Abstract

Within the realm of oscillation physics, DUNE and T2HK will either agree or disagree. If they agree then the choice of fourth detector is not too vital for oscillations: nailing down the precision is the main focus. If they disagree then we want to be well positioned to understand why. A fourth detector with a more well understood material may simplify some systematics, although the effect of the near detector choice may be crucial here. In addition, targeting lower energies with the opportunity to measure solar neutrinos could allow DUNE to single-handedly measure all six of the oscillation parameters providing a key check that we understand the lepton sector. Finally, in the context of astrophysics and other secondary physics goals, LAr provides the largest benefit since other designs won't be competitive with JUNO or HK.

Peter B. Denton (BNL)

Neutrino Discovery Initiatiy

Framing the Question

What fourth detector maximizes our physics return?

Detector considerations

- 1. LArTPC
- 2. WbLS (Theia)
- 3. Water-Cherenkov (Gd?)
- 4. Oil

Desired outputs

- 1. Oscillation goals (LBL)
- 2. Secondary goals (SN, atm, solar, nucleon decay, ...)

I'm a theorist so pardon me

Peter B. Denton (BNL)

MOOD: November 4, 2019 2/14

LAr versus Water

CP Violation Sensitivity

J. Alonso, et al. 1409.5864

MOOD: November 4, 2019 3/14

Peter B. Denton (BNL)

LAr versus Water

CP Violation Sensitivity

Mass Hierarchy Sensitivity

J. Alonso, et al. 1409.5864

LAr versus Water

CP Violation Sensitivity

Vincent Fischer, THEIA 1809.05987

Theia

30 7 **CP** Violation Sensitivity Mass Ordering Sensitivity Theia 70 kt Theia 70 kt Normal Ordering ······ Theia 17 kt Normal Ordering ······ Theia 17 kt 6 7 years DUNE 10 kt (CDR) 7 years DUNE 10 kt (CDR) 25 5 20 $\sigma = \sqrt{\Delta \chi^2}$ [⊲×15 10 0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 ×1 -1 δ_{CP}/π δ_{CP}/π

CP Violation Sensitivity

Mass Ordering Sensitivity

Theia 1911.03501

Peter B. Denton (BNL)

MOOD: November 4, 2019 6/14

Oscillation Comparison

The most interesting comparison isn't:

- ► MO
- $\blacktriangleright \ \delta \neq 0, \pi$
- $\blacktriangleright \Delta \delta$
- ▶ θ_{23} Octant
- $\blacktriangleright \Delta \theta_{23}$
- ► BSM

as a function of:

- ▶ 40 kt LAr vs. 100 kt WBD
- \blacktriangleright 40 kt LAr vs. 30 kt LAr + 25 kt WBD
- \blacktriangleright 40 kt LAr vs. 30 kt LAr + 25 kt WbLS
- \blacktriangleright 40 kt LAr vs. 30 kt LAr + 25 kt Oil

Peter B. Denton (BNL)

Will DUNE and T2HK Agree?

Combining oscillation experiments, often in slight tension

- 1. Solar + KamLand $(\Delta m_{21}^2) \rightarrow \text{tension}$
- 2. Reactor + T2K (θ_{13}) \rightarrow tension
- 3. T2K + NOvA $(\theta_{23}) \rightarrow \text{tension (sometimes)}$

Currently have at most one good measurement of each parameter

We should be prepared if/when more tensions appear

Peter B. Denton (BNL)

Putting the puzzle pieces together

Peter B. Denton (BNL)

MOOD: November 4, 2019 9/14

Long Baseline Consistency

DUNE and T2HK will need to be consistent with:

- 1. Each other on disappearance for $\sin 2\theta_{23}$ and $|\Delta m_{32}^2|$
- 2. Atmospheric on disappearance for $\sin 2\theta_{23}$ and $|\Delta m_{32}^2|$
- 3. Each other on appearance for MO, δ , and θ_{23}
- 4. Reactors for θ_{13}

Long Baseline Consistency

DUNE and T2HK will need to be consistent with:

- 1. Each other on disappearance for $\sin 2\theta_{23}$ and $|\Delta m^2_{32}|$
- 2. Atmospheric on disappearance for $\sin 2\theta_{23}$ and $|\Delta m_{32}^2|$
- 3. Each other on appearance for MO, δ , and θ_{23}
- 4. Reactors for θ_{13}

Many checks, if they disagree:

or

Systematics?

- ▶ Flux (norm, shape)
- ► Cross section (QE, Res, DIS, FSI, ...)
- ▶ Detector response, PID

► NSI (NC, CC)

• • • •

- ▶ Sterile (3+N)
- ▶ Decay (inv, vis)

New physics?

▶ Decoherence

Peter B. Denton (BNL)

. . .

MOOD: November 4, 2019 10/14

Interesting oscillation comparison

What if DUNE and T2HK don't agree?

$\begin{array}{l} 40 \ \mathrm{kt} \ \mathrm{LAr} + \mathrm{T2HK} + \mathrm{systematic} \ \mathrm{shift} \\ \mathrm{compared} \ \mathrm{to} \\ 40 \ \mathrm{kt} \ \mathrm{LAr} + \mathrm{T2HK} + \mathrm{new} \ \mathrm{physics} \end{array}$

Peter B. Denton (BNL)

MOOD: November 4, 2019 11/14

Interesting oscillation comparison

What if DUNE and T2HK don't agree?

40 kt LAr + T2HK + systematic shift compared to 40 kt LAr + T2HK + new physics

vs.

 $\begin{array}{l} 30 \ \mathrm{kt} \ \mathrm{LAr} + 25 \ \mathrm{kt} \ \mathrm{WBD} + \mathrm{T2HK} + \mathrm{systematic} \ \mathrm{shift} \\ \mathrm{compared} \ \mathrm{to} \\ 30 \ \mathrm{kt} \ \mathrm{LAr} + 25 \ \mathrm{kt} \ \mathrm{WBD} + \mathrm{T2HK} + \mathrm{new} \ \mathrm{physics} \end{array}$

Peter B. Denton (BNL)

MOOD: November 4, 2019 11/14

Interesting oscillation comparison

What if DUNE and T2HK don't agree? 40 kt LAr + T2HK + systematic shiftcompared to 40 kt LAr + T2HK + new physicsvs. 30 kt LAr + 25 kt WBD + T2HK + systematic shiftcompared to 30 kt LAr + 25 kt WBD + T2HK + new physicsvs. 30 kt LAr + 25 kt WbLS + T2HK + systematic shiftcompared to 30 kt LAr + 25 kt WbLS + T2HK + new physics

Peter B. Denton (BNL)

MOOD: November 4, 2019 11/14

Secondary Physics Cases

Atmospheric neutrinos

Solar neutrinos

K. Kelly, et al. 1904.02751

Capozzi, et al. 1808.08232

Nucleon decay: Kaon channel? Galactic supernova: MO, many BSM constraints, astro DSNB: SN properties

Diffuse Supernova Neutrino Background can constrain $R_{\rm SN}$ and $f_{\rm BH}$

Secondary Physics Cases

Atmospheric neutrinos

Solar neutrinos

K. Kelly, et al. 1904.02751

Capozzi, et al. 1808.08232

Nucleon decay: Kaon channel? Galactic supernova: MO, many BSM constraints, astro DSNB: SN properties

Diffuse Supernova Neutrino Background can constrain $R_{\rm SN}$ and $f_{\rm BH}$

All benefit from more LAr

Peter B. Denton (BNL)

MOOD: November 4, 2019 12/14

Summary Table

Detector	Pros	Cons
LAr	Near detector	No cross check at 1300 km
	All secondaries	
Water	Cross check with HK for far	Near detector
	Different systematics	Secondaries (SK,HK)
WbLS	Different systematics	Near detector
		Secondaries (SK,HK,JUNO)
Oil	Different systematics	Near detector
		Secondaries (JUNO)

Thanks!

Peter B. Denton (BNL)

MOOD: November 4, 2019 14/14

Backups

Peter B. Denton (BNL)

MOOD: November 4, 2019 15/14

θ_{13} Tension at T2K

 $J = c_{12}s_{12}c_{13}^2s_{13}c_{23}s_{23}\sin\delta$

Peter B. Denton (BNL)

MOOD: November 4, 2019 16/14

Old θ_{23} tension at NOvA

NOVA 1806.00096

Peter B. Denton (BNL)

MOOD: November 4, 2019 17/14

Solar Parameters with DUNE and JUNO

F. Capozzi, et al. 1808.08232

Peter B. Denton (BNL)

MOOD: November 4, 2019 18/14

Supernova Neutrinos

K. Møller, A. Suliga, I. Tamborra, PBD 1804.03157

Peter B. Denton (BNL)

MOOD: November 4, 2019 19/14