HVP contribution to a_{μ}

Status/Plan BMWc

Laurent Lellouch

CPT Marseille

CNRS \& Aix-Marseille U.

$a_{\mu}^{\text {LO-HVP }}$ from time-momentum current correlator

Bernecker et al. 11, BMWc 13, Feng et al 13, Lehner 14, ...

- Compute on $T \times L^{3}$ lattice

$$
C_{L}(t)=\frac{a^{3}}{3} \sum_{i=1}^{3} \sum_{\vec{x}}\left\langle J_{i}(x) J_{i}(0)\right\rangle
$$

$\mathrm{w} / J_{\mu}=\frac{2}{3} \bar{u} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d-\frac{1}{3} \bar{s} \gamma_{\mu} s+\frac{2}{3} \bar{c} \gamma_{\mu} c+\cdots$

- Decompose ($\left.C_{L}^{=1}=\frac{9}{10} C_{L}^{u d}\right)$

$$
\begin{aligned}
C_{L}(t) & =C_{L}^{u d}(t)+C_{L}^{s}(t)+C_{L}^{c}(t)+C_{L}^{\text {disc }}(t) \\
& =C_{L}^{l=1}(t)+C_{L}^{\prime=0}(t)
\end{aligned}
$$

$\left(144 \times 96^{3}, a \sim 0.064 \mathrm{fm}, M_{\pi} \sim 135 \mathrm{MeV}\right)$

- Obtain (BMWc 17)

$$
a_{\mu, f}^{\mathrm{LO}-\mathrm{HVP}}\left(Q^{2} \leq Q_{\max }^{2}\right)=\lim _{a \rightarrow 0, L \rightarrow \infty, T \rightarrow \infty}\left(\frac{\alpha}{\pi}\right)^{2}\left(\frac{a}{m_{\mu}^{2}}\right) \sum_{t=0}^{T / 2} W\left(t m_{\mu}, Q_{\max }^{2} / m_{\mu}^{2}\right) \operatorname{Re} C_{L}^{f}(t)
$$

$\mathrm{w} / \mathrm{W}\left(\tau, x_{\max }\right)$ known kinematical function

Current situation: $a_{\mu}^{\text {LO-HVP }}$

- Some lattice results suggest new physics others not but all compatible with phenomenology
- Lattice errors $\gtrsim 2 \%$ vs phenomenology errors $\sim 0.4 \%$
- Must reduce lattice error to $<1 \%$ to have impact

BMWc @ end 2017: simulations and results

BMWc, Borsanyi' et al, PRL121 (2018) 022002 (Editors’ Suggestion)

15 high-statistics simulations w/ $N_{f}=2+1+1$ flavors of 4-stout staggered quarks:

- Bracketing physical $m_{u d}, m_{s}, m_{c}$
- 6 a's: $0.134 \rightarrow 0.064 \mathrm{fm}$
- $L=6.1 \div 6.6 \mathrm{fm}, T=8.6 \div 11.3 \mathrm{fm}$
- Conserved EM current
- Close to 9M / 39M conn./disc. measurements

β	$a[\mathrm{fm}]$	$T \times L$	\#conf-conn	\#conf-disc
3.7000	0.134	64×48	1000	1000
3.7500	0.118	96×56	1500	1500
3.7753	0.111	84×56	1500	1500
3.8400	0.095	96×64	2500	1500
3.9200	0.078	128×80	3500	1000
4.0126	0.064	144×96	450	-

Error on total:

- Stat. = 1.1\% (all from ud)
- $a \rightarrow 0$ syst. $=1.1 \%$
- a syst. $=0.8 \%$
- $\mathrm{FV}=1.9 \%$
- $\mathrm{IB}=0.7 \%$
- Total $=2.7 \%$

Staggered continuum extrapolation of $a^{\mathrm{LO}-\mathrm{HV} \mathrm{P}}$ $\mu, u d$

- Goldstone has more massive "taste" partners that dilute its contribution to $a_{\mu, u d}^{\mathrm{LO}-\mathrm{HVP}}$
- "Effective" pion mass larger at larger a, e.g. $M_{\pi}^{\mathrm{RMS}} \simeq 310 \mathrm{MeV}$ for $a=0.134 \mathrm{fm}$
- Effect dissappears in $a \rightarrow 0$ limit
- a $\rightarrow 0$ extrapolation includes $M_{\pi}^{\mathrm{RMS}} \rightarrow M_{\pi}^{\mathrm{PDG}}$ extrapolation and is quite pronounced

HPQCD 16 \& FNAL/HPQCD/MILC prelim already include large t modeling of $\left\langle J_{\mu}(t) J_{\nu}(0)\right\rangle$

Path to HVP Nirvana

To reach sub-percent accuracy on lattice, must:

- correct FV effects reliably (preferably with LQCD)

- reduce statistical error on ud contribution significantly
- determine $m_{u} \neq m_{d}$ and EM corrections on lattice
- determine a very precisely: $\frac{\sigma_{a_{\mu} \text { LO-HVP }}}{a_{\mu}^{L O-H V P}} \sim 2 \times \frac{\sigma_{a}}{a}$
- staggered: must improve continuum extrapolation of $a_{\mu, u d}^{\mathrm{LO}-\mathrm{HVP}}$

Phenomenology inspired FV corrections

Use (Meyer 11):

$$
\left.C_{L, \text { LO- }-\frac{\text { PT }}{\prime}(t)}^{\prime=1} \frac{1}{3 L^{3}} \sum_{\vec{p}_{\text {free }}}\left(\frac{\vec{p}_{\text {ifee }}}{E_{p}^{\text {free }}}\right)^{2} e^{-2 E_{p}^{\text {free }} t} \rightarrow C_{L, \text { LLGS }}^{\prime=1}(t)=\frac{1}{3 L^{3}} \sum_{i} \sum_{p}\left|\langle 0| J_{i}\right| \pi^{+}(\vec{p}) \pi^{-}(-\vec{p})\right\rangle\left.\right|_{L} ^{2} e^{-2 E_{p} t}
$$

with

- Lüscher to get $E_{p}=\sqrt{M_{\pi}^{2}+p^{2}}$ in FV, where $p=|\vec{p}|$ is momentum carried by each of the two interacting π in FV
- Lellouch-Lüscher (LL) for interacting $\left.\left|\langle 0| J_{i}\right| \pi^{+}(p) \pi^{-}(p)\right\rangle\left.\right|_{L}$ in FV from free amplitude $\frac{p_{i}^{\text {free }}}{E_{p}^{\text {rree }}}$
- $2-\pi, \delta_{l=1}^{J=1}(p)$ from phenomenology

Then $C_{\infty, \text { LLGS }}^{\prime=1}(t)-C_{L, L L G S}^{\prime=1}(t)$ gives estimate of FV
\rightarrow good for FV corrections: increase by $O(50 \%)$ over LO $\chi \mathrm{PT}$ for $M_{\pi} \sim 135 \mathrm{MeV}$ and $L \sim 6 \mathrm{fm}$ (Della Morte et al 17, Shintani et al 19, Aubin et al $19 \ldots$)

Implementing simulations at different volumes to test model

Phenomenology inspired taste corrections

Here explore naive staggerization of phenomenological model

$$
\left.C_{L, L L G S}^{l=1}(t) \rightarrow C_{L, S L L G S}^{l=1}\left(t ; a^{2} \Delta^{\mathrm{KS}}\right)=\frac{1}{3 L^{3}} \sum_{i} \sum_{p} \sum_{j=0}^{4} w_{j}\left|\langle 0| J_{i}\right| \pi^{+}(\vec{p}) \pi^{-}(-\vec{p})\right\rangle\left.\right|_{j, L} ^{2} e^{-2 E_{p, j} t}
$$

- Compare model to lattice data using a sliding window

$$
\begin{aligned}
a_{\mu, l=1}^{\mathrm{LO}-\mathrm{HVP}}\left(t_{\text {win }}, \Delta t, \Delta, Q^{2} \leq Q_{\max }^{2}\right)= & \left(\frac{\alpha}{\pi}\right)^{2}\left(\frac{a}{m_{\mu}^{2}}\right) \sum_{t=0}^{T / 2}\left[\Theta\left(t ; t_{\text {win }}, \Delta\right)\right. \\
& \left.-\Theta\left(t ; t_{\text {win }}+\Delta t, \Delta\right)\right] W\left(t m_{\mu}, Q_{\max }^{2} / m_{\mu}^{2}\right) \operatorname{Re} C_{L}^{l=1}(t)
\end{aligned}
$$

$\mathrm{w} / \Theta\left(t, t_{0}, \Delta\right)=\left[1+\tanh \left[\left(t-t_{0}\right)\right] / \Delta\right] / 2$ as in RBC/UKqCD 18

- Take $\Delta t=0.5 \mathrm{fm}, \Delta=0.15 \mathrm{fm}$ and slide window in steps of 0.1 fm
- Implement using Gounaris-Sakurai (GS) model (Francis et al 13)

Sliding window: lattice vs SLLGS - PRELIMINARY

$$
\begin{gathered}
\Delta_{\text {taste }}^{\text {lat }}\left(\left(t_{\text {win }}\right)=a_{\mu, l=1, \text { lat }}^{\mathrm{LO}-\mathrm{HVP}}\left(t_{\text {win }}, L, a_{\text {fine }}\right)-a_{\mu, l=1, \text { lat }}^{\mathrm{LO}-\mathrm{HVP}}\left(t_{\text {win }}, L, a_{\text {coarse }}\right)\right. \\
\Delta_{\text {taste }}^{\mathrm{SLLGS}}\left(t_{\text {win }}\right)=a_{\mu, l=1, \mathrm{SLLGS}}^{\mathrm{LO}-\mathrm{HVP}}\left(t_{\text {win }}, L,\left(a^{2} \Delta^{\mathrm{KS}}\right)_{\text {fine }}\right)-a_{\mu, l=1, \mathrm{SLLGS}}^{\mathrm{LO} \mathrm{HVP}}\left(t_{\text {win }}, L,\left(a^{2} \Delta^{\mathrm{KS}}\right)_{\text {coarse }}\right)
\end{gathered}
$$

- SLLGS describes taste-breaking corrections well for $t \gtrsim 1.5 \mathrm{fm}$
- Correct taste breaking in simulations with SLLGS using either $t \geq 1.5 \mathrm{fm}$ or $t \geq 2.0 \mathrm{fm}$
- Use spread in continuum systematic error

Continuum extrapolations of $a_{\mu, u d}^{\text {LO-HVP }}$ - PRELIMINARY

error [\%] / correction	none	LO-S χ PT	SLLGS
$\delta^{\text {stat }}\left(a_{\mu, \text { LO-HDP }}^{\text {LO- }}\right)$	1.5	1.5	1.6
$\delta^{\text {a-extrap }}\left(a_{\mu, u d}^{\text {LO-HVP }}\right)$	2.2	1.0	0.6

Noise reduction - PRELIMINARY

- Rigorous upper and low bounds on hardronic current correlator (BMWc, PRD9G (2017))
- W/ staggered, partial, reconstruction reconstruction of $\pi \pi$ states and improved bounds (Lehner, g.2-2 @ KEK 18; Géradin, PRD100 (2019): Meyer Lati9) not realistic
$\rightarrow \sim 40$ staggered $\pi \pi$ states below the ρ on finest lattice for $L=6 \mathrm{fm}$ (vs $3 \mathrm{w} / \mathrm{out}$ taste breaking) !
- Have begun implementing low-mode-averaging

Very challenging and expensive part has yet to be done

$m_{u} \neq m_{d}$ and QED corrections - PRELIMINARY

(a) M

(b) R

(c) O
(RBC/UKQCD '18)

- Must implement for determination of
- quantities that determine lattice spacing and physical point
- hadronic current correlator
- Have implemented M, V \& S
- QED corrections to
$\Delta M_{K}^{2}=M_{K^{+}}^{2}-M_{K^{0}}^{2} \rightarrow$

(a) V

(b) S

(c) T

(d) D 1

(e) D2

(f) F

(g) D3

Agrees with earlier Wilson fermion result (Bмw,

- Also working on determining sub-percent level scale setting with M_{Ω}

Guenther @ Lattice 2019)

- Huge amount of work to do
- Hope to have sub-percent results for $a_{\mu}^{\text {LO-HVP }}$ for publication of final FNAL experimental results ca. 2023
- 4 postdoctoral positions in lattice QCD open at CPT Marseille with starting date as early as January 1, 2020 (information: antoine.gerardin@cpt.univ-mrs.fr or laurent.lellouch@univ-amu.fr)

BACKUP

Leading systematics with staggered fermions

- $a_{\mu}^{\text {LO-HVP }}$ has strong dependence on 2- π states
$a_{\mu}^{\text {LO-HVP }}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{s_{t h}}^{\infty} d s K(s) R_{e^{+} e^{-} \rightarrow \text { hadrons }}(s)$

\Rightarrow FV effects may be large (Golterman et al. 16), i.e. few \% for $L \sim 6 \mathrm{fm}$
\Rightarrow Taste-breaking effects are significant: effective $M_{\pi} \sim M_{\pi}^{\mathrm{RMS}}>M_{\pi}^{\mathrm{GB}}$

Continuum extrapolation is also a chiral extrapolation
\Rightarrow large a^{2}-dependence ($\sim 20 \%$ for $a \sim 0.131 \mathrm{fm}$ (BMWс 17))
\Rightarrow possible non-linearities through

$$
\delta_{L} a_{\mu, u d}^{\mathrm{LO}-\mathrm{HVP}} \sim \sum_{j=0}^{4} w_{j} \exp \left[-L \sqrt{\left(M_{\pi}^{\mathrm{GB}}\right)^{2}+j \times a^{2} \Delta^{\mathrm{KS}}}\right]
$$

\Rightarrow must be controlled to get $\delta_{\text {tot }} a_{\mu}^{\mathrm{LO}}-\mathrm{HVP}<1 \%$

Soln 1: LO χ PT for FV effects

- FV effects are long-distance effects, determined by lightest states contributing to process
- Here $I=J=1,2-\pi$ states
- Determine in χ PT, to LO (Aubin et al 15), i.e.

$$
C_{L, \mathrm{LO}-\chi \mathrm{PT}}^{l=1}(t)=\frac{1}{3 L^{3}} \sum_{\vec{p}_{\text {free }}}\left(\frac{\vec{p}_{\text {free }}}{E_{p}^{\text {free }}}\right)^{2} e^{-2 E_{p}^{\text {fiee }} t}
$$

with $E_{\rho}^{\text {free }}=\sqrt{M_{\pi}^{2}+\vec{p}_{\text {free }}^{2}}$

- Then $C_{\infty, \mathrm{LO}-\chi \mathrm{PT}}^{I=1}(t)-C_{L, L \mathrm{O}-\chi \mathrm{PT}}^{1=1}(t)$ can be used to estimate FV effects
- Find, for $M_{\pi} \sim 135 \mathrm{MeV}$ and $L \sim 6 \mathrm{fm}$ (BMWc 17),

$$
\Delta_{\mathrm{FV}} a_{\mu, l=1}^{\mathrm{LO}-\mathrm{HVP}} \sim 2.3 \% \times a_{\mu, l=1}^{\mathrm{LO}-\mathrm{HVP}}
$$

\rightarrow probably $O(50 \%$) too small (Della Morte et al 17, Shintani etal 19, Aubin et al $19 \ldots$)

- Can do better

Soln 1: LO S χ PT for taste effects

- Taste-breaking effects also mostly come from low-lying 2- π states
- Determine in $\mathrm{S}_{\chi} \mathrm{PT}$, to LO (Aubin et al 15, HPQCD 17), i.e.

$$
C_{L, \text { LO-S } \chi \text { PT }}^{\prime=1}\left(t, a^{2} \Delta^{\mathrm{KS}}\right)=\frac{1}{3 L^{3}} \sum_{\vec{p}_{\text {ree }}} \sum_{j=0}^{4} w_{j}\left(\frac{\vec{p}_{\text {iree }}}{E_{p, j}^{\text {free }}}\right)^{2} e^{-2 E_{p, j}^{\text {free }} t}
$$

with $E_{p, j}^{\text {free }}=\sqrt{M_{\pi, j}^{2}+\vec{p}_{\text {tree }}^{2}}$

- Then $C_{L, \mathrm{LO}_{\mathrm{S}}(\mathrm{PT}}^{l=1}(t, 0)-C_{L, \mathrm{LO}-\mathrm{S}_{\chi} \mathrm{PT}}^{\mathrm{L}}\left(t, a^{2} \Delta^{\mathrm{KS}}\right)$ can be used to estimate taste effects

- Helps but is it possible to do better?

Soln 2: NLO SXPT

- At LO, the two π are free
\Rightarrow omits strong $\rho-\pi \pi$ coupling
\Rightarrow compute at NLO (Biinens et al 99, Aubin et al 19)
- NLO includes LO 2- π rescattering and slope of $F_{\pi}\left(Q^{2}\right)$

(d)

(g)

(j)

(e)

(h)

(f)

(i)

(k)

(1)
- However NLO only obtained in continuum (Aabin etal 99)
\Rightarrow helps FV corrections: increase by $O(50 \%)$ for $M_{\pi} \sim 135 \mathrm{MeV}$ and $L \sim 6 \mathrm{fm}$
\Rightarrow does not improve taste corrections

Sliding window: lattice vs LO-S χ PT

$$
\Delta_{\text {taste }}^{\text {lat }}\left(t_{\text {win }}\right)=a_{\mu, l=1, \text { lat }}^{\mathrm{LO}-\mathrm{HVP}}\left(t_{\text {win }}, L, a_{\text {fine }}\right)-a_{\mu, l=1, \text { lat }}^{\mathrm{LO}-\mathrm{HVP}}\left(t_{\text {win }}, L, a_{\text {coarse }}\right)
$$

$$
\Delta_{\text {taste }}^{\mathrm{LO}-\mathrm{S}_{\chi} \mathrm{PT}}\left(t_{\text {win }}\right)=a_{\mu, l=1, \mathrm{LO}-\mathrm{S}_{\chi} \mathrm{PT}}^{\mathrm{LO}\left(t_{\text {win }}, L,\left(a^{2} \Delta^{\mathrm{KS}}\right)_{\text {fine }}\right)-a_{\mu, l=1, \mathrm{LO}-\mathrm{S} \chi \mathrm{PT}}^{\mathrm{LO}-\mathrm{HVP}}\left(t_{\text {win }}, L,\left(a^{2} \Delta^{\mathrm{KS}}\right)_{\text {coarse }}\right) .}
$$

- LO SXPT describes taste-breaking corrections well for $t \gtrsim 2.0 \mathrm{fm}$
- Correct taste breaking in simulations with LO SXPT using either $t \geq 2.0 \mathrm{fm}$ or $t \geq 2.5 \mathrm{fm}$
- Use spread in continuum systematic error

