Transition energy jump at RHIC

Quadratic and linear jump

RHIC implementation

Fast transverse instability

Operating experience at RHIC

Thomas Roser Project X collaboration meeting Nov. 21, 2008

RHIC – a High Luminosity (Polarized) Hadron Collider

Gold Ion Collisions at RHIC

Delivered Integrated Luminosity and Polarization

<u>Nucleon-pair luminosity</u>: luminosity calculated with nucleons of nuclei treated independently; allows comparison of luminosities of different species; appropriate quantity for comparison runs.

Single bunch transverse instabilities

CERN PS transition (~ 7 GeV)
7 × 10¹² ppb, > 2.2 eVs
Occurs close to transition
Cured with long. blow-up and non-zero chromaticity

RHIC transition (~ 20 GeV/n)
1.5 × 10¹¹ cpb, ~ 0.3 eVs/n
Occurs close to transition
Cured with octupoles and non-zero chromaticity

Luminosity Limit – Fast Instability Near Transition

Evidence for electron cloud

1.1 7 <u>.</u> 1 > Intensity threshold without • ۲ Transition transmission 0.9 octupoles 0.8 0.7 0.6 0.5 • 0.4 0.3 0.2 0.3 0.2 0.4 0.5 0.6 0.7 0.8 Blue bunch intensity [10¹¹ d] 0.98 0 WCM transmission (after transition/before transition) 0 > Intensity loss at end of bunch trains 0 0 0 0 0 \mathcal{O} %0 0 0 0.96 0 00 0 0000 0 0 0 °° 0 ଢ଼ଡ଼ 0 00000 00 ംയ 8 0 0 0 00 0.94 00 0 00 0 0 0 0 0 0 0 0.92 0.90 0

> 0.88 0

100

200

Bucket number

0.9

0

1

0

0

0

0

0 °°

> 0 0

> > 0

300

00

000

1.1

1.2

400

γ_{T} jumps in AGS and RHIC

- γ_T jump in AGS is quadratic: γ_T changes with the square of the jump quadrupole current or only in one direction
 - Equal number of positive and negative distributed jump quadrupoles generate a large dispersion wave and no tune shift and no first order γ_T shift, only a second order shift.
- γ_T jump in RHIC is linear: γ_T changes linearly with the jump quadrupole current. The jump is bi-polar.
 - One set jump quadrupoles generate a local dispersion bump, which linearly changes γ_T . They also generate local beta waves that shift the betatron tune.
 - A second set is located in a dispersion-free region and generates a local λ beta wave to correct tune shift.
- There are six sets of dispersion and beta wave jump systems at RHIC to give a total γ_T jump of -2 units.
- Dispersion bump should also generate a + 3 unit H + V chromaticity jump due to chromaticity sextupoles

RHIC linear γ_T jump scheme

Beta waves advance twice as fast as dispersion waves Pairs of jump quad doublets confine dispersion Real phase advances are never exactly 90 degrees

D. Trbojevic, S. Peggs

RHIC implementation

G families change γ_T , **Q** families compensate tunes

Unoptimized optics:

- 1) some dispersion leaks into the Q family
- 2) phase advances are not constant, or near 90 degrees

$\Delta \gamma_{T}$ and chromaticity jump from RHIC model

Δγandξx,y

11

Single bunch transverse instabilities – I_{peak} limitation

