HVP contribution to a_{μ} Status/Plan BMWc

Laurent Lellouch

CPT Marseille CNRS & Aix-Marseille U.

$a_{\mu}^{\text{LO-HVP}}$ from time-momentum current correlator

Bernecker et al. 11, BMWc 13, Feng et al 13, Lehner 14, ...

• Compute on $T \times L^3$ lattice

$$C_L(t) = \frac{a^3}{3} \sum_{i=1}^3 \sum_{\vec{x}} \langle J_i(x) J_i(0) \rangle$$

w/ $J_\mu = \frac{2}{3} \bar{u} \gamma_\mu u - \frac{1}{3} \bar{d} \gamma_\mu d - \frac{1}{3} \bar{s} \gamma_\mu s + \frac{2}{3} \bar{c} \gamma_\mu c + \cdots$

• Decompose $(C_L^{l=1} = \frac{9}{10} C_L^{ud})$ $C_L(t) = C_L^{ud}(t) + C_L^s(t) + C_L^c(t) + C_L^{disc}(t)$ $= C_L^{l=1}(t) + C_L^{l=0}(t)$

Obtain (BMWc 17)

$$a_{\mu,f}^{\text{LO-HVP}}(Q^2 \le Q_{\max}^2) = \lim_{a \to 0, \ L \to \infty, \ T \to \infty} \left(\frac{\alpha}{\pi}\right)^2 \left(\frac{a}{m_{\mu}^2}\right) \sum_{t=0}^{T/2} W(tm_{\mu}, Q_{\max}^2/m_{\mu}^2) \operatorname{Re}C_L^f(t)$$

w/ $W(\tau, x_{max})$ known kinematical function

Current situation: $a_{\mu}^{\text{LO-HVP}}$

- Some lattice results suggest new physics others not but all compatible with phenomenology
- Lattice errors \geq 2% vs phenomenology errors \sim 0.4%
- Must reduce lattice error to < 1% to have impact

BMWc @ end 2017: simulations and results

BMWc, Borsanyi' et al, PRL121 (2018) 022002 (Editors' Suggestion)

15 high-statistics simulations w/ $N_f = 2 + 1 + 1$ flavors of 4-stout staggered quarks:

- Bracketing physical m_{ud}, m_s, m_c
- 6 a's: $0.134 \rightarrow 0.064 \text{ fm}$
- $L = 6.1 \div 6.6 \, \text{fm}, T = 8.6 \div 11.3 \, \text{fm}$
- Conserved EM current
- Close to 9M / 39M conn./disc. measurements

Contrib.	$a_{\mu}^{ ext{LO-HVP}} imes 10^{10}$
/ = 1	583(7)(7)(0)(0)(5)(13)
<i>l</i> = 0	121(3)(4)(0)(0)(1)
Total	711(8)(8)(0)(0)(6)(13)(5)

 $\sigma_{\rm FV} > \sigma_{\rm stat} \sim \sigma_{\rm ana} > \sigma_{\rm a-syst} \sim \sigma_{\rm IB}$

β	a [fm]	$T \times L$	#conf-conn	#conf-disc
3.7000	0.134	64×48	1000	1000
3.7500	0.118	96×56	1500	1500
3.7753	0.111	84×56	1500	1500
3.8400	0.095	96×64	2500	1500
3.9200	0.078	128×80	3500	1000
4.0126	0.064	144×96	450	-

Error on total:

- Stat. = 1.1% (all from *ud*)
- $a \rightarrow 0$ syst. = 1.1%
- *a* syst. = 0.8%
- FV = 1.9%
- IB = 0.7%
- Total = 2.7%

Staggered continuum extrapolation of $a_{\mu,ud}^{\text{LO-HVP}}$

- Goldstone has more massive "taste" partners that dilute its contribution to a^{LO-HVP}_{u, ud}
- "Effective" pion mass larger at larger a, e.g. $M_{\pi}^{\text{RMS}} \simeq 310 \,\text{MeV}$ for $a = 0.134 \,\text{fm}$
- Effect dissappears in $a \rightarrow 0$ limit
- $a \rightarrow 0$ extrapolation includes $M_{\pi}^{\text{RMS}} \rightarrow M_{\pi}^{\text{PDG}}$ extrapolation and is quite pronounced

HPQCD 16 & FNAL/HPQCD/MILC prelim already include large t modeling of $\langle J_{\mu}(t)J_{\nu}(0)\rangle$

To reach sub-percent accuracy on lattice, must:

- correct FV effects reliably (preferably with LQCD)
- reduce statistical error on *ud* contribution significantly
- determine $m_u \neq m_d$ and EM corrections on lattice
- determine *a* very precisely: $\frac{\sigma_{a_{\mu}^{\text{D-HVP}}}}{a_{\mu}^{\text{D-HVP}}} \sim 2 \times \frac{\sigma_{a}}{a}$
- staggered: must improve continuum extrapolation of $a_{\mu, ud}^{\text{LO-HVP}}$

Phenomenology inspired FV corrections

Use (Meyer 11):

$$C_{L,\text{LO-}\chi\text{PT}}^{l=1}(t) = \frac{1}{3L^3} \sum_{\vec{p}_{\text{free}}} \left(\frac{\vec{p}_{\text{free}}}{E_p^{\text{free}}} \right)^2 e^{-2E_p^{\text{free}}t} \rightarrow C_{L,\text{LLGS}}^{l=1}(t) = \frac{1}{3L^3} \sum_i \sum_p |\langle 0|J_i|\pi^+(\vec{p})\pi^-(-\vec{p})\rangle|_L^2 e^{-2E_p t}$$

with

- Lüscher to get E_p = √M²_π + p² in FV, where p = |p
 i s momentum carried by each of the two interacting π in FV
- Lellouch-Lüscher (LL) for interacting $|\langle 0|J_i|\pi^+(p)\pi^-(p)\rangle|_L$ in FV from free amplitude $\frac{p_i^{\text{nee}}}{F^{\text{free}}}$
- 2- π , $\delta_{l=1}^{J=1}(p)$ from phenomenology

Then $C_{\infty,\text{LLGS}}^{l=1}(t) - C_{L,\text{LLGS}}^{l=1}(t)$ gives estimate of FV

 \rightarrow good for FV corrections: increase by O(50%) over LO χ PT for $M_{\pi} \sim 135$ MeV and $L \sim 6$ fm (Della Morte et al 17, Shintani et al 19, Aubin et al 19...)

Implementing simulations at different volumes to test model

Phenomenology inspired taste corrections

Here explore naive staggerization of phenomenological model

$$C_{L,\text{LLGS}}^{l=1}(t) \to C_{L,\text{SLLGS}}^{l=1}(t; a^2 \Delta^{\text{KS}}) = \frac{1}{3L^3} \sum_{i} \sum_{p} \sum_{j=0}^{4} w_j |\langle 0|J_i|\pi^+(\vec{p})\pi^-(-\vec{p})\rangle|_{j,L}^2 e^{-2E_{p,j}t}$$

• Compare model to lattice data using a sliding window

$$\begin{aligned} a_{\mu,\,l=1}^{\text{LO-HVP}}(t_{\text{win}},\Delta t,\Delta,Q^2 \leq Q_{\text{max}}^2) &= \left(\frac{\alpha}{\pi}\right)^2 \left(\frac{a}{m_{\mu}^2}\right) \sum_{t=0}^{T/2} \left[\Theta(t;t_{\text{win}},\Delta) -\Theta(t;t_{\text{win}}+\Delta t,\Delta)\right] W(tm_{\mu},Q_{\text{max}}^2/m_{\mu}^2) \operatorname{Re} C_L^{l=1}(t) \end{aligned}$$

w/ $\Theta(t, t_0, \Delta) = [1 + anh[(t - t_0)]/\Delta]/2$ as in RBC/UKQCD 18

- Take $\Delta t = 0.5 \text{ fm}$, $\Delta = 0.15 \text{ fm}$ and slide window in steps of 0.1 fm
- Implement using Gounaris-Sakurai (GS) model (Francis et al 13)

Sliding window: lattice vs SLLGS - PRELIMINARY

 $\Delta_{\text{taste}}^{\text{lat}}((t_{\text{win}}) = a_{\mu, l=1, \text{lat}}^{\text{LO-HVP}}(t_{\text{win}}, L, a_{\text{fine}}) - a_{\mu, l=1, \text{lat}}^{\text{LO-HVP}}(t_{\text{win}}, L, a_{\text{coarse}})$

 $\Delta_{\text{taste}}^{\text{SLLGS}}(\textit{t}_{\text{win}}) = a_{\mu, \, l=1, \text{SLLGS}}^{\text{LO-HVP}}(\textit{t}_{\text{win}}, \textit{L}, (a^2 \Delta^{\text{KS}})_{\text{fine}}) - a_{\mu, \, l=1, \text{SLLGS}}^{\text{LO-HVP}}(\textit{t}_{\text{win}}, \textit{L}, (a^2 \Delta^{\text{KS}})_{\text{coarse}})$

- SLLGS describes taste-breaking corrections well for $t \ge 1.5 \,\mathrm{fm}$
- Correct taste breaking in simulations with SLLGS using either $t \ge 1.5$ fm or $t \ge 2.0$ fm
- Use spread in continuum systematic error

Continuum extrapolations of $a_{\mu, ud}^{LO-HVP}$ - PRELIMINARY

Noise reduction - PRELIMINARY

- Rigorous upper and low bounds on hardronic current correlator (BMWc, PRD96 (2017))
- W/ staggered, partial, reconstruction reconstruction of ππ states and improved bounds (Lehner, g-2 @ KEK 18; Géradin, PRD100 (2019); Meyer Lat19) not realistic

 $\rightarrow \sim$ 40 staggered $\pi\pi$ states below the ρ on finest lattice for L = 6 fm (vs 3 w/out taste breaking) !

• Have begun implementing low-mode-averaging

Very challenging and expensive part has yet to be done

$m_u \neq m_d$ and QED corrections - PRELIMINARY

- Must implement for determination of
 - quantities that determine lattice spacing and physical point
 - hadronic current correlator
- Have implemented M, V & S
- QED corrections to $\Delta M_{K}^{2} = M_{K^{+}}^{2} - M_{K^{0}}^{2} \rightarrow$

Agrees with earlier Wilson fermion result (BMW,

Science (2015))

- Also working on determining sub-percent level scale setting with M_{Ω} (J. Guenther @ Lattice 2019)
- Huge amount of work to do
- Hope to have sub-percent results for a^{LO-HVP}_µ for publication of final FNAL experimental results ca. 2023
- 4 postdoctoral positions in lattice QCD open at CPT Marseille with starting date as early as January 1, 2020 (information: antoine.gerardin@cpt.univ-mrs.fr or laurent.lellouch@univ-amu.fr)

BACKUP

Leading systematics with staggered fermions

- \Rightarrow FV effects may be large (Golterman et al. 16), i.e. few % for $L\sim 6~{
 m fm}$
- \Rightarrow Taste-breaking effects are significant: effective $M_{\pi} \sim M_{\pi}^{\text{RMS}} > M_{\pi}^{\text{GB}}$

Continuum extrapolation is also a chiral extrapolation

- ⇒ large a^2 -dependence (~ 20% for $a \sim 0.131 \text{ fm}$ (BMWc 17))
- $\Rightarrow \begin{array}{l} \textbf{possible non-linearities through} \\ \delta_L a_{\mu, ud}^{\text{LO-HVP}} \sim \sum_{j=0}^{4} w_j \exp \left[-L \sqrt{(M_{\pi}^{\text{GB}})^2 + j \times a^2 \Delta^{\text{KS}}} \right] \end{array}$
- \Rightarrow must be controlled to get $\delta_{\text{tot}} a_{\mu}^{\text{LO-HVP}} < 1\%$ INT, Seattle, 9-13 September 2019

Soln 1: LO χ PT for FV effects

- FV effects are long-distance effects, determined by lightest states contributing to process
- Here I = J = 1, 2- π states
- Determine in χ PT, to LO (Aubin et al 15), i.e.

$$C_{L,\text{LO-}\chi\text{PT}}^{l=1}(t) = \frac{1}{3L^3} \sum_{\vec{P}_{\text{free}}} \left(\frac{\vec{P}_{\text{free}}}{E_p^{\text{free}}}\right)^2 e^{-2E_p^{\text{free}}t}$$

with $E_{
ho}^{
m free}=\sqrt{M_{\pi}^2+ec{p}_{
m free}^2}$

- Then $C_{\infty,\text{LO-}\chi\text{PT}}^{l=1}(t) C_{L,\text{LO-}\chi\text{PT}}^{l=1}(t)$ can be used to estimate FV effects
- Find, for $M_{\pi} \sim 135 \, {
 m MeV}$ and $L \sim 6 \, {
 m fm}$ (BMWc 17),

$$\Delta_{\mathsf{FV}} a^{\mathsf{LO-HVP}}_{\mu,\,l=1} \sim$$
 2.3% $imes$ $a^{\mathsf{LO-HVP}}_{\mu,\,l=1}$

 \rightarrow probably O(50%) too small (Della Morte et al 17, Shintani et al 19, Aubin et al 19...)

Can do better

Soln 1: LO S χ PT for taste effects

- Taste-breaking effects also mostly come from low-lying $2-\pi$ states ۰
- Determine in $S_{\chi}PT$, to LO (Aubin et al 15, HPQCD 17), i.e.

$$C_{L,\text{LO-S}\chi\text{PT}}^{l=1}(t, a^2 \Delta^{\text{KS}}) = \frac{1}{3L^3} \sum_{\vec{p}_{\text{free}}} \sum_{j=0}^4 w_j \left(\frac{\vec{p}_{\text{free}}}{E_{p,j}^{\text{free}}}\right)^2 e^{-2E_{p,j}^{\text{free}}t}$$
$$\overline{M^2_{-} + \vec{a}^2}$$

with $E_{\rho,j}^{\text{free}} = \sqrt{M_{\pi,j}^2} + \vec{p}_{\text{free}}^2$

Helps but is it possible to do better? ٠

Soln 2: NLO S χ PT

- At LO, the two π are free
 - \Rightarrow omits strong $\rho \pi \pi$ coupling
 - ⇒ compute at NLO (Bijnens et al 99, Aubin et al 19)
- NLO includes LO 2- π rescattering and slope of $F_{\pi}(Q^2)$

- However NLO only obtained in continuum (Aubin et al 19)
 - \Rightarrow helps FV corrections: increase by O(50%) for $M_{\pi} \sim 135$ MeV and $L \sim 6$ fm
 - ⇒ does not improve taste corrections

Sliding window: lattice vs LO-S χ PT

$$\Delta_{\text{taste}}^{\text{lat}}(\textit{t}_{\text{win}}) = a_{\mu, \, l=1, \text{lat}}^{\text{LO-HVP}}(\textit{t}_{\text{win}}, \textit{L}, \textit{a}_{\text{fine}}) - a_{\mu, \, l=1, \text{lat}}^{\text{LO-HVP}}(\textit{t}_{\text{win}}, \textit{L}, \textit{a}_{\text{coarse}})$$

 $\Delta_{taste}^{\text{LO-S}\chi\text{PT}}(\textit{t}_{win}) = a_{\mu,\,l=1,\text{LO-S}\chi\text{PT}}^{\text{LO-HVP}}(\textit{t}_{win},\textit{L},(a^{2}\Delta^{\text{KS}})_{\text{fine}}) - a_{\mu,\,l=1,\text{LO-S}\chi\text{PT}}^{\text{LO-HVP}}(\textit{t}_{win},\textit{L},(a^{2}\Delta^{\text{KS}})_{\text{coarse}})$

• LO SXPT describes taste-breaking corrections well for $t \ge 2.0 \text{ fm}$

- Correct taste breaking in simulations with LO SXPT using either $t \ge 2.0 \text{ fm}$ or $t \ge 2.5 \text{ fm}$
- Use spread in continuum systematic error