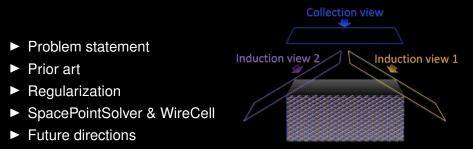
Reconstructing 3D hit information directly from 2D projections Sep 16, 2019

Chris Backhouse – University College London for the DUNE collaboration

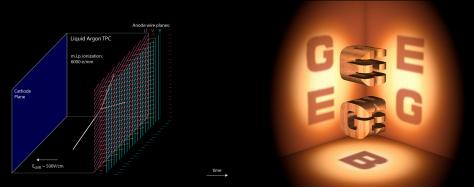
Introduction

- "3D" neutrino detectors normally only provide 2D projections
- Usually reconstruct 2D objects and combine into 3D
- I am presenting a different approach to go directly to 3D hits

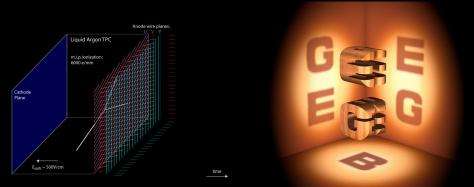


"Three-dimensional Imaging for Large LArTPCs" arXiv:1803.04650 lar.bnl.gov/wire-cell

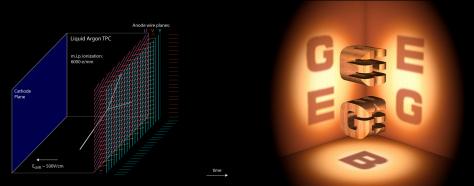
```
C. Backhouse (UCL)
```



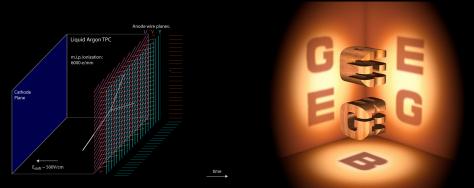
$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$



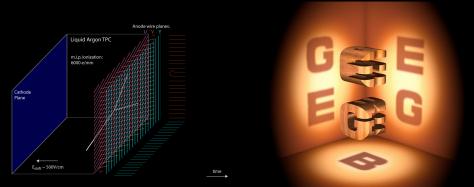
$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$



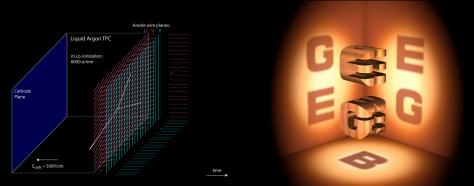
$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$



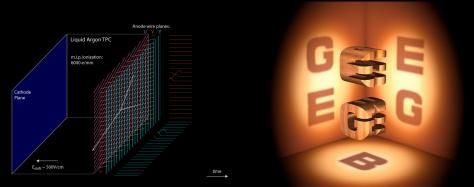
$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$



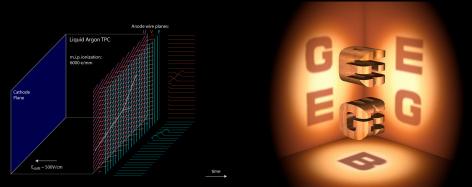
$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$



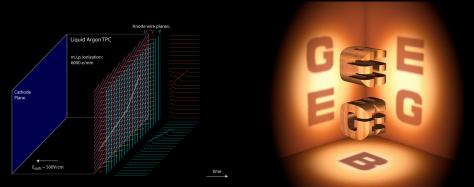
$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$



$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$

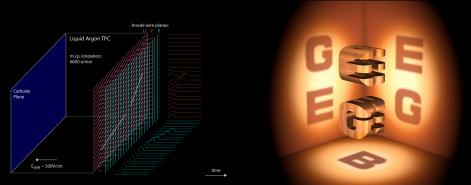


$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$

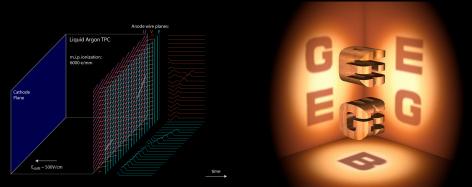


Given observed charges q_i find deposits in 3D space p_i such that

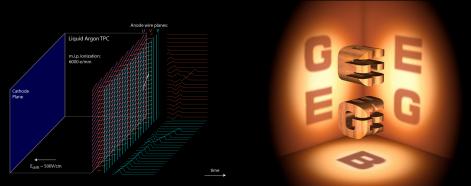
$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$



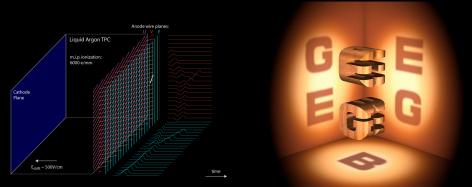
$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$



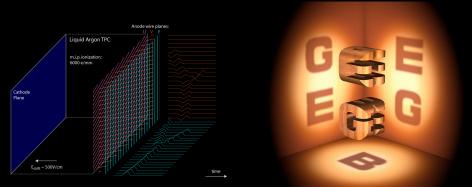
$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$



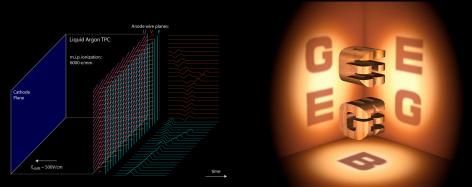
$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$



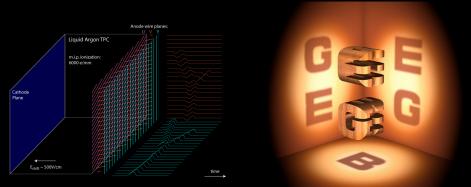
$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$



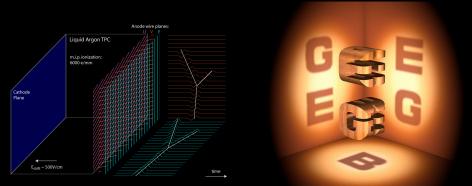
$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$



$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$

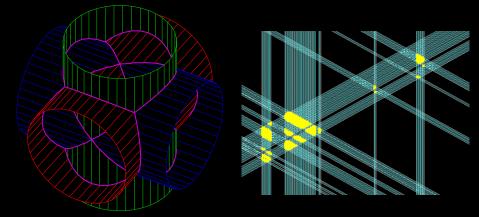


$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$

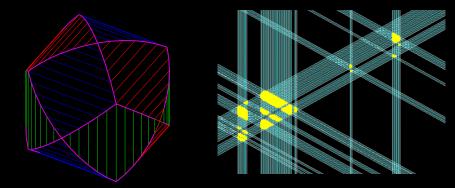


Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$

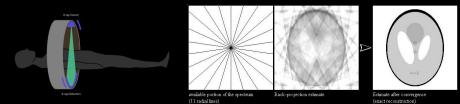


- ► Underconstrained problem 3N measurements for N³ unknowns
- ► A form of unfolding problem need some kind of regularization



- ► Underconstrained problem 3N measurements for N³ unknowns
- ► A form of unfolding problem need some kind of regularization

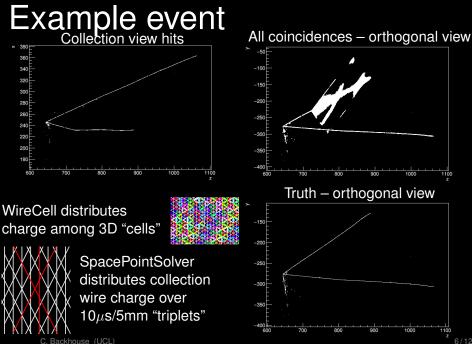
Prior art

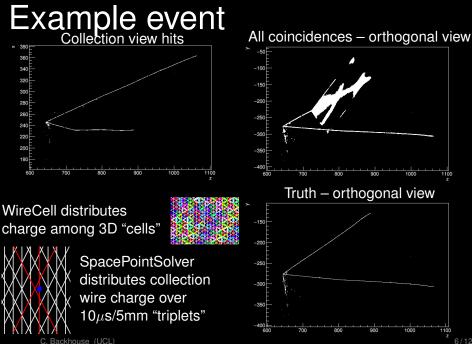


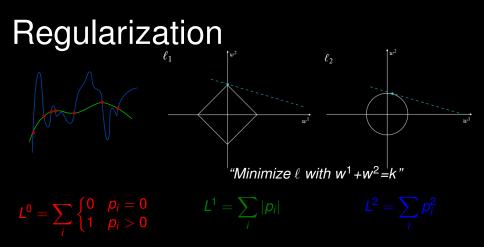
- "Compressed sensing" recover original image from surprisingly little information if you have a model, e.g. the image is sparse
- Mathematical proofs mostly use a random transfer matrix
- ► We have a lot of structure/correlations (*e.g.* isochronous tracks)

Candes, Romberg, and Tao, "Stable Signal Recovery from Incomplete and Inaccurate Measurements" arXiv:math/0503066

```
C. Backhouse (UCL)
```

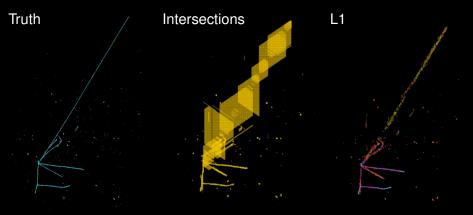






- Want simplest charge distribution that explains the observations
- Regularization concept familiar from unfolding problems
- Here "simplest" = "sparsest" i.e. minimize L⁰ NP-hard problem
- But solution minimizing L^1 norm will also be sparse in general
- Space not fully differentiable, but it is single-minimum'd

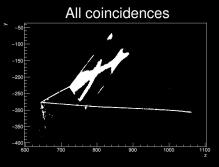
Regularization in WireCell



► Addition of *L*¹ regularization greatly improves reconstruction

Previous approach was a brute-force search to minimize L⁰

SpacePointSolver built-in L¹



inimize
$$\chi^2 = \sum_{j}^{\text{iwires}} \left(q_i - \sum_{j}^{\text{sites}} T_{ij}p_j\right)^2$$

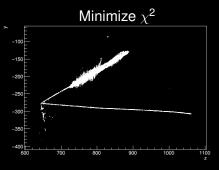
subject to $p_j \ge 0$ for all j
and $\sum_{j}^{\text{sites}} U_{jk}p_j = Q_k$ for all k

 SpacePointSolver distributes collection wire charge over relevant triplets

m

- Total charge $\sum p_i \equiv \sum Q_k$ constant by construction
- So a form of L^1 regularization is built into the foundations

SpacePointSolver built-in L¹



inimize
$$\chi^2 = \sum_{i}^{\text{iwires}} \left(q_i - \sum_{j}^{\text{sites}} T_{ij}p_j\right)^2$$

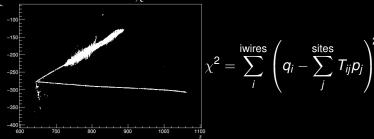
subject to $p_j \ge 0$ for all j
and $\sum_{i}^{\text{sites}} U_{jk}p_j = Q_k$ for all k

 SpacePointSolver distributes collection wire charge over relevant triplets

m

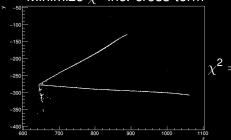
- Total charge $\sum p_i \equiv \sum Q_k$ constant by construction
- ▶ So a form of *L*¹ regularization is built into the foundations

SpacePointSolver cross-term $_{Minimize \chi^2}$



- Knows the solution should be sparse but it should also be dense
- ▶ Room for one more term in the χ^2 while preserving minimizability
- Lower χ^2 for a solution that places the *p*'s closer together
- Form of *V* is ad-hoc. Used $V_{ij} = \lambda \exp\left(-\frac{|\vec{r}_i \vec{r}_2|}{2\text{cm}}\right)$
- λ controls regularization strength. Too strong and solution degrades again

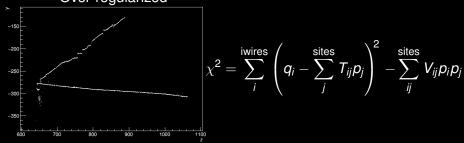
SpacePointSolver cross-term



$$\chi^2 = \sum_{i}^{\text{iwires}} \left(q_i - \sum_{j}^{\text{sites}} T_{ij} p_j
ight)^2 - \sum_{ij}^{\text{sites}} V_{ij} p_i p_j$$

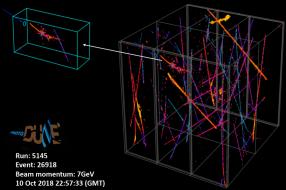
- Knows the solution should be sparse but it should also be dense
- ▶ Room for one more term in the χ^2 while preserving minimizability
- Lower χ^2 for a solution that places the *p*'s closer together
- Form of *V* is ad-hoc. Used $V_{ij} = \lambda \exp\left(-\frac{|\vec{r}_1 \vec{r}_2|}{2\text{cm}}\right)$
- λ controls regularization strength. Too strong and solution degrades again

SpacePointSolver cross-term



- Knows the solution should be sparse but it should also be dense
- ▶ Room for one more term in the χ^2 while preserving minimizability
- Lower χ^2 for a solution that places the *p*'s closer together
- Form of *V* is ad-hoc. Used $V_{ij} = \lambda \exp\left(-\frac{|\vec{r}_1 \vec{r}_2|}{2\text{cm}}\right)$
- \blacktriangleright λ controls regularization strength. Too strong and solution degrades again

Application



SpacePointSolver and WireCell are available within larsoft

- Compatible with geometries other than DUNE (including two-view geometries such as DUNE-DP, Lariat, Argoneut)
- Intended as the first step of a natively-3D reconstruction chain
- SpacePointSolver already finding use for ProtoDUNE wire-wrapping disambiguation (>99% correct disambiguation)
 C. Backhouse (UCL)

Future directions

- Using wire hits can be inconvenient *e.g.* with steep tracks
- Look into unfolding 2D waveforms directly to a 3D charge cloud?
- Definition of the interaction term is ad-hoc and could be tuned
- Can an optimum function somehow be defined from the data? Covariance of truth hit distributions??
- Compressed Sensing ideas are powerful
- Where else can we apply them?

Backup