Dr
Robert Parrish
(QC Ware Corporation)
9/23/19, 11:05 AM
We present some recent developments in hybrid quantum/classical methodology for first-principles photochemistry simulations of large multichromophoric complexes. The first key tool utilized is an ab initio exciton model (AIEM) that uses on-the-fly ab initio computations on chromophore monomers to parametrize a Frenkel-Davydov-type exciton model that is mappable to a Pauli-sparse qubit...
Dr
Ian Mondragon
(Argonne National Laboratory)
9/23/19, 11:30 AM
Recent quantum simulators have found unexpected coherent and persistent oscillations in an ergodic system at infinite temperature. This behavior has been theoretically understood by studying kinematically constrained spin models that lead to special low-entangled states that are embedded in a thermalizing spectrum. We study the robustness of the dynamics generated by these special states...
Dr
Michael Newman
(Duke University)
9/23/19, 11:55 AM
Although there are promising near-term applications for NISQ algorithms, quantum computing’s most impactful algorithms will likely require a fully fault-tolerant quantum computer. Given the fragility of quantum information, building this computer is a daunting task. Most proposals for fault-tolerance are based on quantum error-correcting codes, in which the information is preserved in code...
Martin Suchara
(Argonne National Laboratory)
9/23/19, 3:20 PM
This talk explains how classical supercomputing can aid unreliable quantum processors of intermediate size to solve large problem instances reliably. I will describe the benefits of using a hybrid quantum-classical architecture where larger quantum circuits are broken into smaller sub-circuits that are evaluated separately, either using a quantum processor or a quantum simulator running on a...
Dr
Zhoushen Huang
(Argonne)
9/23/19, 3:45 PM
Principal component analysis (PCA) is a popular Machine Learning algorithm used for dimensional reduction. We show that PCA is naturally suited for the extraction (and subsequent utilization) of quantum information in problems involving state ensembles. We illustrate its representational power in the context of quantum manybody ground state manifolds, and discuss an application in predicting...