

Status of Ecloud Build-Up Simulations for the FNAL MI

Miguel A. Furman LBNL

Project-X Coll. Mtg. Fermilab, 21-22 Nov., 2008

- MI parameters
- Summary of e⁻ cloud observations at MI with RFA (~mid-2007)
- Brief description of simulation technique
- Fit simulations to measurements of e⁻ flux (J_e)
 —Extract peak SEY, δ_{max}=~1.3
- Compare f_{RF}=53 MHz vs 212 MHz
- Ecloud thresholds as function of no. of bunches (M) for high bunch intensity (N_b)
- Conclusions

Refs: M. Furman, CBP-TN-386, CBP-TN-387, CBP-TN-390, CBP-TN-392

My gratitude to I. Kourbanis and R. Zwaska

NB: recent measurements of n_e via microwave dispersion not addressed here

Motivation: plans to increase MI intensity for neutrino program

- Nominal operation:
 - —6 trains of 81 bunches ea. (f_{RF}=53 MHz, h=588)
 - —Gaps: 5 empty buckets in between trains + abort gap of 77 buckets
 - —Intensity: $N_b \sim 6x10^{10}$ /bunch ($\sim 3x10^{13}$ protons/pulse)
 - —Have achieved $N_b \sim 11 \times 10^{10}$ (but with 4 or 5 trains)
 - -e⁻ cloud observed, but is not an operational limitation
- Goal:
 - —Increase N_b to 30×10^{10}
 - —Will e⁻ cloud be a limitation?
 - —If so: mitigate
 - Possibly change f_{RF}
 - Possibly replace or coat chamber with low-SEY material

Example: 4 trains, N_b=(9.1–9.5)e10 (from I. Kourbanis report, ~26 Aug. 2007)

Bunch length during ramp (from I. Kourbanis report, ~26 Aug. 2007)

—C=3319.4 m —T_{RF}=18.8 ns —T_{rev}=11.1 μs

-ramp:

- •KE_b=8–120 GeV in ~0.5 s
- -transition at ~20 GeV

Measured 95% bunch length vs. momentum for $N_b=9.5 \times 10^{10}$

Summary of RFA measurements (extracted from I. Kourbanis report, ~26 Aug. 2007)

- For this exercise, take measured RFA signal only at E_b=60 GeV
 - —this is the peak signal for all cases
- To convert RFA voltage signal to e⁻ flux (R. Zwaska):
 - —assume 1 μA/V
 - -divide by 1.5 cm²
 - this assumes 30% area efficiency
 - —Typical: a few mA/m²

e^- flux at RFA vs. N_b for various fill patterns (E_b=60 GeV all cases)

"POSINST" code build-up simulations

- Simulate the actual fill pattern for each case
- Use actual values for N_b, σ_x , σ_y , σ_z for each E_b
- So far, done only $E_b = 8.9$, 20, 45, 60 and 90 GeV
- RFA location:
 - —Field-free
 - —Round pipe, R=7.3 cm
- Dipole bend:
 - -B=0.092 T at KE_b=8 GeV
 - -Elliptical pipe, (a, b)=(6.15, 2.45) cm
- Compute average J_e and n_e over 1 turn —this is long enough for sensible time averages

Simulated electron flux vs. peak SEY at E_b=60 GeV

—Indicates consistency in the model and the measurements

M. Furman, MI ecloud p. 8

BERKELEY

m

LAB

Infer e⁻ density from simulations

- Conclude $\langle n_e \rangle \sim 10^{10} 10^{11} \text{ m}^{-3}$ in the RFA region at E_b=60 GeV
- This range is typically considered "low"
 - << aver. beam neutralization level</p>
 - no significant effect on the beam expected
 - -consistent with observations

Compare field-free vs. dipole bend $n_e vs. \delta_{max}$ (E_b=60 GeV, same fill patterns, σ_z =19 cm)

- Threshold as a f. of δ_{max} in field-free region
- No threshold in dipole
- n_e in dipole ~3 times larger than in F.F. region
 —not yet explained

....

Berkele

Ш

Compare f_{RF} =53 MHz vs 212 MHz^(*) n_e vs. N_{tot} (RFA region, KE_b=8 GeV, δ_{max} =1.2, 1.3, 1.4)

- 53 MHz (dotted lines):

 - —bunch pop.=N_b
 - —RMS bunch len.= σ_z
- 212 MHz (solid lines):

 - —bunch pop.= $N_b/4$
 - —RMS bunch len.= $\sigma_z/4$
 - N_{tot}=MxN_b=(3–15)x10¹³ —field-free region —KE_b=8 GeV (injection) —SEY: δ_{max} =1.2, 1.3, 1.4
- (*) fill pattern slightly different from previous simulations

- Conclusion:
 - —Threshold as a function of N_{tot} for both 53 and 212 MHz
 - $-N_{tot,th}$ is ~2x higher for 212 than 53 MHz
 - —212 MHz better than 53 MHz, but gain is only factor ~2 above threshold
 - —For δ_{max} =1.3 and 53 MHz, ecloud reaches aver. beam neutralization level at $N_{tot}{=}{\sim}10{x}10^{13}$

M-dependence at N_b= $30x10^{10}$ J_e vs. M (RFA, KE_b=8 GeV, continuous train of bunches)

- Q: how long a bunch train do you need to start seeing appreciable ecloud at N_b=30x10¹⁰ and KE_b=8 GeV? (I. K.)
- A: about 50 in a f.f. region

M-dependence at $N_b = (10-30)x10^{10}$ n_e vs. M (KE_b=8 GeV, continuous train of bunches)

• Threshold in M strong function of N_b : ---M_{th}=50 for N_b=30x10¹⁰

 $-M_{th}$ =200 for N_b=15x10¹⁰

• For a dipole, M_{th} =200 for N_b =30x10¹⁰

M-dependence at N_b=(10-30)x10¹⁰ J_e vs. M (KE_b=8 GeV, continuous train of bunches)

- Explanation of threshold in M:
 - —It takes about 1 μ s (=~50 bunches) for ecloud to reach saturation at N_b=30x10¹⁰ (f.f. region)

m

- Nice, consistent set of results at a given beam energy
 - Results from E_b=60 GeV data imply δ_{max} ~1.25–1.30 and n_e~10¹⁰–10¹¹ m⁻³ on average at RFA location
 - Caveat: actual numbers depend on other assumed SEY parameters, eg., $\rm E_{max}$ and SE emission energy spectrum
 - But qualitative picture doesn't change much
- Ecloud in MI upgrade expected to go through a strong threshold in N_{tot} in range (3-15)x10^{13}

—Threshold ~2x higher for f_{RF}=212 MHz than for 53 MHz

 $-e^{-}$ density only lower by a factor ~ x2 above threshold

- RFA simulations (f.f. region) are ~insensitive to E_b
 - In <u>qualitative disagreement</u> with measurements
 - But E_b sensitivity consistent with SPS observations (Arduini, ECLOUD04)
- However, in dipole, n_e is ~3x larger than f.f. at E_b =60 GeV
 - But n_e is ~5-10x smaller than f.f. at E_b =8.9 GeV

_ ?

• More research (and funding) is needed!

- Simulated results for RFA (f.f. region) insensitive to E_b
 - —Qualitatively similar results when vary E_{max} and SE energy spectrum
- E_{b} enters only indirectly in the model, primarily through σ_{z}
 - —Therefore, not too surprising (to me) to see weak dependence on $\rm E_{\rm b}$
- However: measurements show strong dependence on E_b

- Dotted line: 53 MHz •
- Solid line: 212 MHz •
- So far explored only: •
 - —Field-free region
 - —E_b=9 GeV

Explanation

 For f_{RF}=212 MHz, electron-wall collision energy is < than for 53 MHz, hence effective SEY smaller

