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What	is	a	dispersive	“data-driven”	approach?

 2

aμ = ∫
∞

0
ds 𝒦(s) σ(s)

LHS		
quan(ty	of	interest,		

e.g.,	muon	g-2

RHS	
integral	of	an	experimental	observable		

over	energy,	e.g.,	a	cross	sec(on

• Existence	of	a	general	(dispersion)	rela(on	of	the	following	type		

• Empirical	knowledge	of	the	experimental	observable	over	the	relevant	energy	range	
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HVP formula
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Reviews:
F. Jegerlehner, Springer Tracts Mod. Phys. 274 (2017). 
M. Davier, Nucl. Part. Phys. Proc. 287-288, 70 (2017). 

Im Πhad =
α
3

R(s) + O(α2), R(s) ≡
σ(e+e− → had)

σ(e+e− → μ+μ−)

Π(q2) =
q2

π ∫
∞

s0

ds
s

Im Π(s)
s − q2

aHVP =
α
π2 ∫

∞

s0

ds
s

K(s) Im Πhad(s)

• from	causality/analy(city	and	field	renormaliza(on,	one	had	a	subtracted	DR:

• unitarity:

• subs(tuted	in	the	HVP	diagram:
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Data-driven evaluation at LO

 4

Figure 4: A compilation of the presently available experimental hadronic e+e�–annihilation
data

18

Figure 4: A compilation of the presently available experimental hadronic e+e�–annihilation
data

18

ahad
μ =

α2

3π2 ∫
∞

s0

ds
s

K(s) R(s) + O(α3)

• dispersion	rela(on	for	the	hadronic	contribu(on,	to	leading	order	in	the	fine-structure	constant:



Vladimir Pascalutsa                                                                              Dipersive sum rules for g-2 and HLbL                                                                                                     INT  Seattle                                                                                                                                                       Sep 12,  2019               

Data-driven evaluation at LO

 4

Figure 4: A compilation of the presently available experimental hadronic e+e�–annihilation
data

18

Figure 4: A compilation of the presently available experimental hadronic e+e�–annihilation
data

18

ahad
μ =

α2

3π2 ∫
∞

s0

ds
s

K(s) R(s) + O(α3)

• dispersion	rela(on	for	the	hadronic	contribu(on,	to	leading	order	in	the	fine-structure	constant:

TPE

HLbL

376 5 Hadronic E↵ects

5.1.12 Hadronic Higher Order Contributions

At next-to-leading (NLO) order, O(↵3), there are several classes of hadronic con-
tributions with typical diagrams shown in Fig. 5.40. They have been estimated first
in [100]. Classes (a) to (c) involve leading HVP insertions and may be treated us-
ing DRs together with experimental e+e�–annihilation data. Class (d) involves lead-
ing QED corrections of the charged hadrons and related problems were discussed
at the end of Sect. 5.1.7 on p. 345, already. The last class (e) is a new class of
non–perturbative contributions, the hadronic light–by–light scattering which is con-
strained by experimental data only for one exceptional line of phase space. The eval-
uation of this contribution is particularly di�cult and it will be discussed in the next
section.

The O(↵3) hadronic contributions from classes (a), (b) and (c) may be evaluated
without particular problems as described in the following.

h e h h h
µ

�

h

a) b) c)

d) e)
h

Fig. 5.40: Hadronic higher order contributions: a)-c) involving LO vacuum polariza-
tion, d) involving HO vacuum polarization and e) involving light-by-light scattering

At the three–loop level all diagrams of Fig. 4.3 which involve closed muon–loops
are contributing to the hadronic corrections when at least one muon–loop is replaced
by a quark–loop dressed by strong interactions mediated by virtual gluons.
Class (a) consists of a subset of 12 diagrams of Fig. 4.3: diagrams 7) to 18) plus
2 diagrams obtained from diagram 22) by replacing one muon–loop by a hadronic
“bubble”, and yields a contribution of the type

a(6) had[(a)]
µ =

✓↵
⇡

◆3 2
3

1Z

4m2
⇡

ds
s

R(s) K[(a)]
⇣
s/m2

µ

⌘
(5.96)

where K[(a)](s/m2
µ) is a QED function which was obtained analytically by Barbieri

and Remiddi [180]. The kernel function is the contribution to aµ of the 14 two–loop
diagrams obtained from diagrams 1) to 7) of Fig. 4.2 by replacing one of the two
photons by a “heavy photon” of mass

p
s. The convolution (5.96) then provides the

insertion of a photon self–energy part into the photon line represented by the “heavy

HVP,	NLO
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State-of-art analytic HLbL evaluation
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I. INTRODUCTION

Authors: Gilberto Colangelo (working group coordinator), Franziska Hagelstein, Andreas
Ny↵eler (working group coordinator), Vladimir Pascalutsa

A. The HLbL contribution to the muon g � 2

One of the largest uncertainties of the Standard Model evaluation of g�2 comes at present
from the hadronic light-by-light (HLbL) scattering contribution depicted on the left-hand
side of fig. 1. Unlike its QED counterpart, this contribution cannot be calculated in pertur-
bation theory, and thus one should rely on either lattice QCD or data-driven evaluations,
similarly to how it is done for the hadronic vacuum polarization (HVP) contribution.

µ
�(p) µ

�(p0)

# k = p
0
� p

=

⇡
0
, ⌘, ⌘

0

+ . . .+

⇡
+

+ . . .+
Exchanges of

other resonances

(f0, a1, f2, . . .)

+

q

+ . . .

FIG. 1. HLbL in the muon g � 2 in model calculations. The blobs on the right-hand side of the
equal sign are form factors that describe the interaction of photons with hadrons.

The HLbL contribution is, however, more complicated than the HVP contribution, be-
cause the light-by-light contributions enter through a four-point function—the light-by-light
scattering amplitude—rather than a two-point function as in the case of vacuum polariza-
tion. To the right-hand side of the equal sign in fig. 1 various contributions to the HLbL
tensor are shown. This picture was used in early model calculations, but it is to a large
extent still valid, though defined more precisely in modern, data-driven approaches as will
be explained here. At low energies, there are exchanges of single mesons, like the light
pseudoscalars ⇡

0
, ⌘, ⌘

0, heavier scalars like f0(980), a0(980) or axial-vector mesons a1, f1 and
tensor mesons f2, a2 above 1 GeV. Furthermore, there are loops with charged pions and
Kaons. Finally, when all momenta are large, HLbL can be described by a perturbative
quark-loop. Since the HLbL contribution to the (g � 2)µ is obtained through integration
of the HLbL tensor over all momenta, it is a priori not clear if any momentum expansion
of the tensor could be usefully applied. In the integral there is a weight function (arising
from muon and photon propagators) in which the only scale is the muon mass. One could
therefore expect that low momenta should dominate the integral, but translating this expec-
tation into an algebraic expansion scheme has not been possible so far. A detailed analysis
of the respective merits of the chiral and the large-NC expansions have been discussed in
a key paper by Eduardo de Rafael [1]. According to this analysis, the leading contribution
in chiral perturbation theory is the charged pion-loop at order p

4, while it is subleading in
large Nc. On the other hand, the exchanges of single mesons are leading in large Nc (as is
the quark-loop), with the light-pseudoscalars starting at order p

6 and the heavier mesons
at order p

8. Since in general the interaction of photons with mesons is described by form
factors (� � ⇢-mixing as in vector meson dominance models), the situation becomes very

4

At the present status of our knowledge none of the steps above seems to be unfeasible or
even extremely di�cult. Complicated and long, but doable, probably within a year. Unless
there will be surprises, we expect that the final uncertainties of the final three contributions
listed above will be confirmed or even significantly reduced. The latter, in particular, is
likely to happen for the short-distance contributions, where we expect a final uncertainty of
about half of what is currently estimated. With this, the goal of a final 10% uncertainty on
the HLbL contribution to the muon (g � 2) will be achieved.

D. Comparison to the Glasgow consensus

The intense activity on the HLbL contribution of the last five years based on the dispersive
approach has been reported in this chapter and summarized above. It is useful to discuss
here in some detail what are the reasons behind the changes in the numbers compared to
the estimates used in 2009, even though on the surface they do not seem to be so large. We
will also comment on a few recent estimates.

In table III we have collected the frequently used compilations for HLbL from 2009 by
Prades, de Rafael and Vainsthein (“Glasgow consensus”, PdRV(09)) [5] and Jegerlehner and
Ny↵eler (N/JN(09)) [6, 124] and a recent update of the latter which has appeared in the
book by Jegerlehner (2nd edition, J(17)) [37]. Our estimate from eq. (8.1) is also shown for
comparison.

TABLE III. Comparison of two frequently used compilations for HLbL in units of 10�11 from 2009
and a recent update with our estimate. Legend: PdRV = Prades, de Rafael, Vainshtein (“Glasgow
consensus”); N/JN = Ny↵eler / Jegerlehner, Ny↵eler; J = Jegerlehner.

Contribution PdRV(09) [5] N/JN(09) [6, 124] J(17) [37] Our estimate eq. (8.1)

⇡
0
, ⌘, ⌘

0-poles 114 ± 13 99 ± 16 95.45 ± 12.40 93.8 ± 4.0

⇡, K-loops/boxes �19 ± 19 �19 ± 13 �20 ± 5 �16.4 ± 0.2

S-wave ⇡⇡ rescattering � � � �8 ± 1

scalars �7 ± 7 �7 ± 2 �5.98 ± 1.20
�

� 2 ± 3
tensors � � 1.1 ± 0.1

axial vectors 15 ± 10 22 ± 5 7.55 ± 2.71 8 ± 8

quark-loops / short-distance 2.3 21 ± 3 22.3 ± 5.0 10 ± 10

total 105 ± 26 116 ± 39 100.4 ± 28.2 85 ± 17

The main di↵erence of the first three estimates by PdRV [5], N/JN [6, 124] and J [37] to
our result is that they are based purely on model calculations, see also table I in section II
for details of the original works for some of the individual contributions. Some constraints
from theory, e.g. from ChPT at low-energies or from short-distances in perturbative QCD,
and from experiment are taken into account in those models, e.g. on the single-virtual
pseudoscalar transition form factors. But this model-dependence makes it very di�cult to
estimate the uncertainty in a reliable way. On the other hand, our estimates for the numeri-
cally dominant contributions from the light pseudoscalar-poles ⇡

0
, ⌘, ⌘

0 and for a substantial
part of the two-pion intermediate state in HLbL (pion-box and S-wave ⇡⇡-rescattering) are
now based on model-independent dispersion relations or Canterbury approximants and the
error estimates are largely driven by the precision of the input data.

55

WP	(prelim.)
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55

aμ ≠ ∫
∞

0
ds 𝒦(s) σ(s)

WP	(prelim.)
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Exact dispersive formulas

 6

σTT	and	σLT		inclusive	cross	sec(ons	of	polarized	
photo-absorp(on	on	polarized	muon	(	 � 	):γ↑μ↑ → X

J.	S.	Schwinger,	Proc.	Nat.	Acad.	Sci.	72,	1(1975);		
ibid.	72,	1559	(1975).		

A.	M.	Harun	ar-Rashid,	Nuovo	Cim.	A	33,	447	(1976).

a2
μ = −

m2
μ

απ2 ∫
∞

ν0

dν
ν

σTT(ν)
M.	Gell-Mann,	M.	L.	Goldberger,	and	W.	E.	Thirring,	
Phys.	Rev.	95,	1612(1954).		

S.	B.	Gerasimov,	Sov.	J.	Nucl.	Phys.	2,	430	(1966).	

S.	D.	Drell	and	A.	C.	Hearn,	PRL	16,	908	(1966).	

GDH	sum	rule

Schwinger	sum	rule

γ∗

N

X =		𝛾𝜇,	𝛾𝛾𝜇,	π0𝜇,	π+π-𝜇,	…

𝜇

(ν, Q2)

aμ =
m2

μ

απ2 ∫
∞

ν0

dν [ 1
Q

σLT(ν, Q2)]
Q2=0
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𝜇

(ν, Q2)
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m2

μ
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∞
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dν [ 1
Q
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HVP	dispersive	formula	
reproduced	at	LO	in	�α

(a) (b)

hadrons
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DIS formalism

 7

aμ = lim
Q2→0

8m2
μ

Q2 ∫
x0

0
dx[g(μ)

1 (x, Q2) + g(μ)
2 (x, Q2)] Schwinger	sum	rule



Vladimir Pascalutsa                                                                              Dipersive sum rules for g-2 and HLbL                                                                                                     INT  Seattle                                                                                                                                                       Sep 12,  2019               

DIS formalism

 7

Energy and momentum transfer: ν, Q2

aμ = lim
Q2→0

8m2
μ

Q2 ∫
x0

0
dx[g(μ)

1 (x, Q2) + g(μ)
2 (x, Q2)] Schwinger	sum	rule
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Energy and momentum transfer: ν, Q2
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DIS formalism

 7

Energy and momentum transfer: ν, Q2

Bjorken variable: x =
Q2

2Mν

Structure Functions:
F1(x, Q2), F2(x, Q2) − unpolarized
g1(x, Q2), g2(x, Q2) − polarized (for S ≥ 1/2)
b1,2,3,4(x, Q2) − tensor (for S ≥ 1)

aμ = lim
Q2→0

8m2
μ

Q2 ∫
x0

0
dx[g(μ)

1 (x, Q2) + g(μ)
2 (x, Q2)] Schwinger	sum	rule
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Measuring the muon structure functions

 8
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Quasireal LbL process at the LHC 

ultra-peripheral collisions of two lead ions 

ATLAS Collaboration,  
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arXiv:1810.04602 (2018) 

ATLAS Collaboration,  
Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions 
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arXiv:1904.03536 (2019)  
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Bringing HLbL together 

At the present status of our knowledge none of the steps above seems to be unfeasible or
even extremely di�cult. Complicated and long, but doable, probably within a year. Unless
there will be surprises, we expect that the final uncertainties of the final three contributions
listed above will be confirmed or even significantly reduced. The latter, in particular, is
likely to happen for the short-distance contributions, where we expect a final uncertainty of
about half of what is currently estimated. With this, the goal of a final 10% uncertainty on
the HLbL contribution to the muon (g � 2) will be achieved.

D. Comparison to the Glasgow consensus

The intense activity on the HLbL contribution of the last five years based on the dispersive
approach has been reported in this chapter and summarized above. It is useful to discuss
here in some detail what are the reasons behind the changes in the numbers compared to
the estimates used in 2009, even though on the surface they do not seem to be so large. We
will also comment on a few recent estimates.

In table III we have collected the frequently used compilations for HLbL from 2009 by
Prades, de Rafael and Vainsthein (“Glasgow consensus”, PdRV(09)) [5] and Jegerlehner and
Ny↵eler (N/JN(09)) [6, 124] and a recent update of the latter which has appeared in the
book by Jegerlehner (2nd edition, J(17)) [37]. Our estimate from eq. (8.1) is also shown for
comparison.

TABLE III. Comparison of two frequently used compilations for HLbL in units of 10�11 from 2009
and a recent update with our estimate. Legend: PdRV = Prades, de Rafael, Vainshtein (“Glasgow
consensus”); N/JN = Ny↵eler / Jegerlehner, Ny↵eler; J = Jegerlehner.

Contribution PdRV(09) [5] N/JN(09) [6, 124] J(17) [37] Our estimate eq. (8.1)

⇡
0
, ⌘, ⌘

0-poles 114 ± 13 99 ± 16 95.45 ± 12.40 93.8 ± 4.0

⇡, K-loops/boxes �19 ± 19 �19 ± 13 �20 ± 5 �16.4 ± 0.2

S-wave ⇡⇡ rescattering � � � �8 ± 1

scalars �7 ± 7 �7 ± 2 �5.98 ± 1.20
�

� 2 ± 3
tensors � � 1.1 ± 0.1

axial vectors 15 ± 10 22 ± 5 7.55 ± 2.71 8 ± 8

quark-loops / short-distance 2.3 21 ± 3 22.3 ± 5.0 10 ± 10

total 105 ± 26 116 ± 39 100.4 ± 28.2 85 ± 17

The main di↵erence of the first three estimates by PdRV [5], N/JN [6, 124] and J [37] to
our result is that they are based purely on model calculations, see also table I in section II
for details of the original works for some of the individual contributions. Some constraints
from theory, e.g. from ChPT at low-energies or from short-distances in perturbative QCD,
and from experiment are taken into account in those models, e.g. on the single-virtual
pseudoscalar transition form factors. But this model-dependence makes it very di�cult to
estimate the uncertainty in a reliable way. On the other hand, our estimates for the numeri-
cally dominant contributions from the light pseudoscalar-poles ⇡

0
, ⌘, ⌘

0 and for a substantial
part of the two-pion intermediate state in HLbL (pion-box and S-wave ⇡⇡-rescattering) are
now based on model-independent dispersion relations or Canterbury approximants and the
error estimates are largely driven by the precision of the input data.
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I. INTRODUCTION

Authors: Gilberto Colangelo (working group coordinator), Franziska Hagelstein, Andreas
Ny↵eler (working group coordinator), Vladimir Pascalutsa

A. The HLbL contribution to the muon g � 2

One of the largest uncertainties of the Standard Model evaluation of g�2 comes at present
from the hadronic light-by-light (HLbL) scattering contribution depicted on the left-hand
side of fig. 1. Unlike its QED counterpart, this contribution cannot be calculated in pertur-
bation theory, and thus one should rely on either lattice QCD or data-driven evaluations,
similarly to how it is done for the hadronic vacuum polarization (HVP) contribution.
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FIG. 1. HLbL in the muon g � 2 in model calculations. The blobs on the right-hand side of the
equal sign are form factors that describe the interaction of photons with hadrons.

The HLbL contribution is, however, more complicated than the HVP contribution, be-
cause the light-by-light contributions enter through a four-point function—the light-by-light
scattering amplitude—rather than a two-point function as in the case of vacuum polariza-
tion. To the right-hand side of the equal sign in fig. 1 various contributions to the HLbL
tensor are shown. This picture was used in early model calculations, but it is to a large
extent still valid, though defined more precisely in modern, data-driven approaches as will
be explained here. At low energies, there are exchanges of single mesons, like the light
pseudoscalars ⇡

0
, ⌘, ⌘

0, heavier scalars like f0(980), a0(980) or axial-vector mesons a1, f1 and
tensor mesons f2, a2 above 1 GeV. Furthermore, there are loops with charged pions and
Kaons. Finally, when all momenta are large, HLbL can be described by a perturbative
quark-loop. Since the HLbL contribution to the (g � 2)µ is obtained through integration
of the HLbL tensor over all momenta, it is a priori not clear if any momentum expansion
of the tensor could be usefully applied. In the integral there is a weight function (arising
from muon and photon propagators) in which the only scale is the muon mass. One could
therefore expect that low momenta should dominate the integral, but translating this expec-
tation into an algebraic expansion scheme has not been possible so far. A detailed analysis
of the respective merits of the chiral and the large-NC expansions have been discussed in
a key paper by Eduardo de Rafael [1]. According to this analysis, the leading contribution
in chiral perturbation theory is the charged pion-loop at order p

4, while it is subleading in
large Nc. On the other hand, the exchanges of single mesons are leading in large Nc (as is
the quark-loop), with the light-pseudoscalars starting at order p

6 and the heavier mesons
at order p

8. Since in general the interaction of photons with mesons is described by form
factors (� � ⇢-mixing as in vector meson dominance models), the situation becomes very

4
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here in some detail what are the reasons behind the changes in the numbers compared to
the estimates used in 2009, even though on the surface they do not seem to be so large. We
will also comment on a few recent estimates.

In table III we have collected the frequently used compilations for HLbL from 2009 by
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Ny↵eler (N/JN(09)) [6, 124] and a recent update of the latter which has appeared in the
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The main di↵erence of the first three estimates by PdRV [5], N/JN [6, 124] and J [37] to
our result is that they are based purely on model calculations, see also table I in section II
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error estimates are largely driven by the precision of the input data.
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One of the largest uncertainties of the Standard Model evaluation of g�2 comes at present
from the hadronic light-by-light (HLbL) scattering contribution depicted on the left-hand
side of fig. 1. Unlike its QED counterpart, this contribution cannot be calculated in pertur-
bation theory, and thus one should rely on either lattice QCD or data-driven evaluations,
similarly to how it is done for the hadronic vacuum polarization (HVP) contribution.
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FIG. 1. HLbL in the muon g � 2 in model calculations. The blobs on the right-hand side of the
equal sign are form factors that describe the interaction of photons with hadrons.

The HLbL contribution is, however, more complicated than the HVP contribution, be-
cause the light-by-light contributions enter through a four-point function—the light-by-light
scattering amplitude—rather than a two-point function as in the case of vacuum polariza-
tion. To the right-hand side of the equal sign in fig. 1 various contributions to the HLbL
tensor are shown. This picture was used in early model calculations, but it is to a large
extent still valid, though defined more precisely in modern, data-driven approaches as will
be explained here. At low energies, there are exchanges of single mesons, like the light
pseudoscalars ⇡
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0, heavier scalars like f0(980), a0(980) or axial-vector mesons a1, f1 and
tensor mesons f2, a2 above 1 GeV. Furthermore, there are loops with charged pions and
Kaons. Finally, when all momenta are large, HLbL can be described by a perturbative
quark-loop. Since the HLbL contribution to the (g � 2)µ is obtained through integration
of the HLbL tensor over all momenta, it is a priori not clear if any momentum expansion
of the tensor could be usefully applied. In the integral there is a weight function (arising
from muon and photon propagators) in which the only scale is the muon mass. One could
therefore expect that low momenta should dominate the integral, but translating this expec-
tation into an algebraic expansion scheme has not been possible so far. A detailed analysis
of the respective merits of the chiral and the large-NC expansions have been discussed in
a key paper by Eduardo de Rafael [1]. According to this analysis, the leading contribution
in chiral perturbation theory is the charged pion-loop at order p

4, while it is subleading in
large Nc. On the other hand, the exchanges of single mesons are leading in large Nc (as is
the quark-loop), with the light-pseudoscalars starting at order p

6 and the heavier mesons
at order p

8. Since in general the interaction of photons with mesons is described by form
factors (� � ⇢-mixing as in vector meson dominance models), the situation becomes very
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At the present status of our knowledge none of the steps above seems to be unfeasible or
even extremely di�cult. Complicated and long, but doable, probably within a year. Unless
there will be surprises, we expect that the final uncertainties of the final three contributions
listed above will be confirmed or even significantly reduced. The latter, in particular, is
likely to happen for the short-distance contributions, where we expect a final uncertainty of
about half of what is currently estimated. With this, the goal of a final 10% uncertainty on
the HLbL contribution to the muon (g � 2) will be achieved.
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error estimates are largely driven by the precision of the input data.
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FIG. 1. HLbL in the muon g � 2 in model calculations. The blobs on the right-hand side of the
equal sign are form factors that describe the interaction of photons with hadrons.
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