<u>MI RF SYSTEM UPGRADE</u> <u>for</u> <u>PROJECT X</u>

John Reid November 21, 2008

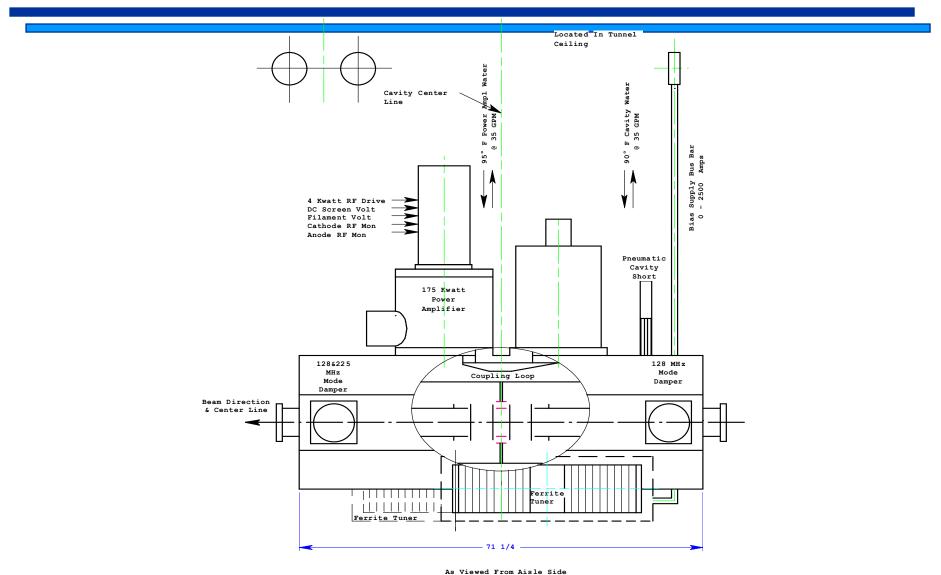
Scope

- Summary of MI RF System Parameters
- Diagram of existing MI RF Cavity
- New Cavity Design
- Beam Loading Compensation
- Recycler RF
- Four Year R&D Plan
- Conclusion

MI RF System Requirements

RF Parameter Table

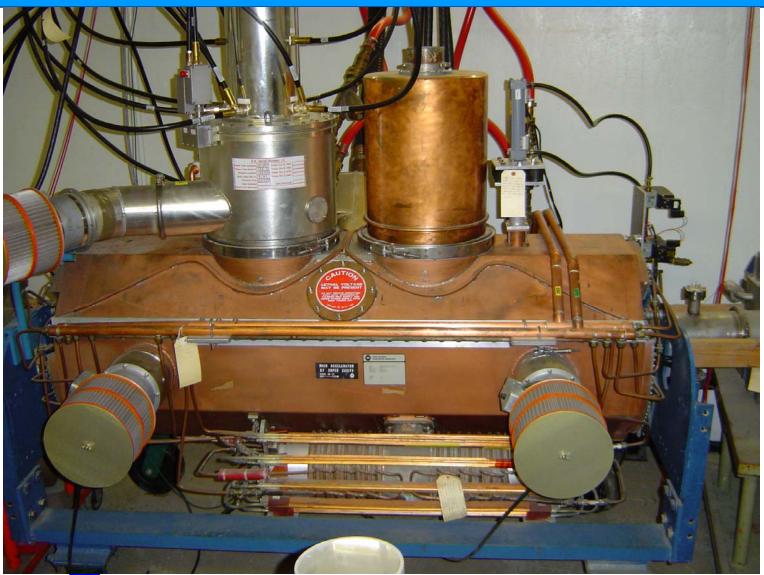
		Project X	Project X
	Present Main Injector	Two PA Cavity	New Cavity Design
Harmonic Number	588	588	588
Number of Filled Buckets	492	548	548
Frequency:	52.8114-53.104 MHz	52.8114-53.104 MHz	52.8114-53.104 MHz
Acceleration Ramp Slope:	205 GeV/s	240 GeV/s	240 GeV/s
Beam Intensity:	4.0E13 Protons	1.6E14 Protons	1.6E14 Protons
Beam Accelerating Power:	1.312 MW	6.144 MW	6.144 MW
Number of Accelerating Cavities:	18	20	18
Cavity R/Q:	104	104	25
Cavity Power Loss per Cavity	56.5 kW	56.5 kW	450 kW
Accelerating Power per Cavity (beam):	72.89 kW/Cavity	307.2 kW/Cavity	341.3 kW/Cavity
Maximum cavity Accelerating Voltage:	235 kV/Cavity	235 kV/Cavity	300 kV/Cavity
Accelerating voltage required: Vsin ϕ_s	2.27 MV	2.66 MV	2.66 MV
Total Accelerating Voltage Available:	4.23 MV	4.7 MV	5.4 MV
Total Peak Amplifier Power Required:(beam + cavity)	129.4 kW	363.7 kW	791.3 kW

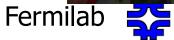


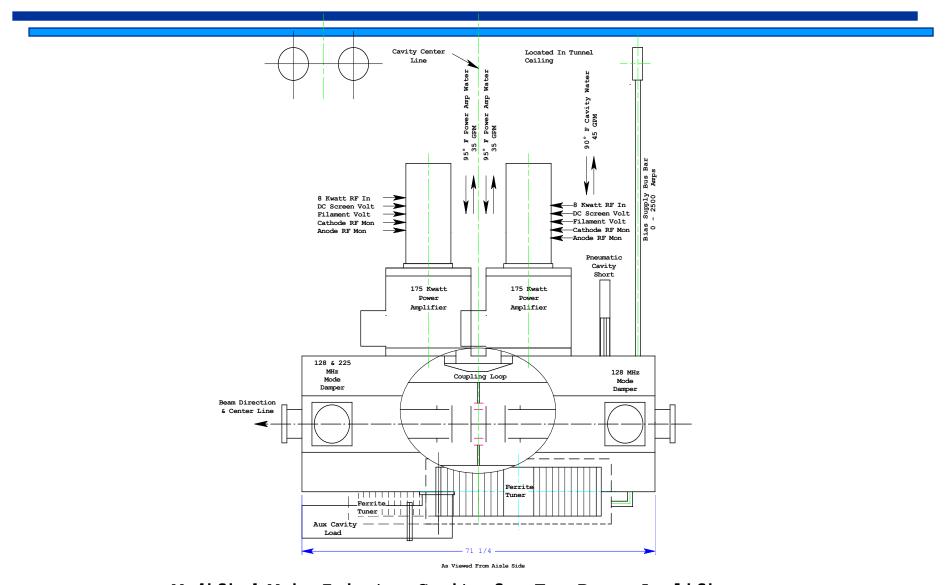
J. Reid Project X Collabration November 21, 2008

Two PA's on existing MI Cavities

- Not sufficient power to accelerate 1.6E¹⁴ protons.
- Does not increase cavity voltage, only available current.
- Duty factor limited to ~ 50 % due to cooling limitations in present cavity design.
- PA Power output rated at 175 Kwatts per PA, total of 350Kwatts per cavity for two PA cavity.
- **Project X requires ~ 364Kwatts for beam + Cavity**
- Need additional power for beam loading compensation.
- Not a suitable solution for Project X






Present Main Injector Cavity J. Reid Project X Collaboration November 21, 2008

Standard MI RF Cavity

J. Reid Project X Collaboration November 21, 2008

Fermilab

Modified Main Injector Cavity for Two Power Amplifiers J. Reid Project X Collaboration November 21, 2008

New RF System

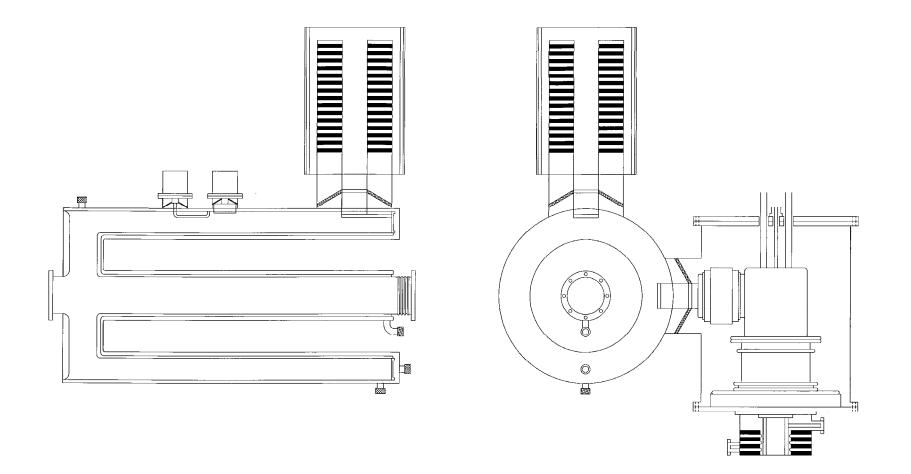
53MHz Specifications

- Intensity of 1.6E¹⁴ per MI cycle
- Maximum ramp rate of 240 GeV/s
- Cavity peak voltage of 300 kV
- 18 RF stations same as current system
- Frequency sweep: 52.8114 MHz to 53.104 MHz

106MHz Specifications

- Intensity of 1.6E¹⁴ per MI cycle
- Maximum ramp rate of 240 GeV/s
- Cavity peak voltage of 250 kV
- 5 RF stations

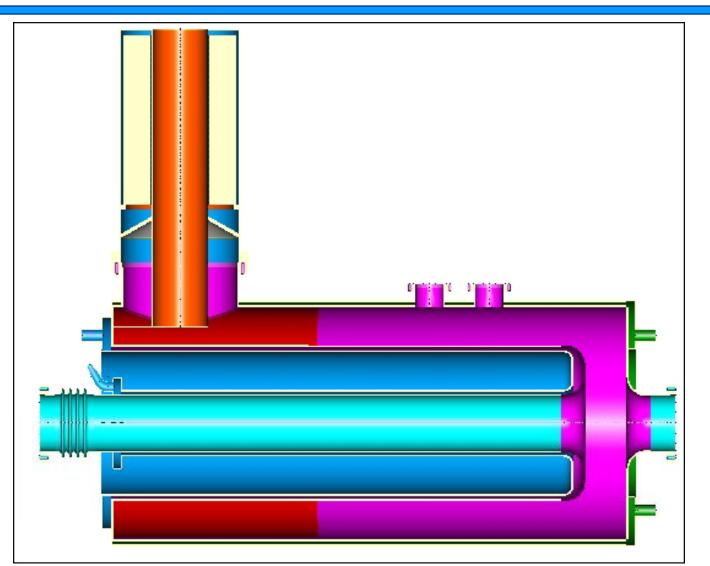
Fermilab


• Frequency sweep: 105.623MHz to 106.208MHz

Courtesy: D. Wildman Proton Driver Director Review March 2005 J. Reid Project X Collaboration November 21, 2008

Cavity Parameters

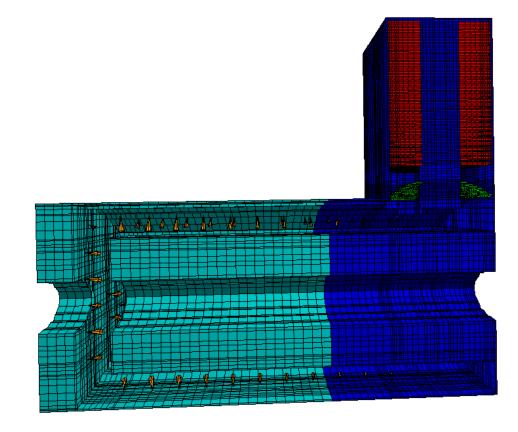
- Rs = 100 K
- Q = 4000, from copper coated stainless construction
- Rs/Q = 25, low Z transmission line
- Perpendicularly biased garnet tuner
- Present RF system will be driver for new PA
- Available PA Power Tetrodes:
 - CPI Eimac 8973 (1 Mwatt)
 - Thales TH525 (1.5 Mwatt)


Cavity Design

Courtesy: D. Wildman Proton Driver Director Review March 2005 J. Reid Project X Collaboration November 21, 2008

Fermilab

Cavity Design



Fermilab

Courtesy: D. Wildman Proton Driver Director Review March 2005 J. Reid Project X Collaboration November 21, 2008

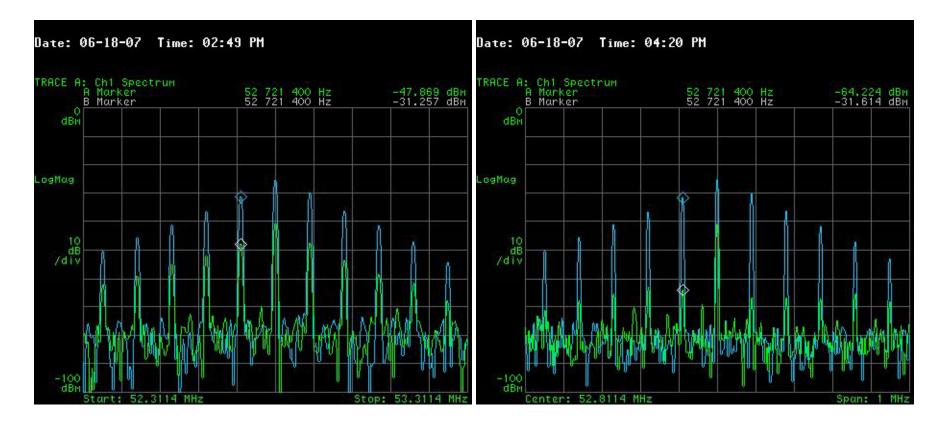
11

Cavity Design

Blue: copper Teal: stainless steel Green: ceramic window Red: ferrites

Advantages •Perpendicular biased •Low rf tuner losses •Use existing bias PS

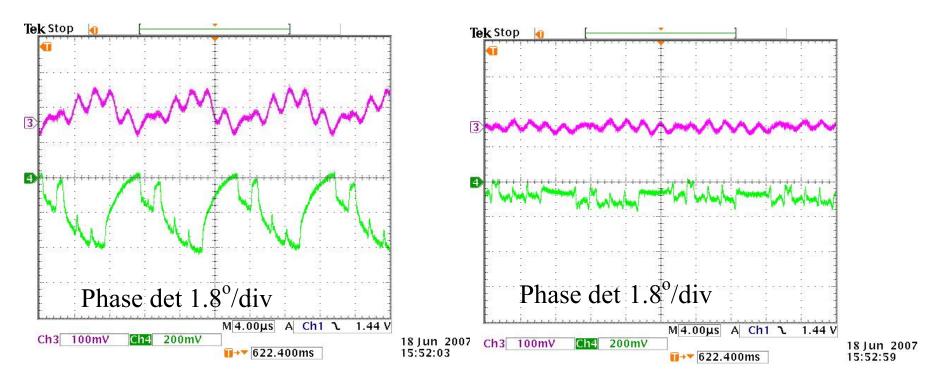
Courtesy: D. Wildman Proton Driver Director Review March 2005 J. Reid Project X Collaboration November 21, 2008


Beam Loading

• Present System utilizes:

- Direct rf feedback
- Feed forward (one turn delay)
- Digital comb filter presently under construction, proof of principle has been demonstrated on existing MI RF station 2.

Comb Filter Study MI Station 2



Direct + Feed forward 1st batch Direct + Feed forward + Comb (a) injection on RF Gap Monitor. Filter 1st batch (a) injection.

J. Reid Project X Collaboration November 21, 2008 14

MI Station #2 BLC – Time Domain

St 2 with Direct + Feed forward BLC only. Magenta: Detected Cavity Gap Green: St Fout to Fback Phase det. St2 with Direct + Feed forward + Comb BLC. Magenta: Detected Cavity Gap Green: St Fout to Fback Phase det.

J. Reid Project X Collaboration November 21, 2008 15

Recycler RF

• Specifications

- Main Frequency: 52.811 MHz
- RF Voltage: 800 kV
 - 4 cavities
 - Could be similar to new MI cavities
- Second Harmonic rf voltage: 400 kV
 - Cavity requires design from ground up
 - New PA and driver
 - 2 cavities

16

• Year 1

- 53MHz System
 - Draw HLRF System Architecture
 - Optimize cavity design
 - Run software simulations
 - Adapt present MIRF simulation software modeling
 - Design perpendicular biased tuner
 - Design cavity mode dampers with rf windows
 - Design rf power coupling with window
 - Schedule design review at end of first year
- 106MHz System
 - Start initial paper design of cavity
 - Run cavity software simulations

J. Reid Project X Collaboration

- Year 2
 - 53MHz System
 - Finalize mechanical drawings for construction of prototype
 - Start fabrication of major prototype cavity components
 - Cavity
 - Tuner
 - Mode dampers
 - Cavity stand
 - Assemble cavity and start low level rf cavity measurements
 - Start design of prototype power amplifier including resonator for using existing 150K watt MI power amplifiers as drivers.
 - 106MHz System
 - Complete cavity design
 - Schedule review

Fermilab

J. Reid Project X Collaboration November 21, 2008

- Year 3
 - 53 MHz System
 - Finish low level cavity & tuner measurements
 - Finish design & fabrication of prototype power amplifier
 - Complete high power testing of power amplifier into load
 - Start preliminary high power testing of cavity in MI60 test station
 - 106MHz System
 - Procure parts for prototype cavity
 - Design and start fabrication of prototype high power amplifier
 - Start assembly of prototype cavity as parts become available
 - Start low level testing of prototype cavity
 - Procure components for high power amplifier

19

• Year 4


- 53 MHz System
 - Complete high power testing in MI60 test station
 - Install cavity and power amplifier in MI tunnel for beam testing.
- 106MHz System
 - Complete high power testing in MI60 test station
 - Install cavity and power amplifier in MI tunnel for beam testing.

20

Conclusions

- Present 53 MHz rf cavities with two PA's not suitable for Project X.
- Need new rf cavities & power amplifiers.
 - Conservative design for beam stability shown.
 - Increase R/Q to reduce cavity power loss, thus less PA power required.
- Beam loading compensation techniques same as present system utilizing a combination of direct rf feedback, digital comb filter, and feed forward.
- R&D efforts should start NOW.

