H- Laser Stripping

Bob Zwaska Fermilab

Project X Collaboration Meeting November 21, 2008

Why Consider the Laser?

May be obvious for some, but to review:

- Foil Survivability
- Losses from nuclear interactions
- Scattering from foil crossings
- ➢ More flexible painting schemes (e.g. CW injection)

Also, a foil may not be that conservative

- Machines have tended to need thicker foils
- > Machines have tended to involve more foil crossings than planned
 - SNS has ~20 instead of 7 planned
- Longer injections become even more difficult

Stripping Efficiency

- Will 600 ug be enough?
 - > SNS went to thicker foils
 - > Booster already uses > 400 ug PrX should be almost 3 times thicker

November 21, 2008

Robert Zwaska

SNS Approach to Laser Stripping

- 3 step method:
 - Lorentz strip the outer electron
 - Excite atom with laser photons
 - Lorentz strip the excited electron

SNS Provides the Experience

- SNS has already shown >90% stripping efficiency
 - > But, only for a very short segment of the pulse
 - Used a frequency tripled Nd:YAG laser
 - Diverging laser beam avoids problem of doppler broadening
- They are upgrading their experiments and are considering a true stripping system
 - ➤ Need to reuse the laser energy to approach a full pulse
 - Mode-locking the laser
 - Fabry-Perot cavity / optical resonator

Project X Application

- 8 GeV laser stripping should be simpler than 1 GeV
 - Less magnet required for stripping
 - Lower laser photon energy required
 - > Able to use transition to n=2, instead of n=3
 - Less need for the dispersion function to be tailored
 - Smaller H- beam cross section
- However, still very challenging
 - > High average and instantaneous powers
 - Laser/vacuum interface
 - ➤ Stripping efficiency of > 99%
 - Reliability, longevity, and cost

Thoughts on an Appropriate Laser

- Nd:YAG is usually the default
 - ➢ High-powered, and available
 - Requires 95° interaction angle
- Ho:YAG (Holmium) may be a better choice
 - ➢ 2100 nm instead of 1040
 - ➢ 35° instead of 95° interaction
 - ➢ High powers still available
 - Used in medicine
 - Infrared light has fewer safety concerns, and is less harsh on its optics.

Models	Single Wavelength: Holmium		
	20 Watt	60 Watt	100 Watt
Wavelengths	2.1 microns	2.1 microns	2.1 microns
Repetition Rate	5-20 Hz	5-40 Hz	5-50 Hz
Energy per Pulse	0.5 - 2.5J	0.2-3.5J	0.2-3.5J
Max. Tissue Effect Setting	2J/10 Hz	1.5J/40 Hz	2J/50 Hz
Electrical	110V/15A & 220V/10A 50/60 Hz Single Phase	230V, 50/60 Hz 20/30A Single Phase	230V, 50/60 Hz 20/30A Single Phase
Dimensions	19" x 24" x 45" (48 cm x 61 cm x 114 cm)	18" x 36" x 39" (46 cm x 91 cm x 99 cm)	18" x 36" x 39" (46 cm x 91 cm x 99 cm)
Aiming Beam	0.8 mW at 650 nm, 3 intensity settings, constant and blinking modes	2.5 mW at 650 nm, 3 intensity settings, constant mode	2.5 mW at 650 nm, 3 intensity settings, constant mode
Treatment Data Output	Printer Output	None	None
Weight	185 lbs/84 kg	340 lbs/155 kg	340 lbs/155 kg
Pulse Duration	Up to 500 microseconds		
Cooling	Self-contained water-to-air exchanger		
Delivery Systems	More than 20 reusable and single-use, flexible and rigid, with standard SMA connector		
Warranty	One year parts and labor.		

R&D Plans for 2009

- Our best progress will be made by experiments at SNS
 > Opportunity for collaboration
- We need to understand the details of the magnets, laser, and optics involved for 8 GeV stripping
 - Generate a conceptual design
 - > Start engineering it to show that it is feasible
 - Start injection/painting simulations
 - Momentum collimation via stripping

H- Laser Stripping

Bob Zwaska Fermilab

Project X Collaboration Meeting November 21, 2008

November 21, 2008

Robert Zwaska