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CMS Collaboration [arXiv:1207.7235, Phys.Lett.B]
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@ We will have 20-25x more data.

= We want to understand every aspect of it based on 1% principles!
(and find New Physics)
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Simulation bridges Theory and Experiment.
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Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder
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Simulation bridges Theory and Experiment.

Forward R
Detectors
N Inverse
Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder
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Simulation bridges Theory and Experiment.

Detector Simulation

Phase Space Sampling
= sample from p(showers|E)

= sample according to do

y A

A ¥

Forward

A\ 4

Hadronization Detectors.

<€

Inverse
Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

" CMSPublic
ATLAS Preliminary ) Total CPU HLLHC (2031/No RD Improvements) fractions
2022 Computing Model - CPU: 2031, Conservative R&D 2022 Estimates. ther: 2%
2 .
Gen: 9%

Tot: 33.8 MHS06*%y
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= Data Proc
a5 W MC-Full(Sim)
= MCFulliRec)
W MC-Fast(Sim)
mm MC-Fast(Rec)
= EvGen
1% Heavy lons
= Data Deriv
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Analysis
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Deep Generative Models can be Fast Surrogates for Expensive
Simulations.

Deep Generative Models learn to sample from
complicated p(x).

They can generate impressive results for text, speech,
images, ...

However, we in HEP have different requirements for
quality:

We want to correctly cover p(x) of the entire phase
space.

“Calorimeter Simulation” via midjourney.com

Claudius Krause (ITP Heidelberg) ML for Simulation March 28, 2023 4/25


midjourney.com

The Landscape of Generative Models.

Variational Autioencoder (VAE)

Generative Adversarial Network (GAN)

= Compressing data through a L
bottleneck. = Generator and Discriminator play a

game against each other.
latent
@ Decoder latent data
space Generator

data D1scr1m1nator

Diffusion Models Normalizing Flows

= Gradually add noise and revert. = Bijective map to a known distribution.

[ data ]—>( +noise | —| latent latent Bijector data
: —
denois space space space
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Normalizing Flows learn a coordinate transformation.

“easy” base
distribution

7T(2)

=

bijective
transformation

p(x) = 7(f(x)) |det L2

density estimation, p(x)

=

“target”
distribution

p(x)

sample generation
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Normalizing Flows learn a coordinate transformation.

“easy” base
distribution

7T(2)

=

bijective
transformation

p(x) = n(f(x)) |det L2

density estimation, p(x)

=

“target”
distribution

p(x)

sample generation

Initial sample from N(o, 1)

https://engineering.papercup.com/posts/normalizing-flows-part-2/
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Normalizing Flows learn a coordinate transformation.

“easy” base bitective “target”
distribution <~ ) . <~ distribution
transformation
7T(2) p(x)

p(x) = n(f(x)) |det L2

density estimation, p(x)

sample generation

Initial sample from N(o, 1) After layer 1 After layer 2 After layer 3

https://engineering.papercup.com/posts/normalizing-flows-part-2/
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V" Optimization
via LL.

v~ Stable results.

v~ Versatile
architecture.
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Machine Learning for Event Generation and Fast Simulation

Detectors.

Events

1: Phase Space Integration N TR
ol e
él@;:n o LL;I—H‘F
200 . [G;:ID]D 600

Claudius Krause (ITP Heidelberg)

2: Calorimeter Simulation

l10-2Gev

10-3Gev
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Machine Learning for Event Generation and Fast Simulation

Detectors. Events

b

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

1: Phase Space Integration

200 400 600
M. [GeV]

102Gev.

10-3Gev
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Phase Space integration uses Importance Sampling.

/ I= [y f(%) dx

flat sampling:
inefficient.

I= <f(55)>x~uniform

Claudius Krause (ITP Heidelberg) ML for Simulation March 28, 2023 8/25



Phase Space integration uses Importance Sampling.

L

I= [y f(%) dx
4

flat sampling:
inefficient.

I= <f(55)>x~uniform

importance sampling:
find g close to f

_ <f(5f)

)
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Phase Space integration uses Importance Sampling.

L

I= [y f(%) dx
J

N\

flat sampling:
inefficient.

I= <f(55)>x~uniform

importance sampling:
find g close to f

- <% >x~g(x)

multichannel: one
map per channel

1= (w0l _

Claudius Krause (ITP Heidelberg)
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MadNIS — Neural Importance Sampling

I= Zl: <“i(x)§i((?) >x~gi(x)

A
Construct channels and mapping
using physics knowledge.

~ v
Normalizing Flow to ’ ‘ Fully connected network

refine channel mapping. to refine channel weights.

4 v
[ Optimize simultaneously with variance as loss. J

A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172]
Claudius Krause (ITP Heidelberg) ML for Simulation March 28, 2023 9/25




MadNIS — Neural Importance Sampling

— Gix|p)

PS point Channel —_
valuation

Mappin; [ ]
X « - Iﬁ’ g Sample y | e Backpropagation
Gyl

"

A. Butter, T. Heimel, J. Isaacson, CK, E. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172]
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MadNIS re-uses expensive matrix elements

] A
g 1.0 fixed number of weight updates = fixed training time

£ g
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A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172]
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MadNIS — Results for Drell-Yan + Z’

/

Learned
distribution
matches truth.

Normalized

a

ratio to

=
o
&

—
9
[e)}

—_
9
= o

—_
N
9]

1.00

0.751

o

200

400
M, ete— [GeV]

Claudius Krause (ITP Heidelberg)

March 28, 2023

12/25



MadNIS — Results for Drell-Yan + Z’
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MadNIS — Results for Drell-Yan + Z’
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MadNIS — Results for Drell-Yan + Z’
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Machine Learning for Event Generation and Fast Simulation

Detectors.

Events

1: Phase Space Integration N TR
ol e
él@;:n o LL;I—H‘F
200 . [G;:ID]D 600
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2: Calorimeter Simulation

l10-2Gev

10-3Gev
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Machine Learning for Event Generation and Fast Simulation

Detectors. Events

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

Normalized

a

l10-2Gev

2: Calorimeter Simulation

10-3Gev

104 Gev
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Different Datasets have been explored.

The CALOGAN Dataset.
= CALOFLOW

No time today, check out

[2302.11594].
; The ILD Dataset
= L2LFlows
The CaloChallenge 2022 2:
= iCALOFLOW, ...

20
0 10 W

Z () 2y, &
Claudius Krause (ITP Heidelberg)
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CALOFLOW uses the same calorimeter geometry as CALOGAN

@ We consider a toy calorimeter inspired by the ATLAS ECal:
flat alternating layers of lead and LAr

@ They form three instrumented layers of dimension
3x96,12 x 12, and 12 x 6

Geant4, Pb Absorber, IAr Gap, 10 GeV e~

n direction [mm]

Local Energy Deposit [MeV]

0
Depth from Calorimeter Center [mm]

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

Claudius se cidel March 28, 2023 15/25



CALOFLOW uses the same calorimeter geometry as CALOGAN

o The GEANT4 configuration of CALOGAN is available at
https://github.com/hep-Ibdl/CaloGAN

@ We produce our own dataset: available at [DOL 10.5281/zenodo.5904188]
@ Showers of e*, v, and 7" (100k each)
@ All are centered and perpendicular

@ Ejn is uniform in [1,100] GeV and given in addition to the energy deposits per
voxel:

| 10t
100
2
10
0 20 3

o
Energy (MeV)

Energy (Mev)
Energy (Mev)

$ Cell ID

$ Cell ID
CEvovouvswnro

3
nCell D

ncell

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]
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CALOFLOW uses a 2-step approach to learn p(Z |Ein).-

(Flow I
o learns p1(Eo, E1, E2|Einc)

@ is a Masked Autoregressive Flow, optimized using the log-likelihood.

(Flow 1I
o learns py(Z|Eo, E1, E2, Einc) of normalized showers

@ in CALOFLOW v1 (2106.05285 — called “teacher”):
(

o Masked Autoregressive Flow trained with log-likelihood
@ Slow in sampling (= 500 slower than CALOGAN)

&

@ in CALOFLOW v2 (2110.11377 — called “student”):

o Inverse Autoregressive Flow trained with Probability Density
Distillation from teacher (log-likelihood prohibitive),

i.e. matching IAF parameters to frozen MAF
van den Oord et al.[1711.10433]

o Fast in sampling (= 500 faster than CALOFLOW v1)

J

-

Claudius Krause (ITP Heidelberg) ML for Simulation March 28, 2023
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CALOFLOW passes the “ultimate metric” test.

According to the Neyman-Pearson Lemma we have: pgpanta(X) = Pgenerated (¥) if
classifier cannot distinguish data from generated samples.

GEANT4 vs. | GEANT4 vs. (teacher) | GEANT4 vs. (student)

AUC CALOGAN CALOFLOW v1 CALOFLOW v2

L+ | low-level 1.000(0) 0.870(2) 0.824(4)
high-level |  1.000(0) 0.795(1) 0.762(3)
low-level 1.000(0) 0.796(2) 0.760(3)

i high-level |  1.000(0) 0.727(2) 0.739(2)

| low-level | 1.000(0) 0.755(3) 0.807(1)

" high-level |  1.000(0) 0.888(1) 0.893(2)

AUC (€ [0.5,1]): Area Under the ROC Curve, smaller is better, i.e. more confused

Claudius Krause (ITP Heidelberg)

ML for Simulation

March 28, 2023
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Sampling Speed: The Student beats the Teacher!

CALOFLOW™ CALOGAN* GEANT4.+
teacher | student
|  training | 22+82 min | + 480 min | 210 min 0 min
eneration time
8 362ms | 0.08 ms 0.07 ms 1772 ms
per shower
*: on our TITAN V GPU, *: on the CPU of CaloGAN: Paganini, de Oliveira, Nachman [1712.10321, PRD]

107

100 —— GEANT 4

—— CaloFlow v1 10°
1074 —— CaloFlow v2 o
L8] — CaloGAN

10°
10

100

10* 10t 10° 10° 107 10% 10° 10%0
Generated Showers
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CALOFLOW: Comparing Shower Averages: e*
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CALOFLOW: histograms: e*
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CALOFLOW: histograms: e*
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CaloChallenge datasets 2 and 3 are huge

CaloChallenge datasets 2 and 3 are much bigger:
o Dataset 2: 144 voxels in 45 layers — 6480 total.

@ Dataset 3: 900 voxels in 45 layers — 40500 total.
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CaloChallenge datasets 2 and 3 are huge

CaloChallenge datasets 2 and 3 are much bigger:
@ Dataset 2: 144 voxels in 45 layers — 6480 total.

@ Dataset 3: 900 voxels in 45 layers — 40500 total.

iCALOFLOW: Split learning p(Z |Einc) into 3 steps, leveraging the regular detector
geometry.

Q learns p1(E1, Ep, Es, ..., E45/Einc) — how energy is distributed among layers.
@ learns py(Z1|Eq, Einc) — how the shower in the first layer looks like.
e learns pP3 (In |In—l/ n, Enr En—ll Einc)

— how the shower in layer n looks like, given layer n — 1

Work in progress with
f’ Matt Buckley, Ian Pang, David Shih
|

Flow 2: pa(Ty|Eine, E1)

Flow 3: p3(Zu|Tn—1, En, Bn—1, Eine, 1)

Claudius Krause (ITP Heidelberg) ML for Simulation March 28, 2023
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Layer 1

—— Dataset 2
iCaloFlow
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iCALOFLOW: preliminary results
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Classifier AUCs:

dataset 2, low:
dataset 3, low:

0.797(5)
0.911(3)

dataset 2, high:
dataset 3, high:

0.798(3)
0.941(1)
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Machine Learning for Event Generation and Fast Simulation

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder
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Machine Learning for Event Generation and Fast Simulation

Hadronization Detectors. @

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

= Normalizing Flows are perfect for Importance Sampling.

= They don’t introduce a bias in the result, only increase the uncertainty if not
converged.

= They can be combined with other parts of MadGraph / Sherpa.

Claudius Krause (ITP Heidelberg) March 28, 2023 25/25



Machine Learning for Event Generation and Fast Simulation

OB EEGEcC

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460], R. Winterhalder

4

Normalizing Flows are perfect for Importance Sampling.

4

They don’t introduce a bias in the result, only increase the uncertainty if not
converged.

= They can be combined with other parts of MadGraph / Sherpa.

= Normalizing Flows are able to generate high-quality showers, outperforming other
generative models.

Training and model-selection is usually more stable.

=
= The naive scaling to higher dimensions requires a lot of compute. But some
assumptions on the underlying physics can help reduce the needed ressources.

Claudius Krause (ITP Heidelberg) ML for Simulation March 28, 2023 25/25
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How do Normalizing Flows tame Jacobians?

@ NFs learn the parameters « of a series of easy transformations.
Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]
@ Each transformation is 1d & has an analytic Jacobian and inverse.
= We use Rational Quadratic Splines
Durkan et al. [arXiv:1906.04032], Gregory/Delbourgo [IMA J. of Num. An., '82]
@ Require a triangular Jacobian for faster evaluation.

= The parameters k¥ depend only on a subset of all other coordinates.

Having access to the log-likelihood (LL) allows several training options:

= Based on samples: via maximizing LL(samples).
= Based on target function f(x): via matching p(x) to f(x).

Claudius Krause (ITP Heidelberg) ML for Simulation March 28, 2023 25/25



The Bijector is a chain of “easy” transformations.

Each transformation
@ must be invertible and have analytical Jacobian

@ is chosen to factorize:

C(%®) = (C1(x1;%1), Co(x25%2), - -, C (s )T,
where ¥ are the coordinates to be transformed and ¥ the parameters of the

transformation.

Rational Quadratic Splines:

e

Durkan et al. [arXiv:1906.04032]
Gregory/Delbourgo [IMA Journal

of Numerical Analysis, '82]
o i, o2 + aye -+ ap @ numerically easy
" bya? + bya + by @ expressive

The NN predicts the bin widths, heights, and
derivatives that go in a;&b;.

Claudius Krause (ITP Heidelberg)

ML for Simulation March 28, 2023
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Triangular Jacobians 1: with Autoregressive Blocks

MADE Block K, (Xj<i)

bijector input cond. input A

EN 1 EN o e e

Implementation via masking:

@ a single “forward” pass gives all
fox, (Xim1 - . X7).
= very fast

@ its “inverse” needs to loop through all
‘ Y dimensions.
L transformation parameters ) = Very SIOW

Germain/Gregor/Murray/Larochelle [arXiv:1502.03509]

@ Masked Autoregressive Flow (MAF) is slow in sampling and fast in inference.
Papamakarios et al. [arXiv:1705.07057]

@ Inverse Autoregressive Flow (IAF) is fast in sampling and slow in inference.
Kingma et al. [arXiv:1606.04934]
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MADE Block K, (Xj<i)
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@ Masked Autoregressive Flow (MAF) is slow in sampling and fast in inference.
Papamakarios et al. [arXiv:1705.07057]

@ Inverse Autoregressive Flow (IAF) is fast in sampling and slow in inference.
Kingma et al. [arXiv:1606.04934]

Claudius (ITP Heidelberg) ML for Simulation March 28, 2023

25/25



Triangular Jacobians 1: with Autoregressive Blocks

MADE Block K, (Xj<i)

bijector input cond. input A

EN 1 EN o e e

Implementation via masking:

@ a single “forward” pass gives all
fox, (Xim1 - . X7).
= very fast

@ its “inverse” needs to loop through all
‘ Y dimensions.
L " transformation parameters ) = Very SIOW

Germain/Gregor/Murray/Larochelle [arXiv:1502.03509]

@ Masked Autoregressive Flow (MAF) is slow in sampling and fast in inference.
Papamakarios et al. [arXiv:1705.07057]

@ Inverse Autoregressive Flow (IAF) is fast in sampling and slow in inference.
Kingma et al. [arXiv:1606.04934]
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Triangular Jacobians 2: with Bipartite Blocks

|KxeA<x € B) & Kyep(x € A) |

@ Coordinates are split in 2 sets, transforming each other.

+ Forward and inverse pass are equally fast. - Said to be not as expressive.

Dinh et al. [arXiv:1410.8516]

XA

ad @@ / permutation |_>

Xg —|RQS(xp; k(x4)
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A Classifier provides the “ultimate metric”.

(According to the Neyman-Pearson Lemma we have:
o The likelihood ratio is the most powerful test statistic to distinguish the two
samples.

o A powerful classifier trained to distinguish the samples should therefore learn

(something monotonically related to) this.
o If this classifier is confused, we conclude pGeant4(X) = Pgenerated (X)

= This captures the full phase space incl. correlations.
= However, it is sufficient, but not neccessary.

? But why wasn'’t this used before?
= Previous deep generative models were separable to almost 100%!

DCTRGAN: Diefenbacher et al. [2009.03796, JINST]
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