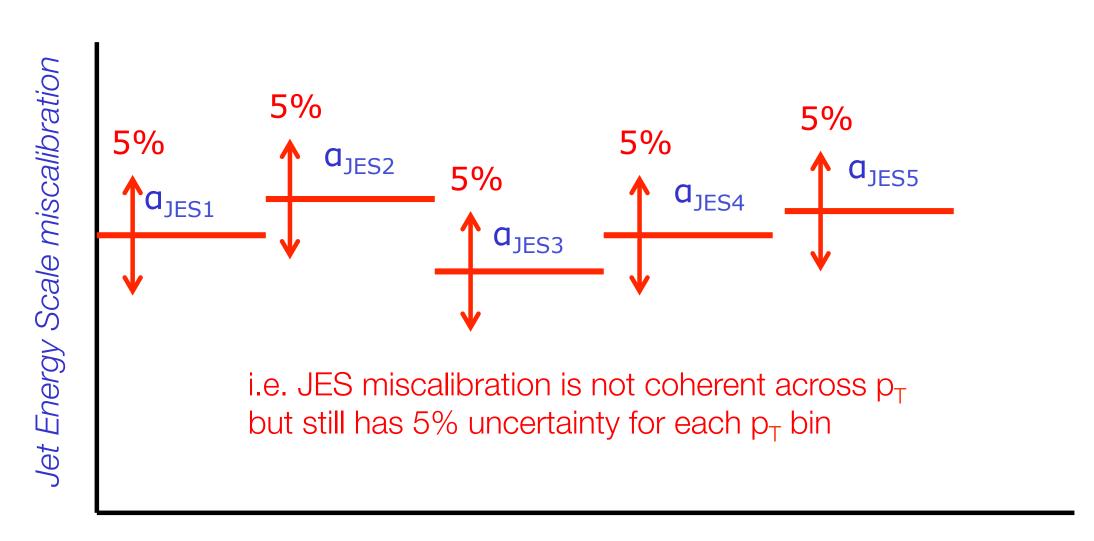
Overconstraining NP

From W. Verkerke:

Our modelling of NPs might be over-simplified

If you assume one NP – chances are that your physics Likelihood will exploit this oversimplified JES model to overconstrain JES for high p_⊤ jets!





Jet p_T