

Dark Quest Probing Dark Sector with a Proton Fixed-Target Experiment at Fermilab

Yongbin Feng (Fermilab)

For DarkQuest Working Group

Aspen Center for Physics

March 28th, 2023

Outline

• Introduction: Dark Sector Physics

SpinQuest, its Upgrades to DarkQuest, and Expected Sensitivities

Upgrade Studies and Proposed Timeline

Summary

Light Dark Matter

- Thermal dark matter's mass range is MeV TeV, and WIMP has not been discovered yet.
- Light dark matter requires light mediators -> Dark Sector

Dark (Hidden) Sector

- Dark Sectors can connect to SM sectors via some new couplings.
- Can probe the dark sector by looking at the dark mediators and their decay products: missing E/p/m, displaced lepton/hadrons, etc
- High-intensity accelerators and fixed-target experiments provide an ideal environment to probe dark sector physics in MeV-GeV range

Goals

- Large dark sector production cross section
- Proper geometry for large acceptance
- Sensitivity to different final states
- Good reconstruction performance: efficiency and resolution
- Small background
- Cost and timescale

Goals

- Large dark sector production cross section
- Proper geometry for large acceptance
- Sensitivity to different final states
- Good reconstruction performance: efficiency and resolution
- Small background
- Cost and timescale

• Yes SpinQuest @ Fermilab and its DarkQuest upgrade have all these features!

Dark Photon Production with Proton Fixed-Target

A.Berlin, S.Gori, P.Schuster, N.Toro Arxiv:1804.00661

• Larger production rates with proton beams compared with electron beams

SpinQuest @ Fermilab

SpinQuest Spectrometer

Measuring the Drell-Yan process for studying the Transverse Momentum Dependent PDFs (TMDs) inside the proton

SpinQuest spectrometer

SpinQuest Spectrometer

• Measuring the Drell-Yan process for studying the Transverse Momentum Dependent PDFs (TMDs) inside the proton

Exploring Dark Sector

- DarkQuest: a proposed proton fixed-target experiment at Fermilab
- upgraded from the existing
 SpinQuest experiment

120GeV Proton Beam

Fermilab Accelerator Complex

- I 20 GeV high-intensity proton beam from the Fermilab Accelerator Complex
 - 4s beam every minute; 53.1MHz RF buckets, each bucket with 10^2-10^5 protons
 - Expect 10¹⁸ Protons on target (POT) in a 2-year parasitic run
 - Can have 10^{20} POT for longer term runs

120GeV Proton Beam

Fermilab Accelerator Complex

• LHC 13TeV run: ~200 fb⁻¹ of data, inelastic scattering σ ~ 80 mb. This brings to about 10^{16} "protons on target"

- 120 GeV high-intensity proton beam from the Fermilab Accelerator Complex
 - 4s beam every minute; 53.1MHz RF buckets, each bucket with 10^2-10^5 protons
 - Expect 10¹⁸ Protons on target (POT) in a 2-year parasitic run
 - Can have 10^{20} POT for longer term runs

SpinQuest Spectrometer

- SpinQuest spectrometer:
 - * FMag: beam dump and absorber;
 - Tracking: Hollow KMag + 4 stations of drift chambers
 - Triggering: Scintillator hodoscopes
 - Muon ID: Muon stations after the iron absorber

- DarkQuest spectrometer:
 - Probing dark sector by looking at displaced signals
- Upgrades on SpinQuest:

- DarkQuest spectrometer:
 - Probing dark sector by looking at displaced signals
- Upgrades on SpinQuest:
 - * Additional tracking layers from HyperCP experiment

- DarkQuest spectrometer:
 - Probing dark sector by looking at displaced signals
- Upgrades on SpinQuest:
 - * Additional tracking layers from HyperCP experiment
 - Hodoscopes to trigger on displaced signals

- DarkQuest spectrometer:
 - Probing dark sector by looking at displaced signals
- Upgrades on SpinQuest:
 - * Additional tracking layers from HyperCP experiment
 - Hodoscopes to trigger on displaced signals
 - EMCal from PHENIX experiment: to trigger and reco electrons and photons. Allowing particle IDs, leading to more sensitivity to lower masses

Goals -> What we have

- Large dark sector production cross section:
- Proper geometry for large acceptance
- Sensitivity to different final states
- Good reconstruction performance: efficiency and resolution
- Small background
- Cost and timescale

- Large dark sector production cross section with I20GeV high-intensity proton beam
- Compact geometry and relatively short displacement baseline (5m) to cover unique and broad phase spaces
- EMCal provides sensitivity to different final states
- Excellent tracking and vertexing performances
- FMag absorbs large fractions of backgrounds
- Most of the experimental components already exist, very low cost: ~IM; muon-channel exploration is ready

DarkQuest

Arxiv.2207.06905

Visible dark photon portal benchmark

DarkQuest

DarkQuest

Arxiv.2207.08990

Muon-philic scalar g-2 benchmark

- Use "secondary" muons from protondump interactions as the muon source
 - Arxiv: 2212.00033

Use displaced electrons from DarkQuest

Broad Sensitivity Coverage

- Broad coverage to different theory models,
 - Different portals: scalar, vector, neutrino, axion-like, etc, by probing lepton/hadron/photon pairs

List of Experimental Studies

- Detector:
 - * EMCal integration into the spectrometer
 - Extra Tracking layer integration into the spectrometer
- Geant-based Simulations:
 - * EMCal simulations
 - Triggering
 - Tracking & vertexing
 - ParticleID: tracking + calorimeter information

EMCal Integration

- EMCal: PbWO₄ + iron sampling calorimeter from PHENIX experiment
- EMCal integration into the spectrometer:
 - Developments of the readout and trigger system ongoing
 - Currently in possession of a few cells to explore SiPM readouts

EMCal Readout Electronics

- EMCal test stands has been developed to study new EMCal readout electronics
- Available for test beam and background rate measurements in NM4 in 2023

Ongoing Studies: EMCal Simulations

- EMCal: ~5cm per cell (2-3 Molière radius of $PbWO_4$): most energy deposit in one central cell
- Nice separation between two electron showers
- Agreement of the resolutions between the simulation (red) and the previous test beam results

- Test the new trigger roads for displaced signals using the fiber hodoscope detectors installed in 2017
 - * Trigger efficiency ~20% for decays in acceptance
- Ongoing work on integration into the trigger system and commissioning
- In the future plan to include EMCal information in the trigger system to trigger on Electron/Photons

Tracking and Vertexing

• For the dark photons decaying after the FMag, the leptons are less affected by the multiple scatterings in FMag. Better resolutions compared with prompt signals:

Tracking and Vertexing

- Less affected by the multi scatterings in FMag. Better resolutions compared with prompt signals:
 - * 75% track reconstruction efficiency for high momentum particles;
 - 5% mass resolution,
 - 5-10 cm Z resolution for dark photons decaying after FMag
- Working on improving the track and vertex reconstructions for dark photons decaying inside FMag

Tracking and Vertexing

- Additional tracking layers can increase the acceptance dramatically in certain phase spaces
- Improvements on the tracking and vertexing resolution currently ongoing

Particle Identification

Working on Particle ID based on the combination of tracking and EMCal information

Collaboration

A strong team assembled of both experimentalists and theorists:

- One DarkQuest Snowmass paper: https://arxiv.org/pdf/ 2203.08322.pdf
- Strong connections with the current SpinQuest collaboration
- Ready to analyze the muon channel once the proton beam comes in!
- Welcome to join the effort! Contact us if interested! (yfeng@fnal.gov ntran@fnal.gov)

DarkQuest: A dark sector upgrade to SpinQuest at the 120 GeV Fermilab Main Injector

Aram Apyan¹, Brian Batell², Asher Berlin³, Nikita Blinov⁴, Caspian Chaharom⁵, Sergio Cuadra⁶, Zeynep Demiragli⁵, Adam Duran⁷, Yongbin Feng³, I.P. Fernando⁸, Stefania Gori⁹, Philip Harris⁶, Duc Hoang⁶, Dustin Keller⁸, Elizabeth Kowalczyk¹⁰, Monica Leys², Kun Liu¹¹, Ming Liu¹¹, Wolfgang Lorenzon¹², Petar Maksimovic¹³, Cristina Mantilla Suarez³, Hrachya Marukyan¹⁴, Amitav Mitra¹³, Yoshiyuki Miyachi¹⁵, Patrick McCormack⁶, Eric A. Moreno⁶, Yasser Corrales Morales¹¹, Noah Paladino⁶, Mudit Rai², Sebastian Rotella⁶, Luke Saunders⁵, Shinaya Sawada²¹, Carli Smith¹⁷, David Sperka⁵, Rick Tesarek³, Nhan Tran³, Yu-Dai Tsai¹⁸, Zijie Wan⁵, and Margaret Wynne¹²

¹Brandeis University, Waltham, MA 02453, USA

²University of Pittsburgh, Pittsburgh, PA 15260, USA

³Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

⁴University of Victoria, Victoria, BC V8P 5C2, Canada

⁵Boston University, Boston, MA 02215, USA

⁶Massachusetts Institute of Technology, Cambridge, MA 02139, USA

⁷San Francisco State University, San Francisco, CA 94132, USA

⁸University of Virginia, Charlottesville, VA 22904, USA

⁹University of California Santa Cruz, Santa Cruz, CA 95064, USA

 $^{^{10}}$ Michigan State University, East Lansing, Michigan 48824, USA

¹¹Los Alamos National Laboratory, Los Alamos, NM 87545, USA

¹²University of Michigan, Ann Arbor, MI 48109, USA

¹³Johns Hopkins University, Baltimore, MD 21218, USA

¹⁴Yamagata University, Yamagata, 990-8560, Japan

¹⁵KEK Tsukuba, Tsukuba, Ibaraki 305-0801 Japan

¹⁶Yerevan Physics Institute, Yerevan, 0036, Republic of Armenia

¹⁷Penn State University, State College, PA 16801, USA

¹⁸University of California Irvine, Irvine, CA 92697, USA

Proposed Timeline

- Simulation studies
- Trigger tests
- Electronic designs

Data taking for Spin physics and dark sector physics (muon channel)

- Adding tracking layers
- EMCal installation

Explore dark sector physics (muon + electron channel)

Summary

- Dark sector and light dark matter is an important yet not constrained region to explore
- DarkQuest offers a low-cost and near-term opportunity to uncover a broad range of MeV-GeV dark sectors: visible portable, scenarios related to g-2, and many others
- Proposed timeline: dark sector exploration starting from this year, together with the Spin physics runs
- A lot of electronics design, simulation, and reconstruction studies ongoing

Back Up

Collider vs Fixed-target Experiments

Higher energy

Higher intensity

Probe Dark Sector with Accelerators

- Look for final states with bumps/ displaced signals/missing E/p/m
 - * ATLAS/CMS/LHCb, Belle, BES?

- Analyze the dark mediator decay products: bumps/displaced signals/missing E/p/m
 - NA64 @ CERN, LDMX @ SLAC, DarkQuest @ Fermilab
 - Usually low background, better sensitivity at low mass region

Second Muons As Muon Beam

Arxiv.2212.00033

 $\mu^{\pm} \frac{\mu^{+}}{\gamma}$ N = N

- Use "secondary" muons from the proton-target interactions as the muon source, and can treat it as a "muon beam-dump" experiment
 - Sensitivity to the muon sector, e.g., g-2 anomaly

Future Upgrade: DarkQuest -> LongQuest

• Future upgrades of DarkQuest - LongQuest: adding particle ID detector, new dump and new fast tracking, and ECAL, to further extend the coverage and sensitivity; explore this for Snowmass