Next-generation measurement of Muon g-2 and EDM with Low-Emittance Muon Beam at J-PARC

Sep 9, 2019

Tsutomu Mibe (KEK)

Three steps of g-2 measurement

1. Prepare a polarized muon beam.

helicity: -1 helicity: -1

2. Store in a magnetic field (muon's spin precesses)

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

3. Measure decay positron

Re-accelerated thermal muon

- Low emittance muon beam (1/1000)
- No strong focusing (1/1000) & good injection eff. (x10)
- Compact storage ring (1/20)
- Tracking detector with large acceptance
- Completely different from BNL/FNAL method

muon g-2 and EDM measurements

In uniform magnetic field, muon spin rotates ahead of momentum due to $g-2 \neq 0$

general form of spin precession vector:

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

BNL E821 approach $\gamma=30$ (P=3 GeV/c)

J-PARC approach E = 0 at any y

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right] \qquad \vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} (\vec{\beta} \times \vec{B}) \right]$$

J-PARC E₃₄

Expected results

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} (\vec{\beta} \times \vec{B}) \right]$$

Expected time spectrum of e^+ in $\mu \rightarrow e^+ \nu \nu$ decay

The first collaboration paper on experimental design

Prog. Theor. Exp. Phys. **2019**, 053C02 (22 pages) DOI: 10.1093/ptep/ptz030

A new approach for measuring the muon anomalous magnetic moment and electric dipole moment

M. Abe¹, S. Bae²³, G. Beer⁴, G. Bunce⁵, H. Choi²³, S. Choi²³, M. Chung⁶, W. da Silva⁻, S. Eidelman³⁵,¹¹, M. Finger¹¹, Y. Fukao¹, T. Fukuyama¹², S. Haciomeroglu¹³, K. Hasegawa¹⁴, K. Hayasaka¹⁵, N. Hayashizaki¹⁶, H. Hisamatsu¹, T. Iijima¹⁻, H. Iinuma¹³, H. Ikeda¹³, M. Ikeno¹, K. Inami¹⁻, K. Ishida²⁰, T. Itahashi²¹, M. Iwasaki²⁰, Y. Iwashita²², Y. Iwata²³, R. Kadono¹, S. Kamal²⁴, T. Kamitani¹, S. Kanda²⁰, F. Kapusta⁻, K. Kawagoe²⁵, N. Kawamura¹, B. Kim²³, Y. Kim²⁶, T. Kishishita¹, R. Kitamura¹⁴, H. Ko²³, T. Kohriki¹, Y. Kondo¹⁴, T. Kume¹, M. J. Lee¹³, S. Lee¹³, W. Lee²⁻, G. M. Marshall²³, Y. Matsuda²⁰, T. Mibe¹³,³⁰, Y. Miyake¹, T. Murakami¹, K. Nagamine¹, H. Nakayama¹, S. Nishimura¹, D. Nomura¹, T. Ogitsu¹, S. Ohsawa¹, K. Oide¹, Y. Oishi¹, S. Okada²⁰, A. Olin⁴²,²², Z. Omarov²⁶, M. Otani¹, G. Razuvaev³, A. Rehman³⁰, N. Saito¹, N. F. Saito²⁰, K. Sasaki¹, O. Sasaki¹, N. Sato¹, Y. Sato¹, Y. K. Semertzidis²⁶, H. Sendai¹, Y. Shatunov³², K. Shimomura¹, M. Shoji¹, B. Shwartz⁰,²², P. Strasser¹, Y. Sue¹⁻, T. Suehara²⁵, C. Sung⁶, K. Suzuki¹⁻, T. Takatomi¹, M. Tanaka¹, J. Tojo²⁵, Y. Tsutsumi²⁵, T. Uchida¹, K. Ueno¹, S. Wada²⁰, E. Won²⁻, H. Yamaguchi¹, T. Yamanaka²⁵, A. Yamamoto¹, T. Yamazaki¹, H. Yasuda³³, M. Yoshida¹, and T. Yoshioka²⁵,*

Comparison of g-2 experiments

		. Phys. 2019 , 053C02 (2019)	
	BNL-E821	Fermilab-E989	Our experiment
Muon momentum	3.09 GeV/ <i>c</i>		300 MeV/c
Lorentz γ	29.3		3
Polarization	100%		50%
Storage field	B = 1.45 T		B = 3.0 T
Focusing field	Electric quadrupole		Very weak magnetic
Cyclotron period	149 ns		7.4 ns
Spin precession period	$4.37~\mu \mathrm{s}$		$2.11~\mu \mathrm{s}$
Number of detected e^+	5.0×10^9	1.6×10^{11}	5.7×10^{11}
Number of detected e^-	3.6×10^9	_	_
a_{μ} precision (stat.)	460 ppb	100 ppb	450 ppb
(syst.)	280 ppb	100 ppb	<70 ppb
EDM precision (stat.)	$0.2 \times 10^{-19} e \cdot \text{cm}$	_	$1.5 \times 10^{-21} e \cdot \text{cm}$
(syst.)	$0.9 \times 10^{-19} e \cdot \text{cm}$	_	$0.36 \times 10^{-21} \ e \cdot \text{cm}$

Completed

Running

In preparation

The J-PARC g-2/EDM collaboration

History

Date	Events
July, 2009	LOI submitted to PAC8
Jan, 2010	Proposal submitted to PAC9
Jan, 2012	CDR submitted to PAC13, Milestones defined.
July, 2012	Stage-1 status recommended by PAC15 Stage-1 status granted by the IPNS director
May, 2015	TDR submitted to PAC
Oct, 2016	Revised TDR submitted to PAC and FRC
June, 2016	Selected as a KEK-PIP priority project
Nov, 2016	Focused review on technical design
Dec, 2017	Responses and Revised TDR submitted to PAC
July, 2018 Nov, 2018	Stage-2 status recommended by IPNS-PAC Stage-2 status granted by the IPNS director
Jan, 2019 Mar, 2019	Stage-2 status recommended by IMSS-PAC Stage-2 status granted by the IMSS director KEK-SAC endorsed the E34 for the near-term priority

KEK Science Advisory Committee (Mar 23-24, 2019)

The SAC strongly endorses KEK's decision on near-term priorities (the muon g-2/EDM experiment, the upgrade of the J-PARC Hadron Hall, and the upgrade of the Photon Factory), and the updated KEK roadmap. The KEK leadership should be congratulated for establishing outstanding near- and longer-term strategies and for producing the implementation plan. Specific comments and/or recommendations are discussed in Chapters 3 and 4.

Intended global schedule

Start taking data

Beam Power History at MLF

Proposed experimental site (H-line)

Material and Life science Facility in J-PARC

N. Kawamura et al., PTEP 2018, 113G01 (2018)

New electric power station for H-line under construction

Conceptual design of the H-line extension building

Work in progress

Re-accelerated thermal muon

Production of thermal energy muonium

Silica aerogel (SiO₂, 30 mg/cc)

surface muon beam

Laser-ablated holes

Muonium (μ+e-)

Efficiency (measured)

 $3 \times 10^{-3} / \mu$

(laser region 5mm x 50mm)

Data taken at TRIUMF

P. Bakule et al., PTEP 103C0 (2013)

G. Beer et al., PTEP 091C01 (2014)

Demonstration of Mu ionization

UBC, RIKEN, KEK, Peking U

 Laser-ablated silica aerogel for the Mu production were prepared. Ablation patterns are same as those studied at TRIUMF in 2017.

- The sample was installed at Uline in May for demonstration of ionizing Mu from silica aerogel.
- Initial tests successfully confirmed ionization of Mu.
 Detail tuning and systematic studies are planned in forthcoming beamtime at U-line.

Laser ionization of muonium

 $1S \rightarrow 2P \rightarrow unbound$

J-PARC MLF U-line laser system (RIKEN+KEK)

efficiency (calculated) 73% @100uJ

Muon LINAC

Phase space distributions after muon LINAC (simulation)

RF acceleration of Mu⁻ for the first time!

RF acceleration of Mu⁻ for the first time!

Muon LINAC and beam diagnostics

regione de marce de la compacte de compac

Development of RF input coupler for IHtype cavity (low β)

Non-destructive beam profile monitor

Studies on effects on beam dynamics due to manufacturing/alignment errors (middle β)

Muon storage magnet and detector

Average magnetic field

25 ppb/line

Beam injection and storage magnet

Spiral Injection Test Experiment (SITE) with low energy electron

beam

Ibaraki U, KEK

Refined design of the storage magnet

Studies on seismic ground vibration

Positron tracking detector

Development of components

Data collected in Mar and June 2019

US-Japan collaboration on B-field cross calibration

Summary

 The J-PARC muon g-2/EDM experiment will independently measure g-2 and EDM with completely different method.

- Construction was partially started.
- Requesting funding for full construction.

- In coming years,
 - Construction of muon beamline (H-line)
 - Demonstration of "muon cooling" by ionization of Mu
 - Re-acceleration to 1 MeV

Conventional muon beam

emittance ~1000π mm •mrad

Strong collimation Strong focusing Muon loss BG π contamination

Muon beam at J-PARC

decay

Strong collimation Strong focusing Muon loss BG π contamination

pion

production

emittance 1π mm •mrad

Reaccelerated thermal muon

Free from any of these

Experimental sequence

Breakdown of efficiencies

Subsystem	Efficiency	Subsystem	Efficiency
H-line acceptance and transmission	0.16	DAW decay	0.96
Mu emission	0.0034	DLS transmission	1.00
Laser ionization	0.73	DLS decay	0.99
Metal mesh	0.78	Injection transmission	0.85
Initial acceleration transmission and decay	0.72	Injection decay	0.99
RFQ transmission	0.95	Kicker decay	0.93
RFQ decay	0.81	e^+ energy window	0.12
IH transmission	0.99	Detector acceptance of e^+	1.00
IH decay	0.99	Reconstruction efficiency	0.90
DAW transmission	1.00	·	

Statistical and systematic uncertainties

Table 5. Summary of statistics and uncertainties.

	Estimation
Total number of muons in the storage magnet	5.2×10^{12}
Total number of reconstructed e^+ in the energy window [200, 275 MeV]	5.7×10^{11}
Effective analyzing power	0.42
Statistical uncertainty on ω_a [ppb]	450
Uncertainties on a_{μ} [ppb]	450 (stat.)
	< 70 (syst.)
Uncertainties on EDM [$10^{-21} e \cdot cm$]	1.5 (stat.)
	0.36 (syst.)

Table 6. Estimated systmatic uncertainties on a_{μ} .

Anomalous spin precession (ω_a)		Magnetic field (ω_p)		
Source	Estimation (ppb)	Source	Estimation (ppb)	
Timing shift	< 36	Absolute calibration	25	
Pitch effect	13	Calibration of mapping probe	20	
Electric field	10	Position of mapping probe	45	
Delayed positrons	0.8	Field decay	< 10	
Diffential decay	1.5	Eddy current from kicker	0.1	
Quadratic sum	< 40	Quadratic sum	56	