ND-SAND (System for on-Axis Neutrino Detection)

Luca Stanco, INFN – Padova *for the SAND Collaboration*

ND meeting, January 22, 2020

SAND people

SAND: a very wealthy group from merging of 3DST and KLOE groups (about 100 people from about 20 institutions)

Bi-weekly meetings, chaired by four convenors* on a monthly basis (Lea Di Noto, Paola Sala, Guang Yang, Davide Sgalaberna)

People very active and very kind...

Active on many fronts: event simulation, background estimation, test-beams, internal Infrastructure, and general infrastructure at FNAL near site

A couple of results will be here reported as examples, much more at the DUNE general meeting on next week.

* Please, note: <u>Convenors</u> .not.equal. <u>Coordinators</u> Else, it seems there has often been a missing communication between AHA and SAND

Public (to DUNE) presentations about SAND

- DUNE general meeting on September 2019, FNAL, general session:
 Sergio Bertolucci,
 https://indico.fnal.gov/event/21445/session/19/contribution/23/material/slides/0.pdf
- DUNE general meeting on September 2019, FNAL, ND session: Chang Kee Jung, <u>https://indico.fnal.gov/event/21445/session/15/contribution/41/material/slides/0.pdf</u>
- Near Detector Workshop for DUNE on October 2019, Hamburg: Davide Sgalaberna, <u>https://indico.fnal.gov/event/21340/session/1/contribution/6/material/slides/0.pdf</u>
- LBNC meeting on December 2019, CERN: Sergio Bertolucci, <u>https://indico.cern.ch/event/857610/contributions/3654731/attachments/</u> <u>1957937/3252993/LBNC_Dec_6th_2019_SB.pdf</u>

ND - CDR

- December 2019, new input from groups/studies
- January 2020, major editing push, begin internal reviews
- February 2020, revise and edit using internal review feedback
- March 2020, version ready for LBNC

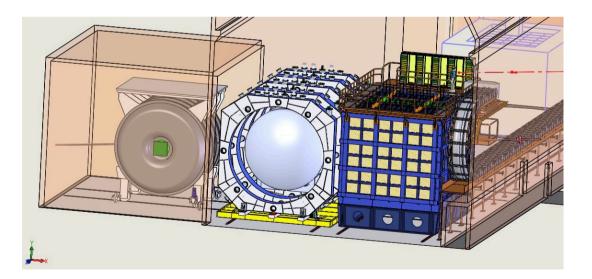
Huge effort, mainly during Xmas holidays, by the SAND delegates: Laura Patrizii, Davide Sgalaberna, Roberto Petti, Guang Yang, Sara Bolognesi

32 dense pages out of many exhaustive (and exhaust) discussions, thoughts, compromises...

Why SAND in the DUNE-ND system?

- SAND detector is the only component within the near detector (ND) complex that will be permanently located on-axis along the neutrino beam
- > ArgonCube and the MPD systems will move off-axis for about 50% of the time
- Crucial to have an on-axis beam monitoring to detect time-dependent spectral changes intrinsic to the beam, on a weekly basis
- The SAND system will continuously monitor the rate, spectrum and profile of the neutrino beam by measuring the event topology (energy+momentum) of the neutrino interactions on event-by-event basis.
- > Precision in-situ flux measurements of $v\mu$, a- $v\mu$, ve, a-ve (absolute and relative rates)

Provide the necessary redundancy and resolution to achieve a ND complex to improve the extrapolation of the v and a-v fluxes to the far detector, to constrain systematics from nuclear effects, and to be very robust against unknown unknowns



SAND in the ND hall

SAND will be permanently on-axis in a dedicated alcove

A possible schematic configuration is:

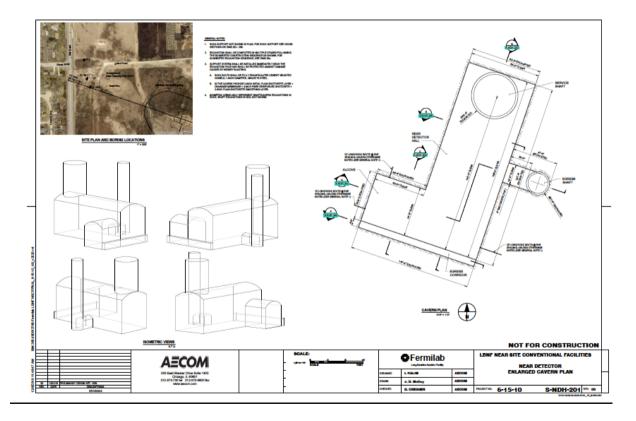
- > a superconducting solenoid magnet
- > an Electromagnetic Calorimeter (ECAL)
- a 3D scintillator tracker (3DST) as active neutrino target
- > a low-density tracker to precisely measure particles escaping from the scintillator
- ➤ a thin active Lar target

SAND in blocks

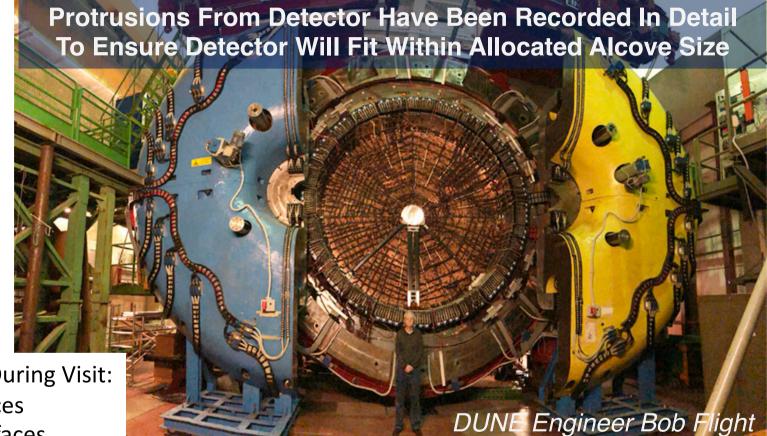
1.2	The Su	uperconducting Magnet	3
1.3	The Le	ead-Scintillating Fiber Calorimeter	4
	1.3.1	ead-Scintillating Fiber Calorimeter	4
	1.3.2	Reconstruction of Time, Position and Energy	<u>5</u>
		Calibration and Performance	

1.4	Three-	Dimensional Projection Scintillator Tracker
	1.4.1	Characterization of the 3D plastic scintillator concept with beam tests 10
	1.4.2	The mechanical box \ldots
	1.4.3	The light readout system
	1.4.4	The front-end electronics
	1.4.5	The light readout calibration system
	1.4.6	Current prototypes and future R&D
1.5	Time	The light readout calibration system
	1.5.1	TPC general design $\ldots \ldots \underbrace{14}$
	1.5.2	TPC performances and specifications
	1.5.3	TPC Micromegas modules and electronics
1.6		traw Tube Tracker
	1.6.1	A Compact Modular Design
	1.6.2	"Solid" Hydrogen Target
	1.6.3	Prototyping and Tests
	1.6.4	3DST+STT Configuration

PLUS PHYSICS PERFORMANCES


1 0	D · ·	
1.8	Detect	or and Physics Performances
	1.8.1	On-axis Beam Monitoring
	1.8.2	Neutron Detection \ldots
	1.8.3	Measurement of $ u(\bar{\nu})$ -Hydrogen Interactions
	1.8.4	Flux Measurements
		Constraining $ u(ar{ u})$ -Nucleus Cross-sections and Nuclear Effects
	1.8.6	External Background

ND hall infrastructure


Many (very positive) interactions with Matthaeus Leitner (in December 2019 he came to Frascati with Robert Flight)

Optimzed size (within safety requirements) of the ALCOVE

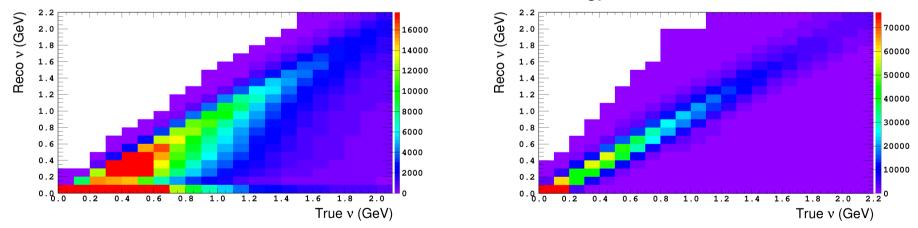
SAND: what exists

Topics Covered During Visit:

- Cavern Interfaces
- Electrical Interfaces
- Cryogenic Interfaces
- Handling Procedures
- Detector Assembly

Why SAND needs a 50 ton crane

Physics performances


Channel	u mode	$ar{ u}$ mode
$ u_{\mu}$ charged current (CC) inclusive	15.3×10^{6}	6.1×10^{6}
CCQE	3.9×10^{6}	2.4×10^{6}
CC π° inclusive	5.0×10^{6}	1.4×10^{6}
neutral current (NC) total	5.2×10^{6}	3.3×10^{6}
ν_{μ} -e ⁻ scattering	349	190
ν_{μ} CC coherent	$7.49 imes 10^5$	4.6×10^{5}
$\overline{}$ ν_{μ} CC low- $\overline{ u}$ ($ u$ <250 MeV)	$1.74{ imes}10^{6}$	1.4×10^{6}
ν_e CC coherent	7.3×10 ³	4.3×10^{3}
ν_e CC low- ν (ν <250 MeV)	1.9×10^{4}	$1.5 imes 10^4$
$\nu_e \ CC$ inclusive	2.4×10^{5}	8.7×10^4

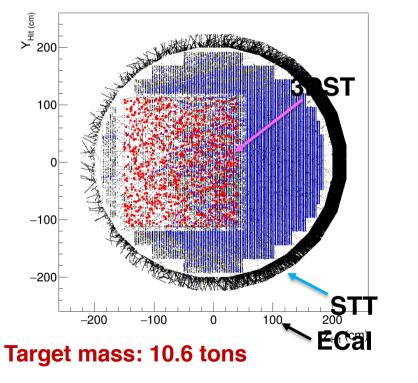
The importance of the neutron detection...

Projected event rates per year for a 2.4 x 2.4 x 2.0 m^3 3DST detector.

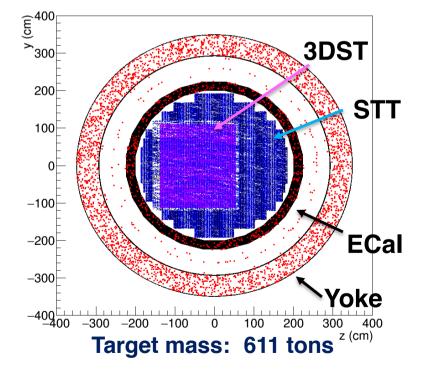
A 10 cm veto region at each side was required.

Reconstructed versus true v transfer energy in 3DST

In general, neutron measurement provides an event-by-event reconstruction of neutrino interaction, allowing for the selection of dedicated samples

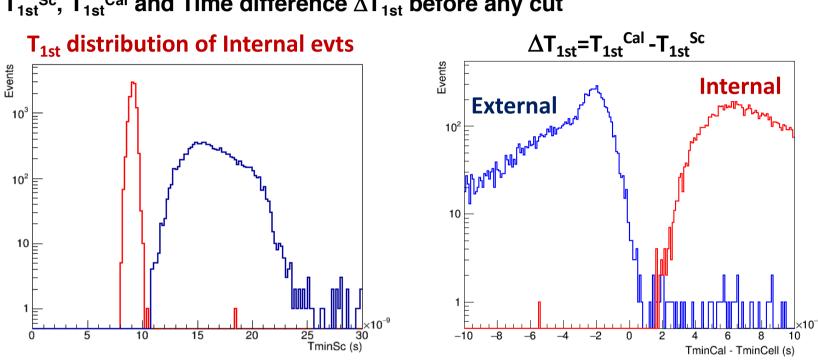

Physics performances

Background from induced external interactions


Active volume: 2.24x2.24x2m³

MC samples by FLUKA

"Internal" events: v_{μ} (CC) interactions inside 3DST



External" events: v_{μ} (CC+NC) interactions inside SAND magnet+Calorimeter (ECal)

Interaction vertices

Using only the timing, Fiducial-Volume and cell counts...

 T_{1st}^{Sc} , T_{1st}^{Cal} and Time difference ΔT_{1st} before any cut

Absolute Bck : ~1.2% of External events

Plus FV and N(cells)>30, extrapolated to include NC: : > Bck : ~1.8%

(from CC+NC interactions in magnet + ECal) based on Time difference between Ecal and 3DST

SAND in the next DUNE general meeting

Plenary:

- Introduction to SAND 15 mins

SAND Parallel:

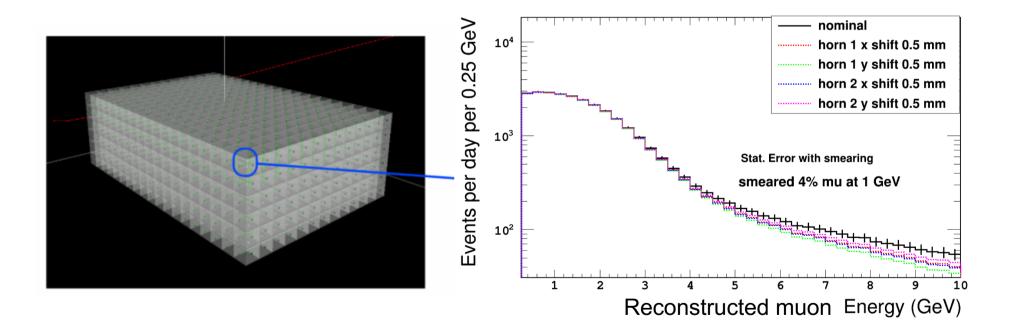
- KLOE integration in the ND hall 20 mins
- KLOE calorimeter/tracker background study 20 mins
- KLOE ECAL neutron detection study 20 mins
- KLOE beam monitoring study 20 mins
- 3DST general study (background, beam monitoring, event rate etc.) 20 mins
- 3DST neutron background study 20 mins
- 3DST acceptance with TPC 20 mins
- LANL neutron beam test 20 mins

ND software parallel:

- SAND software 20 mins

thanks

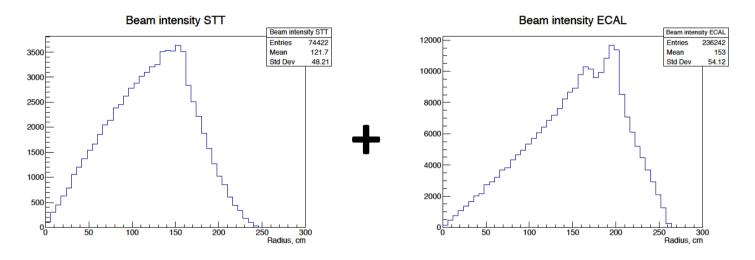
Backup slides


(none approved)

Beam monitoring with 3DST

3DST-like (8.7 tons on-axis) → shape available

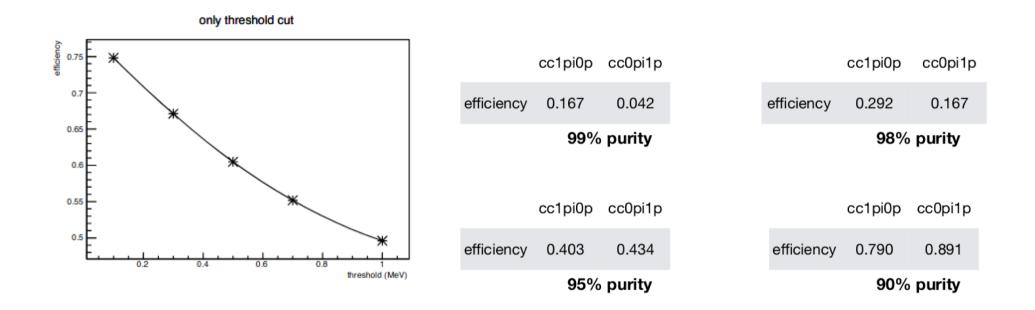
No ECAL information, yet



Beam monitoring with STT+ECAL

Study E_v and E_μ spectra as a function of the distance from the beam axis using interactions in STT, front ECAL, front magnet.

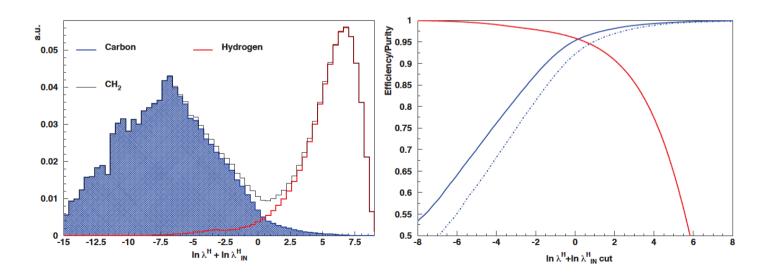
- Consider sample corresponding to 7 days: 3.78 Å~ 1019 p.o.t.
- events simulated with complete chain dk2nu+GENIE+GEANT4+edep-sim


Radial bins used to monitor E_{ν} and E_{μ} (ν_{μ} CC):

- STT: 0-100, 100-150, 150-250 cm
- ECAL: 0-100, 100-150, 150-200, 200-250 cm

Whole range for $\bar{\nu}_{\mu}$ CC sample

Background cut with topology (3DST)


The inefficiency mainly comes from threshold and secondary background cut: 60% and 20% (for 1 pi sample)

«Solid» hydrogen target

Exploit high resolutions & control of chemical composition and mass of targets in STT

- ◆ "Solid" hydrogen concept: v(⁻v)-H CC by subtracting CH2 and C thin (1-2%X0) targets:
 - STT detector designed to provide, on average, same acceptance for CH2 and C targets;
 - Model-independent data subtraction of dedicated C (graphite) target from main CH2 target;
 - Kinematic selection provides large H samples of inclusive & exclusive CC topologies with 80-95% purity and >90% efficiency before subtraction.
- \Rightarrow Viable and realistic alternative to liquid H2 detectors

