Optical Properties of Liquid Argon measured by the PDS in ProtoDUNE-SP

Bryan Ramson (on behalf of the DUNE collaboration) LIDINE 2019, Manchester, UK August 30, 2019

Introduction — (What is DUNE?)

The Fermilab Deep Underground Neutrino Experiment (DUNE) is a future accelerator based neutrino experiment hosted at Fermilab.

Will measure with greater precision:

- leptonic CP-violation (δ_{CP}, ΔL=0?)
- Neutrino oscillation (θ_{12} , θ_{13} , and θ_{23})
- Neutrino mass hierarchy (NH or IH)

Will observe or further constrain:
Proton Decay (∠B=0?,GUT)

Will observe:

Core-collapse/supernova

burst neutrinos

Alex Himmel, 8/28/2019, 2:45 PM *Neutrino Overview*

August 30, 2019 Bryan Ramson I Optical Properties of LAr measured by the PDS

Introduction – (What is ProtoDUNE?)

The ProtoDUNE project is two full scale prototypes of different DUNE Far Detector Modules with proton beam from the CERN SPS. One is based on a Single Phase (SP) Liquid-Argon (LAr) Time Projection Chamber (TPC) and the other a Dual Phase (DP) Liquid/Gaseous-Argon TPC.

ProtoDUNE-SP consists of:

- Single-Phase (SP) Liquid-Argon (LAr) based Time-Projection Chamber (TPC)
- Photon Detection System (PDS)
- Cosmic Ray Tagger (CRT)

Individual Photon Detectors

August 30, 2019 Bryan Ramson I Optical Properties of LAr measured by the PDS

Introduction – (What is ProtoDUNE?)

The ProtoDUNE project is two full scale prototypes of different DUNE Far Detector Modules with proton beam from the CERN SPS. One is based on a Single Phase (SP) Liquid-Argon (LAr) Time Projection Chamber (TPC) and the other a Dual Phase (DP) Liquid/Gaseous-Argon TPC.

ProtoDUNE-SP consists of:

- Single-Phase (SP) Liquid-Argon (LAr) based Time-Projection Chamber (TPC)
- Photon Detection System (PDS)

Introduction – (What is ProtoDUNE?)

The ProtoDUNE project is two full scale prototypes of different DUNE Far Detector Modules with proton beam from the CERN SPS. One is based on a Single Phase (SP) Liquid-Argon (LAr) Time Projection Chamber (TPC) and the other a Dual Phase (DP) Liquid/Gaseous-Argon TPC.

ProtoDUNE-SP consists of:

- Single-Phase (SP) Liquid-Argon (LAr) based Time-Projection Chamber (TPC)
- Photon Detection System (PDS)
- Cosmic Ray Tagger (CRT)

Single photon rate observation and first calorimetric energy reconstruction of beam events from LAr scintillation light in protoDUNE-SP

3 August 30, 2019 Bryan Ramson I Optical Properties of LAr measured by the PDS

The ProtoDUNE-SP PDS as a testbed

- (For DC & DS) 1 Collector + 12 Sensors
 = 1 Detector with 4 channels (1
 Channel = 3 passively ganged sensors) ⁷
- (For ARAPUCA) 1 Collector + 144
 Sensors = 1 Detector with 12 channels
 (1 Channel = 12 passively ganged sensors)
- Two types of sensors: SensL SiPMs and Hamamatsu MPPCs
- Three types of Photon Collectors and two types of Photon Sensors across

60 Detectors

Christopher Macias, 8/30/2019, 2:20 PM Photon Detection System for ProtoDUNE Single Phase

127 nm LAr scintillation light

🛟 Fermilab 🕬

"Double-Shifted" (DS) Type Collector × 29

ARAPUCA device for detection of

scintillation photons

- Detector wide timing resolution improves by a factor of 1000!
- ~60% of interaction energy produces scintillation light, enabling a beam particle calorimetry cross-check
 Dante Totani, 8/29/2019, 9:15 AM Single photon rate observation and first calorimetric energy reconstruction of beam events from LAr scintillation light in protoDUNE-SP
 - Necessary for proton decay and supernova physics.

The ProtoDUNE-SP PDS as a testbed

- (For DC & DS) 1 Collector + 12 Sensors
 = 1 Detector with 4 channels (1
 Channel = 3 passively ganged sensors)
- (For ARAPUCA) 1 Collector + 144
 Sensors = 1 Detector with 12 channels
 (1 Channel = 12 passively ganged "D
- Two types of sensors: SensL SiPMs and Hamamatsu MPPCs
- Three types of Photon Collectors and two types of Photon Sensors across

60 Detectors

Christopher Macias, 8/30/2019, 2:20 PM Photon Detection System for ProtoDUNE Single Phase ProtoDUNE-SP Geometry (sans CRT)

- Detector wide timing resolution improves by a factor of 1000!
- ~60% of interaction energy produces scintillation light, enabling a beam particle calorimetry cross-check
 Dante Totani, 8/29/2019, 9:15 AM Single photon rate observation and first calorimetric energy reconstruction of beam events from LAr scintillation light in protoDUNE-SP
- Necessary for proton decay and supernova physics.
- 4 August 30, 2019 Bryan Ramson I Optical Properties of LAr measured by the PDS

 Can force all ProtoDUNE-SP subsystems to trigger on CRT pixel coincidence.

Downstream CRT/CTB Pixel Map

y z	Beam Side		Non-Beam Side	
	Ch 22	Ch 23	Ch 24	Ch 25
	Ch 21	Ch 31	Ch 30	Ch 26
	1.6 meters Ch 20	Ch 29	Ch 28	Ch 27
1.6 meters	Ch 19	Ch 18	Ch 17	Ch 16

ده به ۳ ۲ ۲ ۲

Ch 13

Ch 14

Ch 7

1.6 meters Ch 4

Ch 5

Ch 6

Beam Side

y z

Upstream CRT/CTB Pixel Map

Ch 12

Ch 15

Ch 8

Ch 11

Ch 10

Ch 9

5 August 30, 2019 Bryan Ramson I Optical Properties of LAr measured by the PDS

Non-Beam Side

Downstream Pixel

- Can force all ProtoDUNE-SP subsystems to trigger on CRT pixel coincidence.
- Cosmic muons entering/exiting through upstream/downstream planes are reconstructed in TPC

CRT/CTB Pixel Pair Trigger Frequency 10⁴ 30 10^{3} 25 10^{2} 20 10 15 5 10 15 0 **Upstream Pixel**

🛟 Fermilab 🕬

 Can refine CRT/TPC matching through comparison with orientation of CRT Pixels

Calculation of Trigger/Track Orientation Agreement

 Can refine CRT/TPC matching through comparison with orientation of CRT Pixels

Calculation of Trigger/Track Orientation Agreement

🛟 Fermilab 🕬

 Can refine CRT/TPC matching through comparison with orientation of CRT Pixels

Calculation of Trigger/Track Orientation Agreement

6 August 30, 2019 Bryan Ramson I Optical Properties of LAr measured by the PDS

Light from Cosmics

Sample is about 4 months of CRT-triggered cosmic data!

Light Stats				
Tech	Average	StdDev		
SensL+DC	20.24	17.19		
MPPC+DC	37.61	27.49		
SENSL+DS	84.22	79.39		
MPPC+DS	256.38	201.62		
ARAPUCA	689.23	630.13		

🛟 Fermilab 🕬

Light from Cosmics

Sample is about 4 months of CRT-triggered cosmic data!

• Sample stability varies slightly by depth and height of photon detector (<10%).

Light from Cosmics

Sample is about 4 months of CRT-triggered cosmic data!

• Sample variation by technology is small (<4%).

🛟 Fermilab 🕬

August 30, 2019 Bryan Ramson I Optical Properties of LAr measured by the PDS

7

Towards an Estimate of Attenuation

 Measurement of true attenuation currently untenable in ProtoDUNE-SP, however "pseudo-attenuation" is measurable with cosmics!

 $T \propto e^{-\lambda x}$

• Light from many sources (i.e. many "slices" of the track) complicates the concept of a single isotropic light source, track-integrated pseudoattenuation approximates true attenuation!

🛟 Fermilab 🕬

Towards an Estimate of Attenuation

 Measurement of true attenuation currently untenable in ProtoDUNE-SP, however "pseudo-attenuation" is measurable with cosmics!

 $T \propto e^{-\lambda x}$

8 August 30, 2019 Bryan Ramson I Optical Properties of LAr measured by the PDS

Summary and Next Steps

- An estimate of the optical properties was performed using cosmic tracks collected over four months in ProtoDUNE-SP.
- The light collected over the four months after the beam period was relatively stable in rate as were the collection efficiency of the different technologies.
- Pseudo-attenuation was used to estimate attenuation, but is by construction less precise than a true single source attenuation measurement.
- Possible effects from reflections and contaminants exist.

🛟 Fermilab 🕬

• Some effects can be disentangled with Monte Carlo.