Machine Learning for Event Generation and Fast Simulation

Prospecting for New Physics through Flavor, Dark Matter, and Machine Learning
 Aspen, CO

Claudius Krause

Institute for Theoretical Physics, University of Heidelberg

March 28, 2023

UNIVERSITÄT HEIDELBERG Zukunft, Seit 1386.

We will have a lot more data in the near future.

Peak luminosity

CMS Collaboration [arXiv:1207.7235, Phys.Lett.B]

https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm

-Integrated luminosity

- We will have 20–25× more data.
- ⇒ We want to understand every aspect of it based on 1st principles! (and find New Physics)

Simulation bridges Theory and Experiment.

Simulation bridges Theory and Experiment.

Simulation bridges Theory and Experiment.

Deep Generative Models can be Fast Surrogates for Expensive Simulations.

- Deep Generative Models learn to sample from complicated p(x).
- They can generate impressive results for text, speech, images, ...
 - However, we in HEP have different requirements for quality:
- \Rightarrow We want to correctly cover p(x) of the entire phase space.

"Calorimeter Simulation" via midjourney.com

The Landscape of Generative Models.

Variational Autioencoder (VAE)

⇒ Compressing data through a bottleneck.

Generative Adversarial Network (GAN)

⇒ Generator and Discriminator play a game against each other.

Diffusion Models

⇒ Gradually add noise and revert.

Normalizing Flows

⇒ Bijective map to a known distribution.

✓ Versatile architecture.

https://engineering.papercup.com/posts/normalizing-flows-part-2/

Machine Learning for Event Generation and Fast Simulation

1: Phase Space Integration

2: Calorimeter Simulation

Machine Learning for Event Generation and Fast Simulation

1: Phase Space Integration

2: Calorimeter Simulation

Phase Space integration uses Importance Sampling.

Phase Space integration uses Importance Sampling.

Phase Space integration uses Importance Sampling.

MadNIS — Neural Importance Sampling

A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172]

MadNIS — Neural Importance Sampling

A. Butter, T. Heimel, J. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172]

MadNIS re-uses expensive matrix elements

A. Butter, T. Heimel, I. Isaacson, CK, F. Maltoni, O. Mattelaer, T. Plehn, R. Winterhalder [2212.06172]

Peaks are learned by different channels.

Machine Learning for Event Generation and Fast Simulation

1: Phase Space Integration

2: Calorimeter Simulation

Machine Learning for Event Generation and Fast Simulation

1: Phase Space Integration

2: Calorimeter Simulation

Different Datasets have been explored.

The CALOGAN Dataset. \Rightarrow CALOFLOW

No time today, check out [2302.11594].

The ILD Dataset ⇒ L2LFlows

The CaloChallenge 2022 ⇒ iCALOFLOW, ...

CALOFLOW uses the same calorimeter geometry as CALOGAN

- We consider a toy calorimeter inspired by the ATLAS ECal: flat alternating layers of lead and LAr
- They form three instrumented layers of dimension 3×96 , 12×12 , and 12×6

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

CALOFLOW uses the same calorimeter geometry as CALOGAN

- The GEANT4 configuration of CALOGAN is available at https://github.com/hep-lbdl/CaloGAN
- We produce our own dataset: available at [DOI: 10.5281/zenodo.5904188]
- Showers of e^+ , γ , and π^+ (100k each)
- All are centered and perpendicular
- E_{inc} is uniform in [1,100] GeV and given in addition to the energy deposits per voxel:

CaloGAN: Paganini, de Oliveira, Nachman [1705.02355, PRL; 1712.10321, PRD]

CALOFLOW uses a 2-step approach to learn $p(\vec{I}|E_{inc})$.

Flow I

- learns $p_1(E_0, E_1, E_2 | E_{inc})$
- is a Masked Autoregressive Flow, optimized using the log-likelihood.

Flow II

- learns $p_2(\hat{\vec{I}}|E_0, E_1, E_2, E_{\text{inc}})$ of normalized showers
- in CALOFLOW v1 (2106.05285 called "teacher"):
 - Masked Autoregressive Flow trained with log-likelihood
 - Slow in sampling ($\approx 500 \times$ slower than CALOGAN)
- in CALOFLOW v2 (2110.11377 called "student"):
 - Inverse Autoregressive Flow trained with Probability Density
 Distillation from teacher (log-likelihood prohibitive),
 i.e. matching IAF parameters to frozen MAF
 van den Oord et al.[1711.10433]
 - Fast in sampling ($\approx 500 \times$ faster than CALOFLOW v1)

CALOFLOW passes the "ultimate metric" test.

According to the Neyman-Pearson Lemma we have: $p_{\text{GEANT4}}(x) = p_{\text{generated}}(x)$ if a classifier cannot distinguish data from generated samples.

AUC		GEANT4 vs. CALOGAN	GEANT4 vs. (teacher) CALOFLOW v1	GEANT4 vs. (student) CALOFLOW v2	
e ⁺	low-level	1.000(0)	0.870(2)	0.824(4)	
	high-level	1.000(0)	0.795(1)	0.762(3)	
γ	low-level	1.000(0)	0.796(2)	0.760(3)	
	high-level	1.000(0)	0.727(2)	0.739(2)	
π^+	low-level	1.000(0)	0.755(3)	0.807(1)	
	high-level	1.000(0)	0.888(1)	0.893(2)	

AUC (∈ [0.5, 1]): Area Under the ROC Curve, smaller is better, i.e. more confused

Sampling Speed: The Student beats the Teacher!

	CALOFLOW*		CALOGAN*	Geant4 [†]
	teacher	student		
training	22+82 min	+ 480 min	210 min	0 min
generation time per shower	36.2 ms	0.08 ms	0.07 ms	1772 ms

*: on our Titan V GPU, †: on the CPU of CaloGAN: Paganini, de Oliveira, Nachman [1712.10321, PRD]

CALOFLOW: Comparing Shower Averages: e^+

CALOFLOW: histograms: e^+

CALOFLOW: histograms: e^+

CaloChallenge datasets 2 and 3 are huge.

CaloChallenge datasets 2 and 3 are much bigger:

- Dataset 2: 144 voxels in 45 layers \rightarrow 6480 total.
- Dataset 3: 900 voxels in 45 layers \rightarrow 40500 total.

CaloChallenge datasets 2 and 3 are huge.

CaloChallenge datasets 2 and 3 are much bigger:

- Dataset 2: 144 voxels in 45 layers \rightarrow 6480 total.
- Dataset 3: 900 voxels in 45 layers \rightarrow 40500 total.

iCALOFLOW: Split learning $p(\vec{I}|E_{inc})$ into 3 steps, leveraging the regular detector geometry.

• learns $p_1(E_1, E_2, E_3, \dots, E_{45}|E_{inc})$

 \rightarrow how energy is distributed among layers.

- \rightarrow how the shower in the first layer looks like.
- \bullet learns $p_3(\mathcal{I}_n|\mathcal{I}_{n-1}, n, E_n, E_{n-1}, E_{\text{inc}})$
 - \rightarrow how the shower in layer *n* looks like, given layer n-1

Classifier AUCs:

dataset 2, low: 0.797(5) dataset 3, low: 0.911(3) dataset 2, high: 0.798(3) dataset 3, high: 0.941(1)

Machine Learning for Event Generation and Fast Simulation

Machine Learning for Event Generation and Fast Simulation

- ⇒ Normalizing Flows are perfect for Importance Sampling.
- ⇒ They don't introduce a bias in the result, only increase the uncertainty if not converged.
- ⇒ They can be combined with other parts of MadGraph / Sherpa.

Machine Learning for Event Generation and Fast Simulation

- ⇒ Normalizing Flows are perfect for Importance Sampling.
- ⇒ They don't introduce a bias in the result, only increase the uncertainty if not converged.
- ⇒ They can be combined with other parts of MadGraph / Sherpa.
- ⇒ Normalizing Flows are able to generate high-quality showers, outperforming other generative models.
- ⇒ Training and model-selection is usually more stable.
- ⇒ The naive scaling to higher dimensions requires a lot of compute. But some assumptions on the underlying physics can help reduce the needed ressources.

Backup

How do Normalizing Flows tame Jacobians?

• NFs learn the parameters κ of a series of easy transformations.

Dinh et al. [arXiv:1410.8516], Rezende/Mohamed [arXiv:1505.05770]

- Each transformation is 1d & has an analytic Jacobian and inverse.
 - ⇒ We use Rational Quadratic Splines

Durkan et al. [arXiv:1906.04032], Gregory/Delbourgo [IMA J. of Num. An., '82]

- Require a triangular Jacobian for faster evaluation.
 - \Rightarrow The parameters κ depend only on a subset of all other coordinates.

Having access to the log-likelihood (LL) allows several training options:

- ⇒ Based on samples: via maximizing LL(samples).
- \Rightarrow Based on target function f(x): via matching p(x) to f(x).

The Bijector is a chain of "easy" transformations.

Each transformation

- must be invertible and have analytical Jacobian
- is chosen to factorize: $\vec{C}(\vec{x}; \vec{\kappa}) = (C_1(x_1; \kappa_1), C_2(x_2; \kappa_2), \dots, C_n(x_n; \kappa_n))^T$, where \vec{x} are the coordinates to be transformed and $\vec{\kappa}$ the parameters of the transformation.

Rational Quadratic Splines:

$$C = \frac{a_2 \alpha^2 + a_1 \alpha + a_0}{b_2 \alpha^2 + b_1 \alpha + b_0}$$

Durkan et al. [arXiv:1906.04032]

Gregory/Delbourgo [IMA Journal

of Numerical Analysis, '82]

- numerically easy
- expressive

The NN predicts the bin widths, heights, and derivatives that go in $a_i \& b_i$.

Triangular Jacobians 1: with Autoregressive Blocks

$$\kappa_{x_i}(x_{j < i})$$

Implementation via masking:

- a single "forward" pass gives all $\kappa_{x_i}(x_{i-1}...x_1)$. \Rightarrow very fast
- its "inverse" needs to loop through all dimensions.
 - \Rightarrow very slow

Germain/Gregor/Murray/Larochelle [arXiv:1502.03509]

- Masked Autoregressive Flow (MAF) is slow in sampling and fast in inference.
 Papamakarios et al. [arXiv:1705.07057]
- Inverse Autoregressive Flow (IAF) is fast in sampling and slow in inference.

 Kingma et al. [arXiv:1606.04934]

Triangular Jacobians 1: with Autoregressive Blocks

$$\kappa_{x_i}(x_{j < i})$$

Implementation via masking:

- a single "forward" pass gives all $\kappa_{x_i}(x_{i-1}...x_1)$. \Rightarrow very fast
- its "inverse" needs to loop through all dimensions.
 - \Rightarrow very slow

Germain/Gregor/Murray/Larochelle [arXiv:1502.03509]

- Masked Autoregressive Flow (MAF) is slow in sampling and fast in inference.

 Papamakarios et al. [arXiv:1705.07057]
- Inverse Autoregressive Flow (IAF) is fast in sampling and slow in inference.
 Kingma et al. [arXiv:1606.04934]

Triangular Jacobians 1: with Autoregressive Blocks

$$\kappa_{x_i}(x_{j < i})$$

Implementation via masking:

- a single "forward" pass gives all $\kappa_{x_i}(x_{i-1}...x_1)$. \Rightarrow very fast
- its "inverse" needs to loop through all dimensions.
 - \Rightarrow very slow

Germain/Gregor/Murray/Larochelle [arXiv:1502.03509]

- Masked Autoregressive Flow (MAF) is slow in sampling and fast in inference.

 Papamakarios et al. [arXiv:1705.07057]
- Inverse Autoregressive Flow (IAF) is fast in sampling and slow in inference.
 Kingma et al. [arXiv:1606.04934]

Triangular Jacobians 2: with Bipartite Blocks

$$\kappa_{x \in A}(x \in B)$$
 & $\kappa_{x \in B}(x \in A)$

- Coordinates are split in 2 sets, transforming each other.
 - + Forward and inverse pass are equally fast. Said to be not as expressive.

Dinh et al. [arXiv:1410.8516]

A Classifier provides the "ultimate metric".

According to the Neyman-Pearson Lemma we have:

- The likelihood ratio is the most powerful test statistic to distinguish the two samples.
- A powerful classifier trained to distinguish the samples should therefore learn (something monotonically related to) this.
- If this classifier is confused, we conclude $p_{GEANT4}(x) = p_{generated}(x)$
- ⇒ This captures the full phase space incl. correlations.
- ⇒ However, it is sufficient, but not neccessary.
 - ? But why wasn't this used before?
- ⇒ Previous deep generative models were separable to almost 100%!

DCTRGAN: Diefenbacher et al. [2009.03796, JINST]