

Anomaly detection for new physics searches

Vinicius M. Mikuni

Introduction

- The **Standard Model** of particle physics is one of the most successful theories of all time
- Several processes with several orders of magnitude are well described by the model
- Is that everything?

Introduction

Model dependent searches:

- Take a well-motivated new physics scenario with well-defined phenomenology
- Maximize the search sensitivity based on the signal properties
- Most sensitive strategy to probe that particular new physics scenario, but unlikely to be useful for other searches

Model independent searches:

- Minimal set of assumptions for signal properties
- Look for deviations of the background only hypothesis
- Not optimal for a particular new physics scenario, but likely to be sensitive to multiple scenarios satisfying the minimal assumptions

Will focus on this one today

What is an anomaly anyway?

 There are also examples of outlier detection in HEP such as detector quality monitoring

- Anomaly detection is often associated to outlier detection
- Our application is a bit different: a single particle collision is not very informative, only an ensemble of events are!

General strategies

https://iml-wq.github.io/HEPML-LivingReview/

Anomaly detection.

- o Learning New Physics from a Machine [DOI]
- Anomaly Detection for Resonant New Physics with Machine Learning [DOI]
- o Extending the search for new resonances with machine learning [DOI]
- Learning Multivariate New Physics [DOI]
- Searching for New Physics with Deep Autoencoders [DOI]
- o QCD or What? [DOI]
- · A robust anomaly finder based on autoencoder
- Variational Autoencoders for New Physics Mining at the Large Hadron Collider [DOI]
- · Adversarially-trained autoencoders for robust unsupervised new physics searches [DOI]
- Novelty Detection Meets Collider Physics [DOI]
- Guiding New Physics Searches with Unsupervised Learning [DOI]
- Does SUSY have friends? A new approach for LHC event analysis [DOI]
- Nonparametric semisupervised classification for signal detection in high energy physics
- Uncovering latent jet substructure [DOI]
- o Simulation Assisted Likelihood-free Anomaly Detection [DOI]
- Anomaly Detection with Density Estimation [DOI]
- o A generic anti-QCD jet tagger [DOI]
- Transferability of Deep Learning Models in Searches for New Physics at Colliders [DOI]
- Use of a Generalized Energy Mover's Distance in the Search for Rare Phenomena at Colliders [DOI]
- o Adversarially Learned Anomaly Detection on CMS Open Data: re-discovering the top quark [DOI]
- o Dijet resonance search with weak supervision using 13 TeV pp collisions in the ATLAS detector [DOI]
- Learning the latent structure of collider events [DOI]
- Finding New Physics without learning about it: Anomaly Detection as a tool for Searches at Colliders [DOI]
- ⋄ Tag N' Train: A Technique to Train Improved Classifiers on Unlabeled Data [DOI]
- Variational Autoencoders for Anomalous Jet Tagging
- Anomaly Awareness
- Unsupervised Outlier Detection in Heavy-Ion Collisions
- Decoding Dark Matter Substructure without Supervision
- Mass Unspecific Supervised Tagging (MUST) for boosted jets [DOI]
- Simulation-Assisted Decorrelation for Resonant Anomaly Detection
- Anomaly Detection With Conditional Variational Autoencoders

- Unsupervised clustering for collider physics
- Combining outlier analysis algorithms to identify new physics at the LHC
- Quasi Anomalous Knowledge: Searching for new physics with embedded knowledge
- Uncovering hidden patterns in collider events with Bayesian probabilistic models
- · Unsupervised in-distribution anomaly detection of new physics through conditional density estimation
- The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics
- o Model-Independent Detection of New Physics Signals Using Interpretable Semi-Supervised Classifier Tests
- Topological Obstructions to Autoencoding
- Unsupervised Event Classification with Graphs on Classical and Photonic Quantum Computers
- Bump Hunting in Latent Space
- o Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection
- Better Latent Spaces for Better Autoencoders
- Autoencoders for unsupervised anomaly detection in high energy physics
- Via Machinae: Searching for Stellar Streams using Unsupervised Machine Learning
- Anomaly detection with Convolutional Graph Neural Networks
- Anomalous Jet Identification via Sequence Modeling
- The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider
- RanBox: Anomaly Detection in the Copula Space
- Rare and Different: Anomaly Scores from a combination of likelihood and out-of-distribution models to detect new physics at the LHC
- LHC physics dataset for unsupervised New Physics detection at 40 MHz
- New Methods and Datasets for Group Anomaly Detection From Fundamental Physics
- Autoencoders on FPGAs for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider
- Classifying Anomalies Through Outer Density Estimation (CATHODE)
- Deep Set Auto Encoders for Anomaly Detection in Particle Physics
- Challenges for Unsupervised Anomaly Detection in Particle Physics
- o Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows
- o Signal-agnostic dark matter searches in direct detection data with machine learning

What is the **best** anomaly detection method?

General strategies

https://iml-wg.github.io/HEPML-LivinaReview/

- · Anomaly detection.
 - Learning New Physics from a Machine [DOI]

 - Extend Learnin
- Searchi
- · QCD or
- · A robus
- Variatio
- Adversa
- Novelty
- Guiding
- o Does St
- Nonpar
- Uncove
- Simulat
- Transfe
- Use of
- Advers
- Dijet n
- Learnii
- Finding Tag N
- Variational Autoencoders for Anomalous Jet Tagging
- Anomaly Awareness
- Unsupervised Outlier Detection in Heavy-Ion Collisions
- Decoding Dark Matter Substructure without Supervision
- Mass Unspecific Supervised Tagging (MUST) for boosted jets [DOI]
- Simulation-Assisted Decorrelation for Resonant Anomaly Detection
- Anomaly Detection With Conditional Variational Autoencoders

- · Unsupervised clustering for collider physics
- Combining outlier analysis algorithms to identify new physics at the LHC
- Quasi Anomalous Knowledge: Searching for new physics with embedded knowledge

best ection

No clear winner! Different methods use different assumptions and are often complementary!

- Challenges for Unsupervised Anomaly Detection in Particle Physics
- o Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows
- Signal-agnostic dark matter searches in direct detection data with machine learning

Popular strategies

Signal is an over density for some feature:

- Even though new physics is rare, assume there is at least one feature where p_s(x)/p_b(x) is high: often assumed to be some invariant mass combination
- Requires an estimate of p_b(x) and prior knowledge of the resonant feature to use

Signal is located where the background density is low

- Assume that "tails" of distributions are informative
- Can be trained using data directly, as long as possible signal contamination is low
- Low p_b(x) is not universal and the choice of x determines the quality of the algorithm

Resonant anomaly detection

Signal is an over density for some feature:

- Even though new physics is rare, assume there is at least one feature where p_s(x)/p_b(x) is high: often assumed to be some invariant mass combination
- Requires a control region with only p_b(x) and prior knowledge of the resonant feature to use

Resources for resonant anomaly detection:

- PRL 121 (2018) 241803, 1805.02664
- PRL 125 (2020) 131801, 2005.02983
- PRD 101 (2020) 095004
- Hallin et al., 2109.00546
- PRD 101 (2020) 9, 095004
- PRD 101 (2020) 075042
- Raine et al., 2203.09470
- Golling, Tobias, et al., 2212.11285

- Similar to standard bump hunt
- Use the side-bands to learn the background distribution in the signal region: either through morphing or likelihood learning
- Compare predicted background events with data in the signal region: often a classifier is trained to separate data from predicted background

Resonant anomaly detection

Signal is an over density for some feature:

- Even though new physics is rare, assume there is at least one feature where p_s(x)/p_b(x) is high: often assumed to be some invariant mass combination
- Requires a control region with only p_b(x) and prior knowledge of the resonant feature to use

Similar performance between different strategies, almost as good as a fully supervised classifier

Non-resonant anomaly detection

Signal is located where the background density is low

- Assume that "tails" of distributions are informative
- Can be trained using data directly, as long as possible signal contamination is low
- Low p_b(x) is not universal and the choice of x determines the quality of the algorithm

- Majority of popular strategies use autoencoders
- Train the model with background-enriched data
- Encode the inputs to a low dimensional representation and try to decode it back to the input set
- Anomalous events are often poorly reconstructed, since there are not many examples seeing during training
- NFs and GANs have also been used in a similar context

- Resources for non-resonant anomaly detection:
 - Farina, Marco, Yuichiro Nakai, and David Shih., Physical Review D 101.7 (2020): 075021.
 - Finke, Thorben, et al. Journal of High Energy Physics 2021.6 (2021): 1-32.
 - Dillon, Barry M., et al. SciPost Physics 11.3 (2021): 061.
 - Mikuni, Vinicius, and Florencia Canelli. Physical Review D 103.9 (2021): 092007.
 - Pol, Adrian Alan, et al. 2019 18th IEEE ICMLA. IEEE, 2019.
 - Cheng, Taoli, et al. Physical Review D 107.1 (2023): 016002.
 - Blance, Andrew, Michael Spannowsky, and Philip Waite. JHEP 2019.10 (2019).
 - Cerri, Olmo, et al. Journal of High Energy Physics 2019.5 (2019): 1-29.
 - Roy, Tuhin S., and Aravind H. Vijay. 1903.02032 (2019).
 - Ostdiek, Bryan. SciPost Physics 12.1 (2022): 045.

Signal is located where the background density is low

- Assume that "tails" of distributions are informative
- Can be trained using data directly, as long as possible signal contamination is low
- Low p_b(x) is not universal and the choice of x determines the quality of the algorithm

Mikuni, Vinicius, Benjamin Nachman, and David Shih. *Physical Review D* 105.5 (2022): 055006.

- One of the difficulties of using autoencoders is to determine the background distribution in the region containing possible anomalies
- Multiple decorrelated autoencoders can be used, with background distribution determined by the ABCD method

Non-resonant anomaly detection

Nersc

Signal is located where the background density is low

- Assume that "tails" of distributions are informative
- Can be trained using data directly, as long as possible signal contamination is low
- Low p_b(x) is not universal and the choice of x determines the quality of the algorithm

Kasieczka, G., Mastandrea, R., **Mikuni, V.**, Nachman, B., Pettee, M., & Shih, D. (2023). *Physical Review D*, 107(1), 015009.

- Choice of representation of inputs also affects the performance!
 - Differences in performance for autoencoders when using $\mathbf{m_1}$, $\mathbf{m_2}$ as inputs or $\mathbf{log(m_1)}$, $\mathbf{log(m_2)}$

m,

Anomaly detection at trigger level

- There has also been a number of exciting efforts to do anomaly detection at trigger level
- Microsecond inference time needed to achieve this goal at the LHC
- Number of works showing the feasibility of the idea with even a <u>data challenge</u> to compare methods
- See More at Javier's talk!

Govorkova, Ekaterina, et al. *Scientific Data* 9.1 (2022): 118. Govorkova, Ekaterina, et al. *Nature Machine Intelligence* 4.2 (2022): 154-161.

Mikuni, Vinicius, Benjamin Nachman, and David Shih. *Physical Review D* 105.5 (2022): 055006.
Dillon, Barry M., et al. 2206.14225 (2022).

Data challenges

 A number of data challenges were proposed to raise awareness of this new and complementary way of searching for new physics

The LHC Olympics 2020

A Community Challenge for Anomaly Detection in High Energy Physics

physics 84.12 (2021): 124201.

The Dark Machines Anomaly Score Challenge

https://github.com/bostdiek/DarkMachines-UnsupervisedChallenge

Slides at ML4Jets 2021

Aarrestad, Thea, et al. SciPost Physics 12.1 (2022): 043.

15

Conclusion

- Anomaly detection is and alternative and complementary way to search for new physics processes
- Different anomaly detection methods still rely on a few assumptions and is important to be aware of their limitations
- Nevertheless, collider results using some of these methods are already out!

THANKS!

Any questions?

Popular strategies

Train the GAN to learn the background distribution

 Compare samples from GAN with the data in a region of interest!

Train the NF to learn $p_h(x)$:

- Find regions with low $p_b(x)$
- Sample from the flow and compare with data
- Interpolate multiple background regions

Hallin et al., 2109.00546 PRD 101 (2020) 9, 095004 PRD 101 (2020) 075042 Raine et al., 2203.09470