

The Tool-based Reconstruction Algorithm for Characterising Showers*

Dom Brailsford FD sim/reco Meeting 16/09/19

*Primary authors
Dom Barker
Ed Tyley

Shower characterisation

- Shower characterisation == the bit you do after the pattern recognition
- Shower reconstruction is hard, particularly in a LArTPC
- The difficulty is frustrating because you primarily only need to know a few key pieces of information for physics analyses:
 - Start position
 - Initial direction
 - Energy
 - dE/dx
 - *ID of the initial track stub

Not another shower characterisation module?

- The Tool-based Reconstruction Algorithm for Characterising Showers (TRACS) is a shower characterisation module
 - Developed by Dom Barker and Ed Tyley as part of the SBN shower reconstruction WG
- TRACS takes a recob::PFParticle as input and outputs a recob::Shower
 - Just like PandoraShower and EMShower
- The key difference is TRACS outsources all of the characteristic calculations to a set of art tools where a tool has a specific purpose
 - A tool to calculate the shower's direction
 - A tool to find the initial track stub's hits
 - A tool to calculate the initial track's dE/dx

Quick technical details

```
physics.producers.tracsshowertest.ShowerFinderTools: [
    @local::dune10kt_showerstartpositionfinder,
    @local::dune10kt_showerdirectionfinder,
    @local::dune10kt_showerenergyfinder,
    @local::dune10kt_shower3dtrackhitfinder,
    @local::dune10kt_showerpmatrackfinder,
    @local::showertracktrajectorypointdirection,
    @local::dune10kt_showerdedxfinder
]
```

- You specify an arbitrarily sized list of the tools in FCL to configure the shower characterisation
- The only caveat is enough tools need to be run to characterise start position, direction, energy and dE/dx*
 - *All current dE/dx need an initial track stub to function
- Every tool is exposed to the PFParticle under consideration, the art::Event and the ShowerElementHolder
 - ShowerEleHolder holds the characteristics that each tool calculates, it can also hold an arbitrary number of transient objects as well as art data products destined for the ARTROOT output file

Tools to be shown today

Shower start position

 ShowerStartPosition_tool: Takes the PFParticle's vertex position as the start position (a la pandoraShower)

Initial track stub finder

• Shower3DTrackHitFinder_tool: Tags space points contained in a cylinder whose axis is the calculated shower direction and starting at the calculated shower start position

Initial track fitter

 ShowerPMATrackFinder_tool: Uses the Projection Matching Algorithm to form a track using the found initial track hits

Shower direction

- ShowerPCADirection_tool: Applies a charge-weighted PCA to the shower space points; the primary axis is the shower direction (similar to pandoraShower)
- ShowerTrackTrajectoryPointDirection_tool: Takes the starting direction of the fitted track stub (recob::Track::DirectionAtPoint(1))

dE/dx

• ShowerStandardCalodEdx_tool: Calculates a per-view dE/dx using the initial track hits. The tool calculates a per-view pitch by projecting the calculated shower direction into each view

The sample used

- Vertex-like particle gun
 - Electron (0 < p < 4.5 GeV)
 - Pi+ (0.5 GeV < p < 2.0 GeV)
 - Fixed start pos (180,-300,580)
 - Isotropic angle
- Downstream fcls:
 - standard_g4_nooptical_dune10kt_1x2x6.fcl
 - Disables the light sim
 - standard_detsim_dune10kt_1x2x6.fcl
 - standard_reco_dune10kt_nu_1x2x6.fcl
- For assessing the recob::Shower parameters, I only consider recob::Showers with the highest number of hits in an event AND which are also truth matched to the primary electron

Quick aside: Pandora neutrino vertex position displacement

- vertex_reco vertex_true
- Nice sharp peak at 0 cm
- Very broad second peak at ~120 cm
- Displacement is within 10 cm 34.6% of the time

Mis-vertexing examples

Mis-vertexing examples

Number of reco. showers

- The number of ALL recob::Showers in each particle gun event
- Total stats: 49700
- 16.4% of particle gun events do not contain a recob::Shower

Completeness/hit purity

33024 (66.4%) events contain at least one reco. shower truth matched to the primary electron

15110 (30.4%) events contain a primary electron-matched shower where the initial track stub contains at least one primary electron hit

- Chain of trip ups
- Pat. rec. separates track stub and cascade bulk (pink line [track] attached to black splodge [shower])
- Start position of cascade bulk then placed at wrong end (green square)
- The track stub finder fails to find any initial hits
- Shower is thrown away as it is incomplete
- One of the much smaller showers (blue splodges) becomes the shower with the highest hits

- Another chain of trip ups
- Pat. rec. merges charged pion track with the whole electron shower
- Start position then picked to be the very end of the shower
- Charge-weighted PCA is biased towards centre of the pion track
- Track stub finder misses the shower space points as direction is mis-aimed
- Shower is thrown away due to being incomplete
- One of the much smaller showers (blue splodges) becomes the shower with the highest hits

Shower start position

- Using ShowerStartPosition_tool
 - Takes the PFP's vertex as the shower start position
- Plot shows the distance between the true and reco shower start positions
- Nice sharp spike at 0 cm in all cases
- Wide tail is largely eliminated for showers in which the track stub contains a primary hit

Distance between true and reco. shower start (cm)

The initial track stub finder

- Shower3DTrackHitFinder_tool
 - IDs track space points as those enclosed in a cylinder at the start of the shower
- Plot shows the fraction of shower-contained primary electron hits that are part of the initial track stub
 - Not the same as completeness
- 45% of initial track stubs contain a non-zero fraction of primary electron hits

Direction

Primary electron showers with max. no. hits

Initial track contains one primary electron hit

- PCA outperforms the direction from the initial PMA track in all cases
- This study will be redone with a new tool which uses pandora's sliding linear fit once it becomes available

dE/dx

- ShowerStandardCalodEdx_tool
- Shower direction (required to calculate pitch) calculated by PCA tool
- MIP peak sharpens for cases where the track stub contains a primary electron hit

Good recos

Summary and future

- The Tool-based Reconstruction Algorithm for Characterising Showers (TRACS) is a shower characterisation module
 - Developed by Dom Barker and Ed Tyley as part of the SBN shower reconstruction WG
 - Relies on pandora PFParticle input
- TRACS outsources all calculation to an arbitrary set of art tools, each of which calculates a specific shower parameter
- TRACS is now being configured for use in the DUNE FD
- Future tools are under development/will soon be available
 - Fitting the initial track stub with pandora's sliding linear fit
 - An incremental fit-based track stub finder

Backups

What causes the spike at 0

