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QIS Projects in CELS (ALCF, BIO, CPS, DSL, ES, MCS)
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Project description Collaborators Funding Agency

Advancing Integrated Development Environments for 
Quantum Computing through Fundamental Research

LBNL, ANL, SNL, LANL, ORNL, UChicago ASCR ARQC

Fundamental Algorithmic Research for Quantum 
Computing 

SNL, ANL, LANL, LBNL, ORNL, University 
of Maryland, Caltech, Dartmouth

ASCR ARQC

Quantum Algorithms, Mathematics and Compilation 
Tools for Chemical Sciences

LBNL, ANL, University of Toronto, 
University of California Berkeley

ASCR QAT

Illinois-Express Quantum Network Fermilab, ANL, Caltech, Harvard, 
Northwestern

ASCR TOQNDS

Parameter sweep for SRF cavities using simulators and 
HPC

Fermilab, ANL HEP QuantiSED

Discovering new microscopic descriptions of lattice field 
theories with bosons

ANL HEP QuantiSED

Quantum-Enhanced Metrology with Trapped Ions for 
Fundamental Physics

NIST, ANL HEP

Quantum chemistry algorithms to simulate plasma facing 
materials with NISQ devices

GA, ANL FES

Two QAOA projects External collaborators DARPA ONISQ

Quantum circuit cutting ANL, Atos ANL LDRD

QuaC development ANL ANL LDRD



Computing Resources
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Atos: acquired QLM-35 September 2018 

➢ Strategic partnership announced at SC18

➢ Internship program

IBM Q Hub

➢ Signed IBM Q hub agreement October 2018

➢ Access to 3rd generation 20 qubit (53 qubit soon) 
quantum computers on the cloud

ALCF Supercomputers

➢ Theta: Cray XC40, 12 Petaflops peak 
performance, 4,392 nodes/281,088 
cores, 1 PB of memory

➢ Aurora: Exa-scale supercomputer in 2021



Quantum computing projects

▪ Quantum simulators: development and optimization of 
quantum simulators for supercomputers. Simulators: Intel-
QS, QuaC

▪ Solving various combinatorial optimization problems (Maxcut, 
community detection, graph partitioning, network alignment, 
graph coloring, maximum independent set). Scale up 
calculations using local search and multi-level methods

▪ Finding optimal optimization parameters for QAOA by using 
machine learning
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Large scale quantum simulations

▪ Ported and optimized for 10 PF Theta supercomputer to run 45 qubit simulations 
using Intel-QS

▪ Compress state amplitudes up to 10,000 times using SZ package which allowed 61 
qubit simulation requiring 32 EB of memory (Theta has ~1 PB), SC19 paper

▪ Plans to port and optimize QuaC for Aurora exa-scale supercomputer. Ultimate 
goal using tensor slicing and amplitude compression to execute 100+ qubit 
simulations
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Combinatorial Optimization Problems

▪ Combinatorial problems: find a grouping, ordering, or assignment 

of a discrete, finite set of objects that satisfies given conditions.

▪ Applications: logistics, supply chain optimization, security, design 

& control (DOE application: design of meta materials, control of 

wild-fire fighting, design of experiments)

▪ Graph MaxCut: partition the vertices into into two disjoint subsets 

such that the total weight of edges connecting the two subsets is 

maximized. Formally,
max ½ σ𝑖<𝑗 𝑤𝑖𝑗(1 − 𝑧𝑖𝑧𝑗)

𝑠. 𝑡 𝑧𝑖 ∈ 1, −1 , ∀𝑖 ∈ [𝑛]

▪ Other combinatorial problems of interest: community detection

and graph partitioning

▪ Challenge: solution space grows exponentially in the problem size.

▪ Approximation ratio, 𝛼 =
𝐶 𝑧

𝑚𝑎𝑥 C z
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Quantum Approximate Optimization Algorithm 

(QAOA)
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▪ A variational hybrid quantum-classical algorithm:

1. Encode the classical objective function in a cost Hamiltonian by 

promoting each binary variable 𝑧𝑖 into a quantum spin 𝜎𝑖
𝑧

2. Generate a variational wave function (2𝑝 parameters) by repeated 

application (𝑝 times for depth 𝑝 circuit) of  the cost Hamiltonian and 

the transverse field mixer Hamiltonian 𝐻𝑚 = σ𝑖 𝜎𝑖
𝑥 on the prepared 

uniform superposition state 

3. Maximize the expected energy of the cost Hamiltonian by new choice 

of variational parameters 𝛾, 𝛽 through a classical optimization loop. 

Classical Optimization 
Cycle

Quantum 
State 

Evolution



Solve QAOA optimization problems at scale

▪ Use hybrid/decomposition (local search and multi-level) approaches to 
solve large NP-hard combinatorial optimization problems

▪ Implemented on IBM Q hub and D-Wave quantum computers

▪ The challenge is that only 20 qubits are available on IBM Q quantum 
devices

▪ Applied to real-world networks of up to 10,000 nodes using only 16-20 
qubits

▪ Published in Advanced Quantum Technology, IEEE Computer, SC18 Post 
Moore's Era Supercomputing workshop
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Quantum Local Search

▪ Local search applied to Community Detection

– Start with some initial solution

– Search its neighborhood on a NISQ device

– If a better solution is found, update the current solution

Part 1 (fixed)

Part 2 (fixed)

Optimized on NISQ device
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▪ Use IBM 16 Q Rueschlikon and D-
Wave 2000Q as subproblem solvers

▪ Classical subproblem solver (Gurobi) 
used for quality comparison

▪ Fix subproblem size at 16

▪ Used real-world networks from The 
Koblenz Network Collection with up 
to 400 nodes

Quantum Local Search Results

Graphs



▪ What if our problem is too large to effectively cover with local search 
iterations?

▪ Solving 400 node graph with QLS takes ~30 calls to quantum subproblem 
solver

▪ The solution is Multiscale Approach

– Iteratively coarsen the problem

– Solve coarse problem small enough on NISQ device

– Uncoarsen

• Iteratively project solution onto finer level

• Refine it by running iterations of QLS done using NISQ device

Multiscale QLS (MS-QLS)



Multiscale QLS (MS-QLS)

…



Quantum Local Search Results



Results

▪ Solve 22k node graphs with just 20 qubits in ~ 100 iterations

▪ Projected time is seconds – given better hardware

▪ Competitive with classical state-of-the-art in terms of quality of the 
solution and speed for real-world-scale problems



QAOA optimization algorithm
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Classical Optimization 
Cycle

Quantum 
State 

Evolution

- It is important to be able to find quickly
beta and gamma parameters
- It can be in some cases NP-hard problem



Finding QAOA parameters using machine learning

▪ Use machine learning methods (including Bayesian optimization) and sequential 
optimization to find optimal parameters beta and gamma for QAOA applied to 
Maxcut and community detection

▪ Build machine-learned mixer Hamiltonian using DeepHyper (reinforcement 
learning package) developed by Prasanna Balaprakash

▪ Looking for a collaboration with other national laboratories in the area of ML-
assisted quantum computing
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Finding QAOA parameters using machine learning
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Random Ladder

Barbell Caveman



Finding QAOA parameters using machine learning
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Density projection for various instances



Results
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Analytical formulas

▪ “The Quantum Approximation Optimization Algorithm for MaxCut: A Fermionic 
View”, Zhihui Wang, Stuart Hadfield, Zhang Jiang, and Eleanor G. Rieffel
https://arxiv.org/pdf/1706.02998.pdf

▪ Formula to find parameters of a special case Maxcut, the ring of disagrees, or the 
1D antiferromagnetic ring
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https://arxiv.org/pdf/1706.02998.pdf


QIS Team at Argonne
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Co-PIs

Postdoctoral fellow

Computing interns 
Spring, Summer ‘19

QAOA team
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Learning a variational Circuit Optimizer

▪ Can we learn a general optimizer that performs well (i.e., find optimal variational 
parameters, or suboptimal with high approximation ratio) on new graph 
instances?

with Deep Reinforcement Learning
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Gradient Descent:
Δx = −𝛾∇𝑓(𝑥 𝑖−1 )

Newton’s Method: 

Δx =
−∇𝑓(𝑥 𝑖−1 )

ℍ[𝑓 𝑥 𝑖−1 ]

Agent

Environment

Reward/Penalty
Next 
State

Action

▪ General iterative optimizer for continuous 
unconstrained problems,

▪ Basic reinforcement learning framework,

▪ Modeled as a Markov Decision Process (MDP)

given: objective function 𝑓
𝑥0 ← 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑚𝑎𝑖𝑛

for 𝑖 = 1,2, …
∆𝑥 ← 𝒢 𝑥0, 𝑥1, . . , 𝑥𝑖−1

if stopping condition is met, 
return 𝑥 for which 𝑓 is max

end
𝑥𝑖= 𝑥𝑖−1 + ∆𝑥

end for 


