DUNE Near Detector TPC R&D: Kapton Material Studies

F. Drielsma, R. Itay, D.H Koh, H. Tanaka on behalf of the SLAC DUNE group

August 21, 2019

Summary of activities

Current TPC hardware research group at SLAC:

- H. Tanaka
- Two postdocs: R. Itay, F. Drielsma
- Two grad. students: L. Domine, D.H. Koh
- Two summer students: M. Vives, J. Weaver
- One mechanical engineer: K. Skarpaas
- One technician: R. Conley

Main involvements in detector R&D:

- 1. Local cryostat (R. Itay, L. Domine, J. Weaver, K. Skarpaas)
- 2. Kapton studies (F. Drielsma, D.H. Koh, M. Vives, K. Skarpaas)
- 3. ArgonCube 2x2 TPC module design (K. Skarpaas)

Kapton as a TPC resistive shell

Motivations for resistive shell:

- 1. Remove failure points (resistors) of field-shaping ring designs
- 2. Less components, less complex
- 3. Smaller footprint

Requirements:

1. $\mathcal{O}(1) \operatorname{G}\Omega \cdot \Box$ sheet resistance $(R_s = \rho/t)$

2. Cryoproof

 \rightarrow Dupont DR8 C-doped Kapton is an ideal candidate as it is robust to cold temperatures and has adequate resistivity.

Ref: arXiv:1903.11858, R. Berner et al.

Kapton field cage studies

Studies underway:

- 1. Material studies
 - Temperature dependence
 - High voltage scan
 - Uniformity
 - Stability
- 2. Lamination on G10 (fiberglass)
 - Epoxy glue
- 3. Metalization
 - Aluminum foil + epoxy glue
 - Copper tape

Kapton material studies apparatus

- o 28x22 cm sheets of DR8 C-doped Kapton
- Voltage sources:
 - ▶ HP E3631A 0-50 V DC, 0-1 A
 - Glassman ER-series 0–40 kV DC, 0–6 mA
- Fluke T3000 K-type thermocouple
- Current readout in series:
 - ▶ Keithley DMM6500 (10⁻¹¹ A res.)
 - Keithley 485 picoammeter (10^{-13} A res)

F. Drielsma, R. Itay, D.H Koh, H. Tanaka (SLAC)

SLAC DUNE Near Detector TPC R&D

Kapton material studies DAQ

Kapton Data Acquisition

DAQ Controls	3	
START	STOP	
kapton_daq		
config_default.json		
{ "sampling_time": 0.0, "refresh_rate": 0.0, "output_name": "kapton_daq", "instruments": { "instruments": { "type": "multimeter", "makes": "generic_sepi", "makes": "generic_sepi", ""		

	DAQ Log
DAQ log will appear here when available	

Kapton resistivity: temperature

50.03 V, L = 22cm, W = 22cm

• 50 V DC

Setup:

- TC against Kapton
- Kapton raised on stand-offs above an LN₂ bath

Behavior compatible with hopping transport model, i.e.

$$\rho \propto \exp\left[1/\sqrt{T}\right]$$

$$\label{eq:Factor} \begin{split} \text{Factor} \sim 10 \text{ increase in res.} \\ \text{in } \text{LN}_2 \text{ (seen at Bern)} \end{split}$$

Kapton resistivity: voltage

Setup:

- 0-40 kV DC
- $\circ~$ Kapton submerged in LN $_2~(\sim$ 77 K)
- $\circ \ \ {\rm Three} \ 28 {\rm x} 22 \, {\rm cm} \ + \ {\rm one} \ \ 22 {\rm x} 22 \, {\rm cm} \ {\rm sheets} \ \ \\$
 - ▶ 0°: $E \perp$ length
 - ▶ 90°: $E \parallel$ length

Variations between orientations, sample to sample

Kapton resistivity: voltage

HV Testing: Sheet Resistance

Setup:

- 0-40 kV DC
- \circ Kapton submerged in LN₂ (~77 K)
- $\circ \ \ {\rm Three} \ 28 {\rm x} 22 \, {\rm cm} \ + \ {\rm one} \ \ 22 {\rm x} 22 \, {\rm cm} \ {\rm sheets} \ \ \\$
 - ▶ 0°: $E \perp$ length
 - ▶ 90°: $E \parallel$ length

Factor ~ 10 drop in resistivity at 40kV (seen at Bern) Peculiar resonance in resistivity around 2.5 kV. Will repeat measurement.

Kapton resistivity studies: E field

Setup:

- 0–40 kV DC 0
- Kapton submerged in LN_2 (~77 K)
- Three $28 \times 22 \text{ cm} + \text{one}$ 0 22x22 cm sheets
 - \blacktriangleright 0°: $E \perp$ length
 - ▶ 90°: $E \parallel$ length

Behavior compatible with hopping transport model, i.e.

$$\rho \propto \exp\left[-\sqrt{E}\right]$$

Kapton resistivity studies: anisotropy

Kapton resistivity studies: stability

Setup:

• 40 kV DC

- $\circ~$ Kapton submerged in LN $_2~(\sim$ 77 K)
- One 28x22 cm sheet

 $\circ ~\sim$ 7 hrs of recording

Order 1% decrease in resistance over full time.

Small but robust effect, will extend measurement duration in local cryostat with better controlled environment.

Kapton lamination studies

Basic procedure:

- Piece of G10
- Layer of exoxy glue
- Roll sheet of Kapton (used Dupont XC for tests, $R_S \sim M\Omega \cdot \Box$)
- Bleeder cloth
- Seal in bag
- Vacuum pump
- Cure (5 days)

Kapton lamination variants

Left to right, top to bottom:

1. Aluminum metalization between Kapton and G10

Excess glue

2. Identical + rubber bands

Wavy lamination

3. Two step lamination, aluminum glued with epoxy on top of Kapton

Successful

4. Single lamination, copper tape on top of Kapton

Successful

Kapton lamination cold tests: curves

F. Drielsma, R. Itay, D.H Koh, H. Tanaka (SLAC)

SLAC DUNE Near Detector TPC R&D

Kapton lamination cold tests: figures-of-merit

		Current [μ A]	$R_S \left[M\Omega \cdot \Box\right]$	Fraction
Al between (1)	Before	9.222	3.795	1
	Cold	7.363	4.753	1.253
	After	8.981	3.897	1.027
Al between (2)	Before	15.830	2.211	1
	Cold	12.416	2.819	1.275
	After	15.073	2.322	1.050
Al top	Before	16.140	1.859	1
	Cold	11.732	2.557	1.376
	After	15.885	1.889	1.016
	Cold	11.562	2.595	1.396
	Final	15.723	1.908	1.026
Cu top	Before	10.402	2.884	1
	Cold	8.078	3.714	1.288
	After	9.936	3.019	1.047
	Cold	8.054	3.725	1.292
	Final	9.873	3.039	1.054

Stantard testing procedure:

- 25V DC metal to metal
- Measurement taken after lamination (*before*)
- Measurement at LN₂ temperature (*cold*)
- Measurement after slow warm up (*after*)

Observations:

• Order % increase in resistance after a cold cycle, seems reasonable

F. Drielsma, R. Itay, D.H Koh, H. Tanaka (SLAC)

Summary

Prelimary tests confirm Kapton as a viable TPC resistive shell

- $\,\circ\,$ Exhibits desired resistance at LN $_2$ temperature and realistic fields (${\cal O}(1)\,{\sf kV/cm})$
- $\,\circ\,$ Can be bonded to G10 sheets without de-laminating in ${\sf LN}_2$
- Can be metalized in multiple ways without loss of conductivity at cryogenic temperatures

Material studies show good predictive power of VRH model:

- $\,\circ\,$ Resistance increases as temperature decreases as $\exp\left[T^{-1/2}\right]$
- $\,\circ\,$ Resistance decreases as the electric field increases as $\exp\left[E^{1/2}\right]$

To be investigated:

- $\circ~100\,V/cm$ resonance with high voltage probe
- Longer-term stability tests

Technical note being assembled.