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▰ The Standard Model of 
particle physics is one of 
the most successful 
theories of all time

▰ Several processes with 
several orders of magnitude 
are well described by the 
model

▰ Is that everything?
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https://www.symmetrymagazine.org/article/december-2013/four-things-you-might-not-know-about-dark-matter

https://www.symmetrymagazine.org/article/december-2013/four-things-you-might-not-know-about-dark-matter
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Will focus on this one 
todayModel dependent searches:

● Take a well-motivated 
new physics scenario with 
well-defined 
phenomenology

● Maximize the search 
sensitivity based on the 
signal properties

● Most sensitive strategy to 
probe that particular new 
physics scenario, but 
unlikely to be useful for 
other searches

Model independent searches:
● Minimal set of 

assumptions for signal 
properties

● Look for deviations of the 
background only 
hypothesis

● Not optimal for a 
particular new physics 
scenario, but likely to be 
sensitive to multiple 
scenarios satisfying the 
minimal assumptions



What is an anomaly anyway?
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▰ Anomaly detection is often associated to outlier detection
▰ Our application is a bit different: a single particle collision is not 

very informative, only an ensemble of events are!

▰ There are also examples of 
outlier detection in HEP such as 
detector quality monitoring
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https://iml-wg.github.io/HEPML-LivingReview/

▰ What is the best 
anomaly detection 
method?

https://iml-wg.github.io/HEPML-LivingReview/
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https://iml-wg.github.io/HEPML-LivingReview/

▰ What is the best 
anomaly detection 
method?

No clear winner! Different methods use different 
assumptions and are often complementary!

https://iml-wg.github.io/HEPML-LivingReview/


Popular strategies
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Signal is an over density for 
some feature:

● Even though new physics 
is rare, assume there is at 
least one feature where 
ps(x)/pb(x) is high: often 
assumed to be some 
invariant mass 
combination

● Requires an estimate of 
pb(x) and prior knowledge 
of the resonant feature to 
use

Signal is located where the 
background density is low

● Assume that “tails” of 
distributions are 
informative

● Can be trained using data 
directly, as long as 
possible signal 
contamination is low

● Low pb(x) is not universal 
and the choice of x 
determines the quality of 
the algorithm



Resonant anomaly detection

9

Signal is an over density for 
some feature:

● Even though new physics 
is rare, assume there is at 
least one feature where 
ps(x)/pb(x) is high: often 
assumed to be some 
invariant mass 
combination

● Requires a control region 
with only pb(x) and prior 
knowledge of the resonant 
feature to use

Resources for resonant anomaly detection:
● PRL 121 (2018) 241803, 1805.02664
● PRL 125 (2020) 131801, 2005.02983
● PRD 101 (2020) 095004
● Hallin et al., 2109.00546
● PRD 101 (2020) 9, 095004
● PRD 101 (2020) 075042
● Raine et al., 2203.09470
● Golling, Tobias, et al., 2212.11285

● Similar to standard bump hunt
● Use the side-bands to learn the 

background distribution in the 
signal region: either through 
morphing or likelihood learning

● Compare predicted background 
events with data in the signal 
region: often a classifier is trained 
to separate data from predicted 
background



Resonant anomaly detection
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Signal is an over density for 
some feature:

● Even though new physics 
is rare, assume there is at 
least one feature where 
ps(x)/pb(x) is high: often 
assumed to be some 
invariant mass 
combination

● Requires a control region 
with only pb(x) and prior 
knowledge of the resonant 
feature to use

Similar performance 
between different 
strategies, almost 
as good as a fully 
supervised 
classifier



Non-resonant anomaly detection
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Signal is located where the 
background density is low

● Assume that “tails” of 
distributions are 
informative

● Can be trained using data 
directly, as long as 
possible signal 
contamination is low

● Low pb(x) is not universal 
and the choice of x 
determines the quality of 
the algorithm

Resources for non-resonant anomaly detection:
● Farina, Marco, Yuichiro Nakai, and David Shih., Physical Review D 101.7 (2020): 075021.
● Finke, Thorben, et al. Journal of High Energy Physics 2021.6 (2021): 1-32.
● Dillon, Barry M., et al.  SciPost Physics 11.3 (2021): 061.
● Mikuni, Vinicius, and Florencia Canelli. Physical Review D 103.9 (2021): 092007.
● Pol, Adrian Alan, et al.  2019 18th IEEE ICMLA. IEEE, 2019.
● Cheng, Taoli, et al. Physical Review D 107.1 (2023): 016002.
● Blance, Andrew, Michael Spannowsky, and Philip Waite.  JHEP 2019.10 (2019).
● Cerri, Olmo, et al. Journal of High Energy Physics 2019.5 (2019): 1-29.
● Roy, Tuhin S., and Aravind H. Vijay. 1903.02032 (2019).
● Ostdiek, Bryan.  SciPost Physics 12.1 (2022): 045.

● Majority of popular strategies use 
autoencoders 

● Train the model with 
background-enriched data

● Encode the inputs to a low dimensional 
representation and try to decode it 
back to the input set

● Anomalous events are often poorly 
reconstructed, since there are not 
many examples seeing during training

● NFs and GANs have also been used in 
a similar context
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Signal is located where the 
background density is low

● Assume that “tails” of 
distributions are 
informative

● Can be trained using data 
directly, as long as 
possible signal 
contamination is low

● Low pb(x) is not universal 
and the choice of x 
determines the quality of 
the algorithm

Mikuni, Vinicius, Benjamin Nachman, and David Shih. 
Physical Review D 105.5 (2022): 055006.

● One of the difficulties of 
using autoencoders is to 
determine the background 
distribution in the region 
containing possible 
anomalies

● Multiple decorrelated 
autoencoders can be used, 
with background distribution 
determined by the ABCD 
method
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Signal is located where the 
background density is low

● Assume that “tails” of 
distributions are 
informative

● Can be trained using data 
directly, as long as 
possible signal 
contamination is low

● Low pb(x) is not universal 
and the choice of x 
determines the quality of 
the algorithm

● Choice of representation of 
inputs also affects the 
performance!

● Differences in performance 
for autoencoders when using 
m1, m2 as inputs or log(m1), 
log(m2)

m1

m2

Kasieczka, G., Mastandrea, R., Mikuni, V., Nachman, B., Pettee, 
M., & Shih, D. (2023). Physical Review D, 107(1), 015009.



Anomaly detection at trigger level
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▰ There has also been a number of exciting efforts to do 
anomaly detection at trigger level

▰ Microsecond inference time needed to achieve this goal at the 
LHC

▰ Number of works showing the feasibility of the idea with even 
a data challenge to compare methods

▰ See More at Javier’s talk!

Govorkova, Ekaterina, et al. Scientific Data 9.1 (2022): 118.
Govorkova, Ekaterina, et al.  Nature Machine Intelligence 4.2 (2022): 
154-161.
Mikuni, Vinicius, Benjamin Nachman, and David Shih. Physical 
Review D 105.5 (2022): 055006.
Dillon, Barry M., et al. 2206.14225 (2022).

https://mpp-hep.github.io/ADC2021/
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▰ A number of data challenges were proposed to raise awareness of this new and complementary way of 
searching for new physics

Kasieczka, Gregor, et al. Reports on progress in 
physics 84.12 (2021): 124201.

Aarrestad, Thea, et al. SciPost Physics 12.1 (2022): 
043.
Slides at ML4Jets 2021 

https://indico.cern.ch/event/980214/contributions/4423096/


Conclusion
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▰ Anomaly detection is and alternative and complementary way to search for new physics processes
▰ Different anomaly detection methods still rely on a few assumptions and is important to be aware of 

their limitations
▰ Nevertheless, collider results using some of these methods are already out!

A->BC
ATLAS Collaboration, Phys. Rev. Lett. 125, 131801 (2020) ATLAS-CONF-2022-045
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THANKS!
Any questions?
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GANS Flows

Train the GAN to learn the background 
distribution

● Compare samples from GAN with 
the data in a region of interest!

Eur.Phys.J.Plus 136 (2021)

Train the NF to learn pb(x):
● Find regions with low pb(x)
● Sample from the flow and compare with data
● Interpolate multiple background regions
Hallin et al., 2109.00546
PRD 101 (2020) 9, 095004
PRD 101 (2020) 075042
Raine et al., 2203.09470


