BERKELEY LAB

Anomaly detection for new
physics searches

Vinicius M. Mikuni
. 4



Introduction

May 2021 CMS Preliminary

a E G 7 TeV CMS measurement (L<5.0 fo™) ]
o 1 04 E ow @ 8 TeV CMS measurement (L< 19.6 fb™) =
— F =® @ 13 TeV CMS measurement (L < 137 fb™) E
© N — Theory prediction ]
sl |« . _:
c10°F . B :
i) i v . §
© 102 & " e . E
() - L] L] a =
n B 8 b 1 & .
p 10¢ 9 i F - ;!!F E
9 ; ﬁg g In e iy ;
O 1 E § i {,2 y E
e = 3
2 T % I ol 1
"_'1 — ! & g = =
3 0 F s . ) -2 :
o g m Ll ] ]
D9_1 02g F ;T HRRR:
- T T ]
o i ! bipiME
1077 ¢ g Qﬁ_
107 3 ? E

‘ w Ia1i|221 |231I24i lzsjlzei \27j| 1c I 2b| z Izﬂlzzilzaj |241|sz Izejlz'/jl 1c Iz1b|zzbl\2'}”| 2’ Igjzlﬂjl:ailz:sjlfélﬂjI:zilzsil t \ 1j I Pl I 3 l 4 lzc I 2b|;‘0]‘=|jl=2jl=31L>=41‘

All results at: http:/cern.ch/go/pNj7 Fiducial W and Z os with W—lv, Z—ll and kinematic selection

The Standard Model of
particle physics is one of
the most successful
theories of all time

Several processes with
several orders of magnitude
are well described by the
model

Is that everything?





https://www.symmetrymagazine.org/article/december-2013/four-things-you-might-not-know-about-dark-matter

Introduction

mdel dependent searches: \

e Take a well-motivated
new physics scenario with
well-defined
phenomenology

e Maximize the search
sensitivity based on the
signal properties

e Most sensitive strategy to
probe that particular new
physics scenario, but

unlikely to be useful for
\ other searches J

Minimal set of
assumptions for signal
properties

Look for deviations of the
background only
hypothesis

Not optimal for a
particular new physics
scenario, but likely to be
sensitive to multiple
scenarios satisfying the
minimal assumptions

Will focus on this one
today



What is an anomaly anyway?

Anomaly detection is often associated to outlier detection
Our application is a bit different: a single particle collision is not
very informative, only an ensemble of events are!
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There are also examples of
outlier detection in HEP such as
detector quality monitoring
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« Anomaly detection.

o Learning New Physics from a Machine [DOI]

o Anomaly Detection for Resonant New Physics with Machine Learning [DOI]

o Extending the search for new resonances with machine learning [DOI]

o Learning Multivariate New Physics [DOI]

o Searching for New Physics with Deep Autoencoders [DOI]

o QCD or What? [DOI]

o A robust anomaly finder based on autoencoder

o Variational Autoencoders for New Physics Mining at the Large Hadron Collider [DOI]

o Adversarially-trained autoencoders for robust unsupervised new physics searches [DOI]
o Novelty Detection Meets Collider Physics [DOI]

o Guiding New Physics Searches with Unsupervised Learning [DOI]

o Does SUSY have friends? A new approach for LHC event analysis [DOI]

o Nonparametric semisupervised classification for signal detection in high energy physics
o Uncovering latent jet substructure [DOI]

o Simulation Assisted Likelihood-free Anomaly Detection [DOI]

o Anomaly Detection with Density Estimation [DOI]

o A generic anti-QCD jet tagger [DOI]

o Transferability of Deep Learning Models in Searches for New Physics at Colliders [DOI]

o Use of a Generalized Energy Mover's Distance in the Search for Rare Phenomena at Colliders [DOI]
o Adversarially Learned Anomaly Detection on CMS Open Data: re-discovering the top quark [DOI]

o Dijet resonance search with weak supervision using 13 TeV pp collisions in the ATLAS detector [DOI]
o Learning the latent structure of collider events [DOI]

o Finding New Physics without learning about it: Anomaly Detection as a tool for Searches at Colliders [DOI]
o Tag N’ Train: A Technique to Train Improved Classifiers on Unlabeled Data [DOI]

o Variational Autoencoders for Anomalous Jet Tagging

o Anomaly Awareness

o Unsupervised Outlier Detection in Heavy-lon Collisions

o Decoding Dark Matter Substructure without Supervision

o Mass Unspecific Supervised Tagging (MUST) for boosted jets [DOI]

o Simulation-Assisted Decorrelation for Resonant Anomaly Detection

o Anomaly Detection With Conditional Variational Autoencoders

https://iml-wq.github.io/HEPML-LivingReview/

o Unsupervised clustering for collider physics
o Combining outlier analysis algorithms to identify new physics at the LHC
o Quasi Anomalous Knowledge: Searching for new physics with embedded knowledge

o Uncovering hidden patterns in collider events with Bayesian probabilistic models Wh at | S the best

o Unsupervised in-distribution anomaly detection of new physics through conditional density estimation

o The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics a n O m a |y d et e Ct i O n

o Model-Independent Detection of New Physics Signals Using Interpretable Semi-Supervised Classifier Tests

o Topological Obstructions to Autoencoding m e-t h O d ?
o Unsupervised Event Classification with Graphs on Classical and Photonic Quantum Computers N
o Bump Hunting in Latent Space

o Comparing Weak- and Unsupervised Methods for Resonant Anomaly Detection

o Better Latent Spaces for Better Autoencoders

o Autoencoders for unsupervised anomaly detection in high energy physics

o Via Machinae: Searching for Stellar Streams using Unsupervised Machine Learning

o Anomaly detection with Convolutional Graph Neural Networks

o Anomalous Jet Identification via Sequence Modeling

o The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large
Hadron Collider

o RanBox: Anomaly Detection in the Copula Space

o Rare and Different: Anomaly Scores from a combination of likelihood and out-of-distribution models to detect new
physics at the LHC

o LHC physics dataset for unsupervised New Physics detection at 40 MHz
o New Methods and Datasets for Group Anomaly Detection From Fundamental Physics

o Autoencoders on FPGAs for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider
o Classifying Anomalies THrough Outer Density Estimation (CATHODE)

o Deep Set Auto Encoders for Anomaly Detection in Particle Physics

o Challenges for Unsupervised Anomaly Detection in Particle Physics

o Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows

o Signal-agnostic dark matter searches in direct detection data with machine learning



https://iml-wg.github.io/HEPML-LivingReview/

https://iml-wq.github.io/HEPML-LivingReview/

« Anomaly detection. o Unsupervised clustering for collider physics
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Learning New Physics from a Machine [DOI] o Combining outlier analysis algorithms to identify new physics at the LHC
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Variational Autoencoders for Anomalous Jet Tagging

Anomaly Awareness

o Challenges for Unsupervised Anomaly Detection in Particle Physics

o Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows
Unsupervised Outlier Detection in Heavy-lon Collisions o Signal-agnostic dark matter searches in direct detection data with machine learning
Decoding Dark Matter Substructure without Supervision

Mass Unspecific Supervised Tagging (MUST) for boosted jets [DOI]

Simulation-Assisted Decorrelation for Resonant Anomaly Detection

Anomaly Detection With Conditional Variational Autoencoders



https://iml-wg.github.io/HEPML-LivingReview/

Popular strategies

e

nal is an over density for
some feature:

Even though new physics
is rare, assume there is at
least one feature where
p,(x)/p, (x) is high: often
assumed to be some
invariant mass
combination

Requires an estimate of
p,(x) and prior knowledge

of the resonant feature to
use J

~

Assume that “tails” of
distributions are
informative

Can be trained using data
directly, as long as
possible signal
contamination is low

Low p, (x) is not universal
and the choice of x
determines the quality of
the algorithm



Resonant anomaly detection

n A
& e Similar to standard bump hunt
@nal is an over density for \ % e Use the side-bands to learn the
some feature: = background distribution in the
e Even though new physics O signal region: either through
is rare, assume there is at background morphing or likelihood learning
least one feature where signal / e Compare predicted background
p.(x)/p, (x) is high: often events with data in the signal
aésuméd to be some \ region: often a classifier is trained
invariant mass ;, to separate data from predicted
combination Mree background
e Requires a control region n
. . Resources for resonant anomaly detection:
with only p,(x) and prior o  PRL121(2018) 241803, 1805.02664
PRL 125 (2020) 131801, 2005.02983
PRD 101 (2020) 095004

Hallin et al., 2109.00546

PRD 101 (2020) 9, 095004

PRD 101 (2020) 075042

Raine et al., 2203.09470

Golling, Tobias, et al., 2212.11285 N 4

knowledge of the resonant
K feature to use /




Resonant anomaly detection

Kignal is an over density for \

some feature:

e Even though new physics
is rare, assume there is at
least one feature where
p,(x)/p, (x) is high: often
assumed to be some
invariant mass
combination

e Requires a control region
with only p,(x) and prior

knowledge of the resonant

K feature to use
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Similar performance
between different
strategies, almost
as good as a fully
supervised
classifier

.



Non-resonant anomaly detection

Encadse Space e Majority of popular strategies use
autoencoders

e Train the model with
background-enriched data

e Encode the inputs to a low dimensional
representation and try to decode it
back to the input set

e Anomalous events are often poorly
reconstructed, since there are not

possible signal y many examples seeing during training

Contamlnatlon IS |OW Input Data Encoded Data Reconstructed Data ° NFs and GANS have also been used In

o Low pb(X) is not universal Resources for non-resonant anomaly detection: a similar context
and the ChOiCE Of X ° Farina, Marco, Yuichiro Nakai, and David Shih., Physical Review D 101.7 (2020): 075021.

Finke, Thorben, et al. Journal of High Energy Physics 2021.6 (2021): 1-32.
determines the quallty Of Dillon, Barry M., et al. SciPost Physics 11.3 (2021): 061.
the algorithm

e Assume that “tails” of
distributions are
informative

e (Can be trained using data
directly, as long as

Mikuni, Vinicius, and Florencia Canelli. Physical Review D 103.9 (2021): 092007.

Pol, Adrian Alan, et al. 2019 18th IEEE ICMLA. IEEE, 2019.

Cheng, Taoli, et al. Physical Review D 107.1 (2023): 016002.

Blance, Andrew, Michael Spannowsky, and Philip Waite. JHEP 2019.10 (2019).

Cerri, Olmo, et al. Journal of High Energy Physics 2019.5 (2019): 1-29.

Roy, Tuhin S., and Aravind H. Vijay. 1903.02032 (2019).

Ostdiek, Bryan. SciPost Physics 12.1 (2022): 045. . 4



Non-resonant anomaly detection

e Assume that “tails” of
distributions are
informative

e (Can be trained using data
directly, as long as
possible signal
contamination is low

e Low p,(x) is not universal
and the choice of x
determines the quality of
the algorithm

o

N

Significance
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Mikuni, Vinicius, Benjamin Nachman, and David Shih.
Physical Review D 105.5 (2022): 055006.

One of the difficulties of
using autoencoders is to
determine the background
distribution in the region
containing possible
anomalies

Multiple decorrelated
autoencoders can be used,
with background distribution
determined by the ABCD
method



Non-resonant anomaly detection

e Assume that “tails” of
distributions are
informative

e (Can be trained using data
directly, as long as
possible signal
contamination is low

e Low p,(x) is not universal
and the choice of x
determines the quality of
the algorithm
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M., & Shih, D. (2023). Physical Review D, 107(1), 015009.

Choice of representation of
inputs also affects the
performance!

Differences in performance
for autoencoders when using
m., m, as inputs or log(m., ),
log(m,)




%} Anomaly detection at trigger level

5 _= Welcome to the

Anomaly"Detection
DataChallenge 2021!

There has also been a number of exciting efforts to do
anomaly detection at trigger level

Microsecond inference time needed to achieve this goal at the
LHC

Number of works showing the feasibility of the idea with even
a data challenge to compare methods

See More at Javier's talk!

Govorkova, Ekaterina, et al. Scientific Data 9.1 (2022): 118.
Govorkova, Ekaterina, et al. Nature Machine Intelligence 4.2 (2022):
154-161.

Mikuni, Vinicius, Benjamin Nachman, and David Shih. Physical
Review D 105.5 (2022): 055006.

Dillon, Barry M., et al. 2206.74225 (2022). -


https://mpp-hep.github.io/ADC2021/

}f} Data challenges

A number of data challenges were proposed to raise awareness of this new and complementary way of
searching for new physics

The LHC Olympics 2020 The Dark Machines
A Community Challenge for Anomaly Anomaly SCCI)Ire Cha”enge

Detection in High Energy Physics

Based on arXiv: 2105.14027
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https://indico.cern.ch/event/980214/contributions/4423096/

M NEF

o(pp —A—BC) [fb]

95% CL Exclusion Limit

Anomaly detection is and alternative and complementary way to search for new physics processes
Different anomaly detection methods still rely on a few assumptions and is important to be aware of

their limitations

Nevertheless, collider results using some of these methods are already out!
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7
THANKS!

Any questions?




Popular strategies

Flows

Optimize via

maximum likelihood
\ﬁ "

ay (MeV)

]
3
3

noise ':-' E E :
{real,fake} m ' '
Iatent Invertible transformations RS- I'h
When D is maximally Space with tractable Jacobians
confused, G will be P
a good generator w_ Physics-based p(2) p(x) = p(z) |[dF-1/dx| p(x)
— simulator or data
_ " Train the NF to learn p, (x):
T.raln. thg GAN to learn the background e  Find regions with low p,(x)
distribution °

_ Sample from the flow and compare with data
e  Compare samples from GAN with e Interpolate multiple background regions
the data in a region of interest!

Hallin et al., 2109.00546
PRD 101 (2020) 9, 095004
PRD 101 (2020) 075042
Raine et al., 2203.09470

Eur.Phys.J.Plus 136 (2021)



