Magnet WS -- MPD Magnet

A. Bross ND general meeting 9/18/19

Superconducting 3-coil Helmholtz with 2 superconducting bucking coils

- Overarching requirements
 - Large acceptance for particles leaving LAr
 - Present minimal mass
- Central field = 0.5T
- 5 Coil system
- Side coils at 2.5 m, shielding coils placed at 5 m from the magnet center in Z.
 - All coils have the same inner radius (3.5m)
 - Center and shielding coils are identical.
- Basic magnetic, cryostat and structural designs complete
- Design Team
 - Vladimir Kashikhin, Colin Narug, Thomas Strauss (TD) [Sandor Feher]
 - Don Mitchell (PPD)
 - Terry Tope (AD) [Jay Theilacker]

Coils

- Peak coil fields: 2.53 T (center), 3.32 T (side) 2.72 T (shield).
- Total stored energy 109 MJ
- Forces Fz : 0.0 (center), 8.2 MN (side), 4.5 MN (shield).
- Side coils at 3.0 m, shielding coils placed at 5.5 m from the magnet center in Z.
- > All coils have the same inner radius 3.8 m and outer radius 3.862 m.
- Center and shielding coils are identical and have the same number of ampere-turns.

Stray field analysis

KLOE iron max field from ND is 0.4 T at zero current in KLOE solenoid. Horizontal force between magnets (on ND coils) is 202 kN. Horizontal force on KLOE solenoid is zero.

Sept. 18th, 2019 A. Bross I ND General Meeting

Alternate alcove position

Mechanical/cyro design

With HPgTPC

Mechanical details

Mechanical details II

Cold mass supports

- 4 Supports = .192W total load into coil (4K).
- Radiative load to 4K <1W/coil
- Cyro-cooler option still viable, if coils powered in series
 - Only 2 leads then @ 3W/lead

Cyro-cooler option

Excellent progress, but much to do

- Analyze magnet loads induced by proximity of KLOE magnet
- Side loads will need supports that will induce more heat loads impact on cooling system
- Design side load supports
- Support cryo-team with any required mechanical design work to help determine the cooling path
- Reduce footprint of magnet system to fit, lengthwise, in ND hall
- Analyze cryostat shell under various loading schemes and design to code allowed deflections and stresses
- Work with Rockwood Composites to properly size the straps
- Develop the installation and transportation mounts within the 16 ports
- Work with Analysis group to perform a complete coil analysis under gravity, cool-down, and energizing phases of operation
- And more...

Alternate design I: Double-dipole

- Andrea Bersani (Genoa)
 - Developed during WS!
- Ups and downs of the iron slabs
 - they are an order of 500 t problem
 - they can provide independent path load for pressure vessel, calorimeter and coils
- W.r.t. Helmholtz coil design:
 - shorter in beam direction
 - taller
 - no material along beam line

Alternate design II: Solenoid w/ PRY

- Calorimeter is integrated "around" or inside solenoid cryostat
 - Fit in access shaft as currently configured?
 - Depends on cryostat thickness
 - TPC is inserted via rails integrated in the calo-cryo system
- possibly calo "end-caps" can be assembled at this stage
- Detector is inserted laterally in the beams

Conclusions

- 5C Helmholtz design reaching maturity
 - No show-stoppers
 - Stray-field analysis continues
- Alternate designs will be investigated by Genoa group
 - Discussion at ND WS at DESY in October

