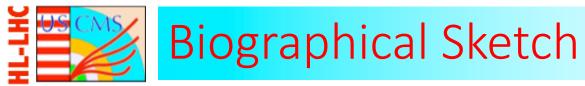


B03 - 402.2.4 OT Electronics

Anadi Canepa (Fermilab), Yuri Gershtein (Rutgers) HL LHC CMS Detector Upgrade CD-1 Review October 23rd, 2019



- Scope and Design
 - Deliverables
 - Conceptual Design
 - R&D Activities
- Cost and Schedule
 - Schedule
 - Risk
 - Resource Optimization
- Project Organization
 - Participating institutes
 - ESH&Q
 - Quality Assurance/Control

Summary

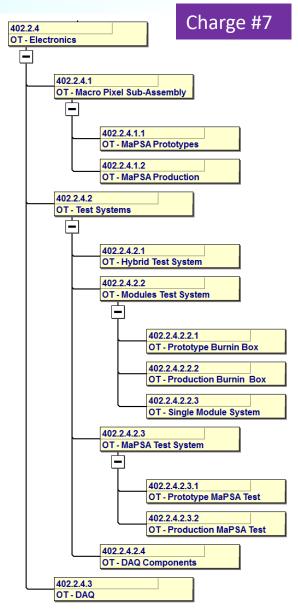
10/23/19

- Brief biographical sketch for the L3 managers
 - Anadi Canepa
 - Purdue 01-06 (Grad Student)
 - CDF Silicon Detectors (SVXII, ISL, L00), Run2b Sensor characterization
 - UPenn 06-08 (Postdoc)
 - CDF L2 Calorimeter Trigger Upgrade
 - TRIUMF 08-15 (Scientist)
 - ATLAS Phase 1 Upgrade, ATLAS Online DQM
 - FNAL 15-present (Scientist)
 - CMS Outer Tracker, System Test Co-convener for iCMS

Yuri Gershtein

- PhD @ ITEP, Moscow (1992-1996)
 - GEM (SSC) muon system
 - CMS Quartz Fiber calorimetry R&D
- Staff @ ITEP, Moscow (1997-1999)
 - DØ upgrade: muon system, track trigger
- PostDoc @ Brown (1999-2004)
 - DØ silicon detector
- Faculty @ Florida State (2004-2008)
 - CMS ECAL
- Faculty @ Rutgers (2008)
 - CMS Phase 2 upgrades, System Test Co-convener for iCMS

Scope


10/23/19Y. GershteinHL LHC CMS Detector Upgrade CD-1 ReviewOT L3 - Electronics

402.2.4 Electronics WBS Structure

Electronics includes:

- MaPSA assembly for entire OT
 - L4 managers: Ron Lipton and Doug Berry (FNAL)
- Test Systems for hybrids, MaPSAs, modules, module burn-in, larger structures
 - L4 manager: Eva Halkiadakis (Rutgers)
- DAQ development for test systems; firmware and software development
 - L4 manager: Lorenzo Uplegger (FNAL)

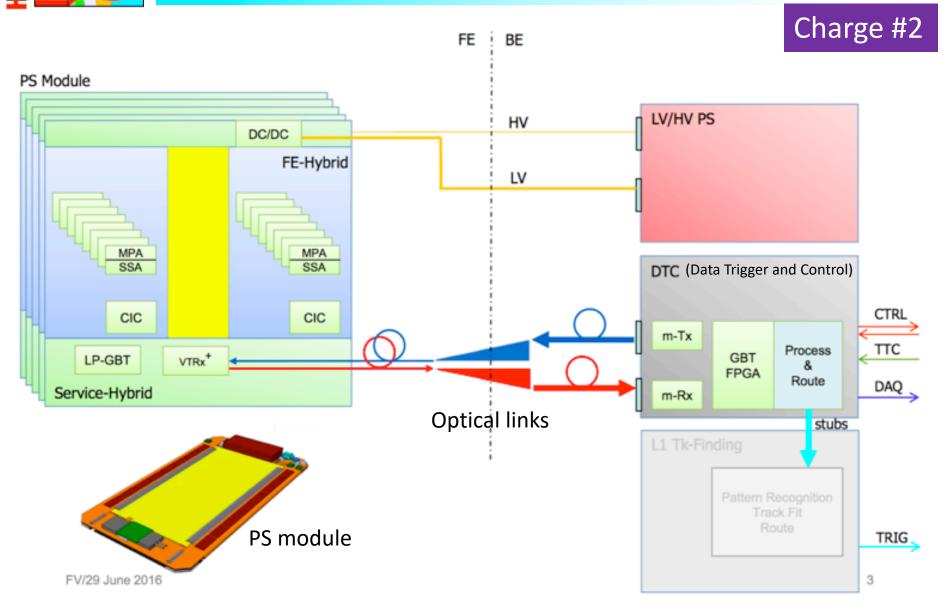
Deliverables for 402.2.4 Electronics

Macro Pixel Sub-Assembly (MaPSA)

- Charge #2
- Produce for "dummy" prototypes
 > today covered in a dedicated talk
- Produce MaPSA for the entire OT

Test Systems

- Design responsibilities for test systems shared internationally
- Procurement for US-CMS needs only
 - Hybrids: purchase and assemble test system
 - Single Modules: purchase readout boards for single module test systems
 - Multi-Modules: design burn-in boxes, prototype and production; purchase boards and crates
 - MaPSAs: design and produce MaPSA probe card and interface board, prototype and production
 - System Tests: purchase DTC prototype and ATCA/AMC13 system


DAQ

- Develop and maintain OTSDAQ for testing on test benches and in test beams for MaPSAs, single modules, module burn-in and larger systems of modules; evolve into DAQ for OT in CMS
- Develop and maintain DTC firmware and middleware (MW) software for FE and BE interfaces

Conceptual Design

OT Readout Components

Ĭ

Y. Gershtein

Charge #2

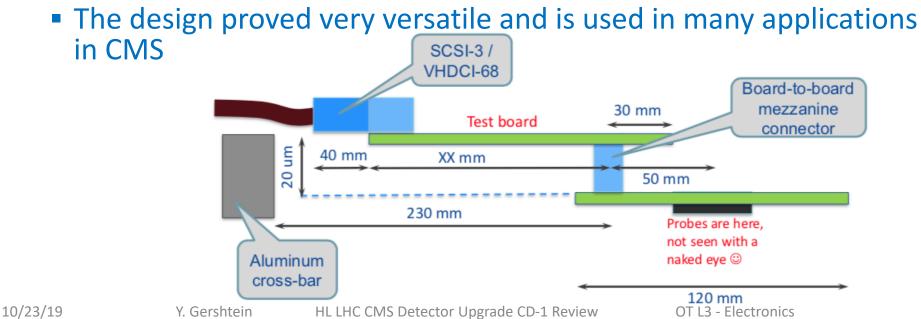
- Test Systems
 - Quick and reliable way for QC of MaPSAs, hybrids and modules
 - Cold tests for 10-module burn-in at -33C and long term stability tests
 - Operate a system of large number of modules mounted on planks at FNAL

DAQ

- Software (OTSDAQ, Middleware): capability to provide multi module synchronization, compatibility with OT DB, module calibrations and CMS DAQ
- Firmware (DTC): firmware and software compatibility with tobe designed hardware

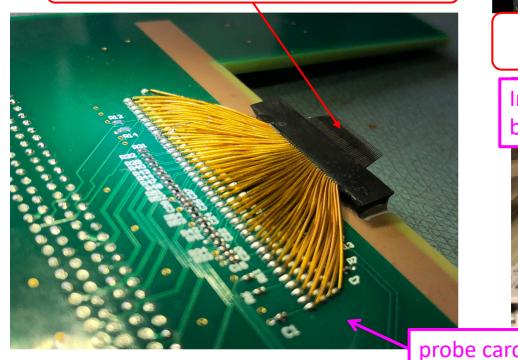
- While the primary goal of this R&D is to make sure CMS has appropriate Test Systems for QA and QC during the production, the prototypes of these systems are used by US CMS and iCMS to validate all other design elements
 - Sensors
 - ASICs
 - Hybrids
 - Modules

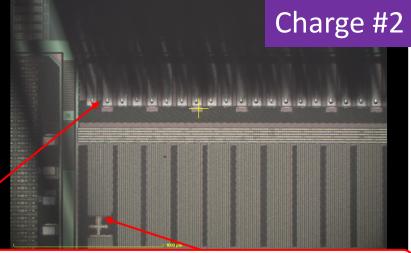
- The tests provided important feedback to the designs: this is a large part of US CMS intellectual contribution to the OT
- Large integrated structures

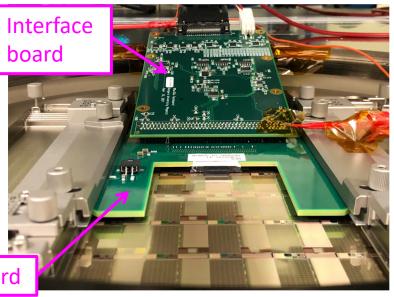


MaPSA Test System

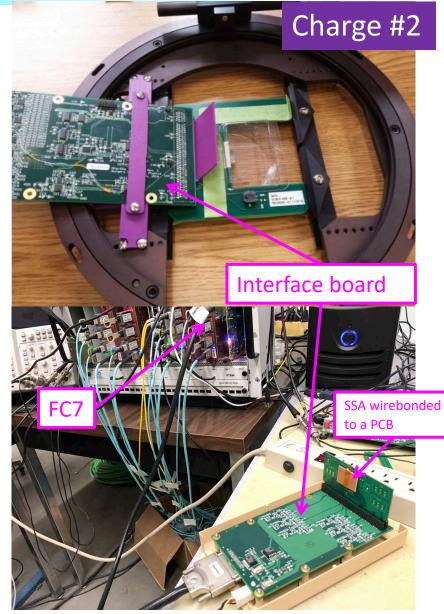
Charge #2


11


- Goal: verify performance of the MaPSA before it's committed to a module
- Challenge: dense packaging, 320 MHz SLVS clock and data lines
- Elements:
 - 117-needle probe card to connect to an MPA chip
 - Connected to an interface board, which translates signal voltages, measures voltages and currents and handles I²C communications
 - Connected via VHDCI cable to an FPGA board (FC7)


- Probe Card lowers to contact wire-bonding pads on MPA
 Probe Station programmed
 - with wafer map to facilitate moving from MPA to MPA

Probe card needles



Probe Station has image recognition for easy alignment

MaPSA Test System

- MaPSAlite probe card designed, built and tested successfully
- Prototype MaPSA interface board (v1 and v2) designed, built and tested successfully
 - Has been used as the test system for MPA and SSA evaluation
 - Now is the system that is used for on the wafer good die tests at CERN and (in the future) at the vendor
 - Test beams (baby-MaPSA in 2018, 2xSSA in Jan 2020). PS FE hybrids will be available in late 2020.
- MaPSA production interface board has been designed and procured. Testing now.

MaPSA Test System: applied to good die tests

Individual MPAs also tested. No major issues reported. 2st Wafer Trimming of Threshold DAC based on injected charge shows good ability to 0 calibrate the entire chip. 15.35 15.38 15.49 Theshold Equilization at 0.5 fC 15.58 15.21 15.70 450 15.06 15.38 Mean = 93.3 LSB 400 Sigma = 1.6 LSB 350 14 92 14 93 14 62 14.99 15.28 Ŧ 300 of Pixel 14.57 15.05 14.43 250 ber Threshold Equilized h 200 14 80 14 66 14.77 14 87 14.40 14.57 14 20 14 78 14.93 14 57 Min Trimming Max Trimming 150 14.18 14.33 14.58 15.15 15.12 100 15.04 15.08 15.17 40 60 80 100 Threshold Value [LSB] 15.01 14 77 15 25 14.98 15.33 14 66 15.26 15.39 S-Curve Trimming Spread @ 0.5 fC: ±1.6 Threshold DAC LSB 15.18 14.95 15.39 ± 0.55 Trimming DAC LSB

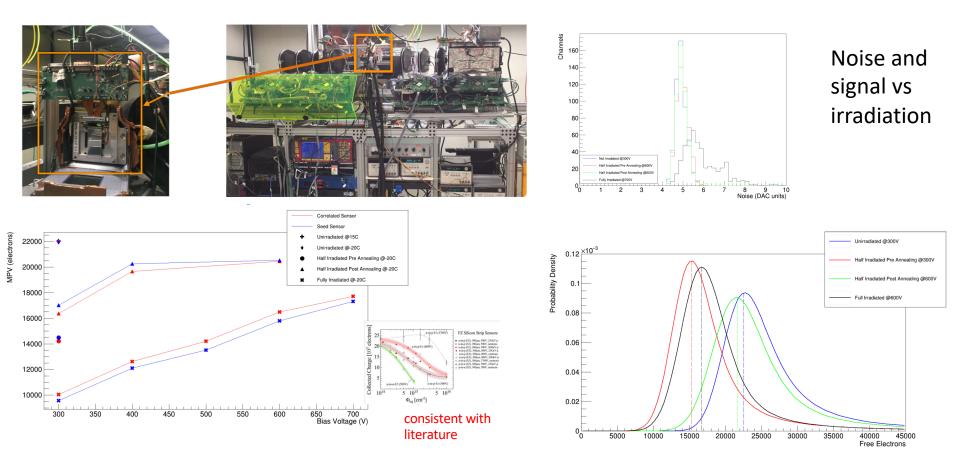
> problem uncovered with outsourced memory circuit, a fix is now available

200

220

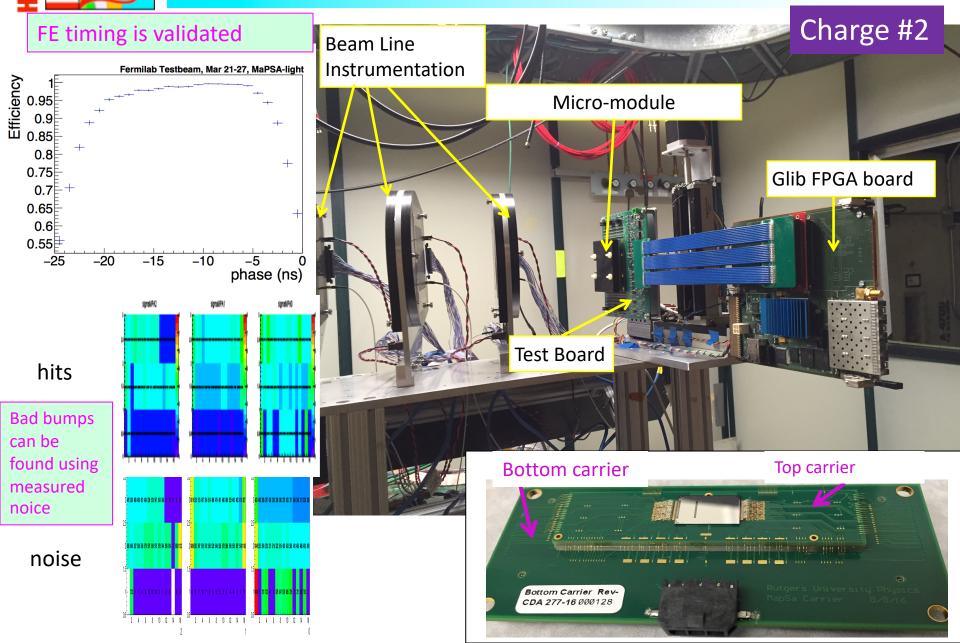
Charge #2

Bin x counts how many pixels


at a the threshold value = x

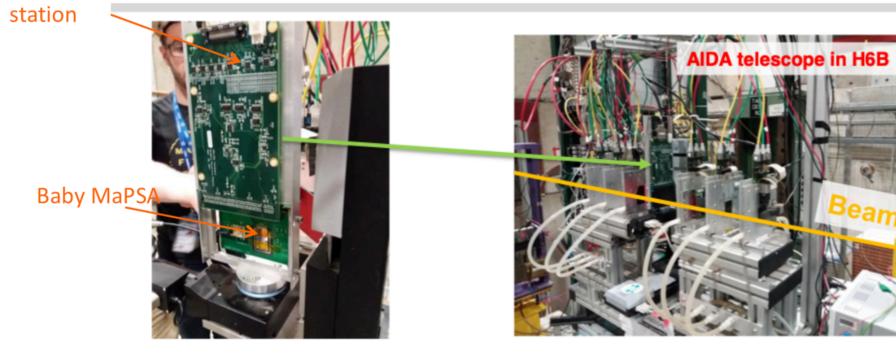
show the mid-point of the Scurve

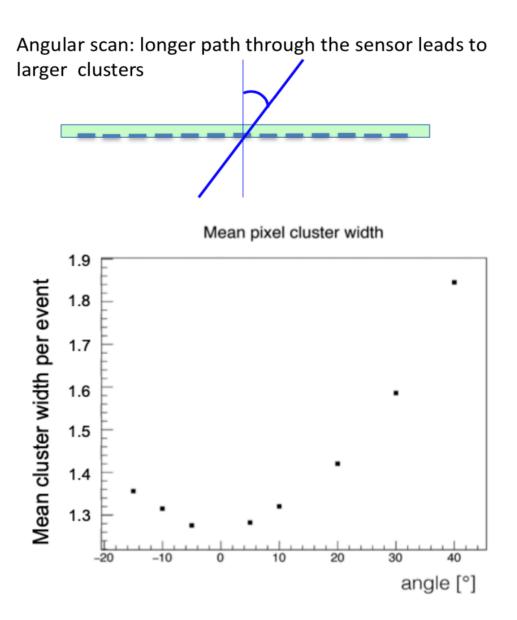
Threshold (DAC LSB)



• 2S Module Test System in action

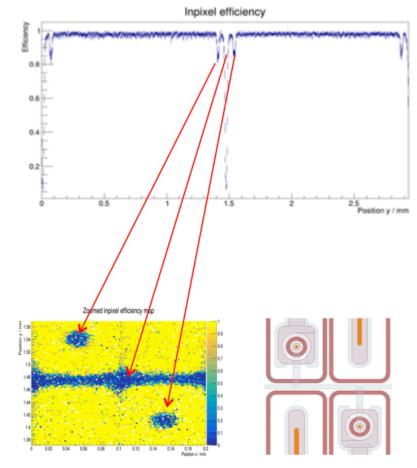
Y. Gershtein

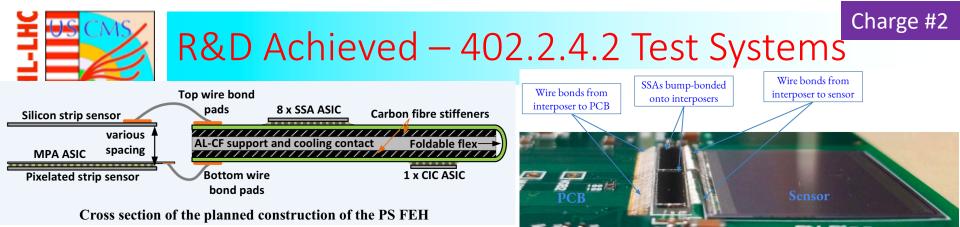



Baby MaPSA beam tests (1/2)

- CERN H6 test beam with AIDA telescope
- Baby MaPSA devices gold-stud-bonded at KIT
- Electronics and DAQ from the US
- Firmware help from CERN and DESY

Same interface board as used for probe

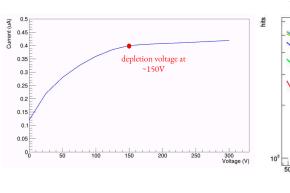


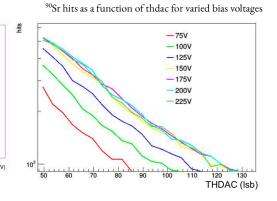


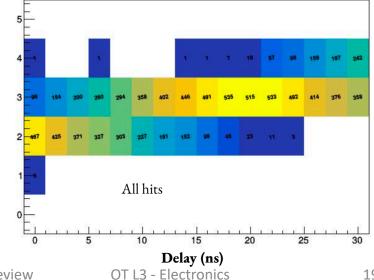
Baby MaPSA beam tests (2/2)

Charge #2

Hit efficiency >98%, with small expected inefficiencies due to bias rail and bias punchthrough

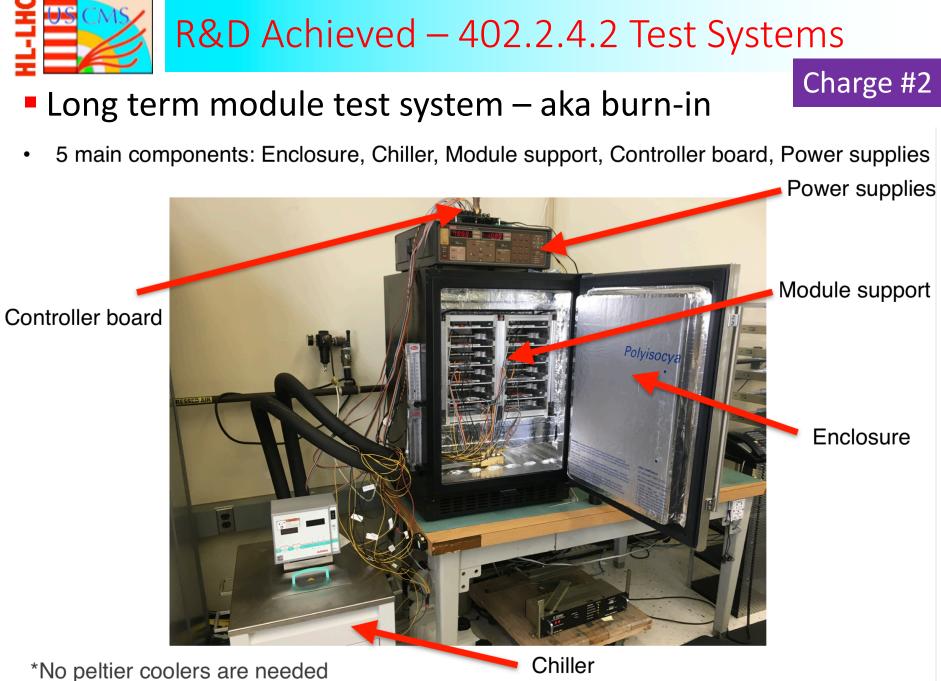





The last Outer Tracker FE ASIC to be tested

Required fairly complex packaging:

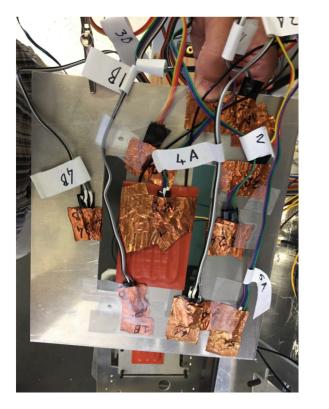
- SSA is bump-bonded to a hybrid, which was not even designed yet
- Too large density for regular PCB production
- Sapphire "interposer" on a PCB.
- Measured noise consistent with the design
- To be tested in FNAL Test Beams Facility in Jan 2020

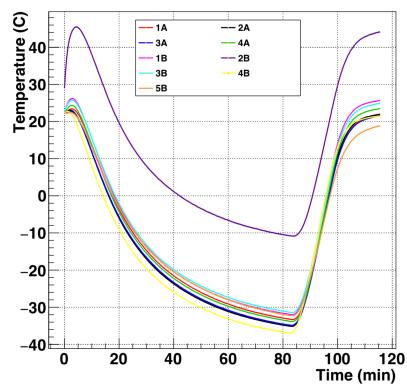


2xSSA module

Y. Gershtein

HL LHC CMS Detector Upgrade CD-1 Review

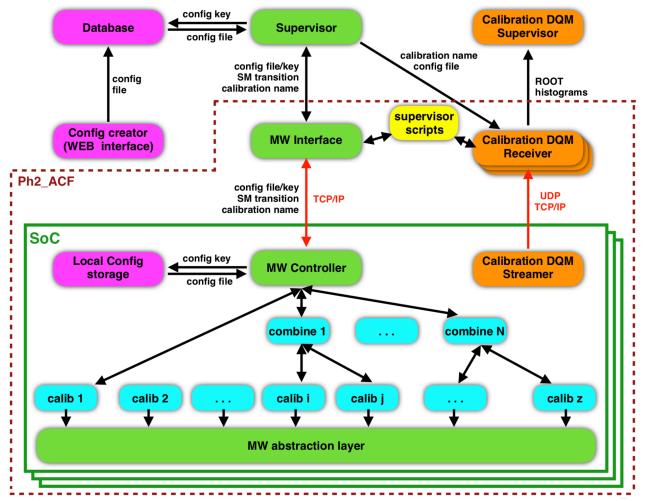

Relative **BX**



10/23/19

Y. Gershtein

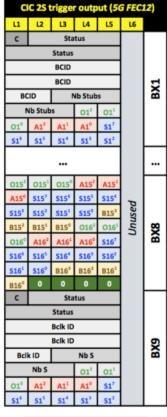
- Long term module test system aka burn-in
 - Both 2S and PS module carriers have been designed and tested
 - 2 hours per cycle is achievable



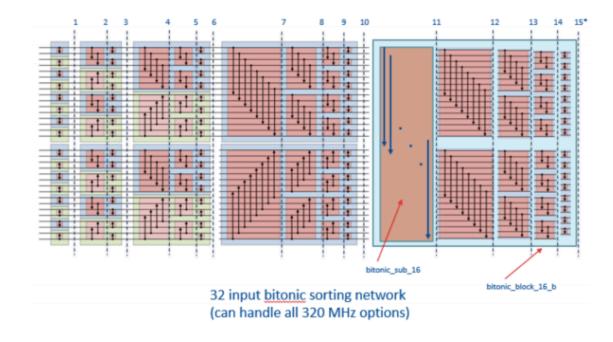
- Firmware and software development for various test systems
 - Middleware and OTSDAQ
 - single module, GLIB-based and FC7-based systems developed, built and used in test beams and on test benches
 - integrated 2S module with µTCA setup (including calibrations)
 - DTC and µDTC
 - Contributed to the FW (data decoding and sorting, infrastructure, etc)
 - DTC iCMS FW effort recently defined and started, roles of Fermilab and Rutgers are being finalized

R&D Achieved – 402.2.4.3 DAQ

Middleware: abstraction layer between FE and software


Responsible for configuration, calibration, and DAQ

US institutions are playing the leading role in defining MW architecture and the way it runs on the FPGA's System On a Chip (SoC), as well as its implementation



μDTC firmware – FC7 prototype of the DTC firmware

	Definitions				
С	CIC conf. : MPA or CBC				
Status	Status bits				
BCID	Bunck clock ID				
Nb Stubs	Number of stubs in block				
OXY	BX offset for stub X (bit Y)				
AX	Chip ID for stub X (bit Y)				
SXY	Stub address for stub X (bit Y)				
BXY	Bend info for stub X (bit Y)				

- Stubs arrive in 8 bunch crossing long "boxcars" ordered by bend (pT)
- Need to get sorted in proper by bunch crossing
- Bitonic sorting network deployed

Y. Gershtein

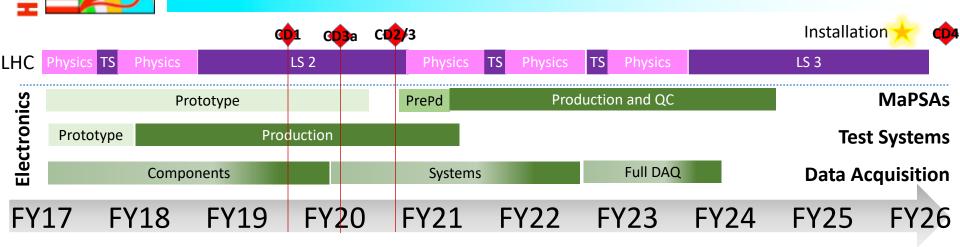
HL LHC CMS Detector Upgrade CD-1 Review

402.2.4.2 Test Systems

- Develop procedures for fast MaPSA tests minimize the probe landing time through better vision systems and automation
- Help develop procedures for the module tests
- Almost at the finish line

• 402.2.4.3 DAQ

- OTSDAQ software development:
 - Develop DAQ for MaPSA (merge MaPSA and official iCMS middleware, add calibrations for MaPSA)
 - Optimize user interface and testing procedures
 - Develop burn-in version (multi-module)
 - Add detector construction database capabilities
 - In parallel with production:
 - Development for bigger systems of modules
 - Development for integration into central DAQ in CMS, including calibrations and running in global runs


• 402.2.4.3 DAQ

- DTC hardware is not part of the US OT scope. Fermilab and Rutgers are involved in developing software and firmware for the DTC.
- Current and future R&D
 - µDTC: current FC7-based DAQ
 - Optical readout development
 - MPA, SSA, and PS module readout
 - DTC prototypes: ATCA blades
 - Firmware for transmission lines
 - Firmware for fast data unpacking / sorting
 - Support new hardware developments

Schedule and Cost

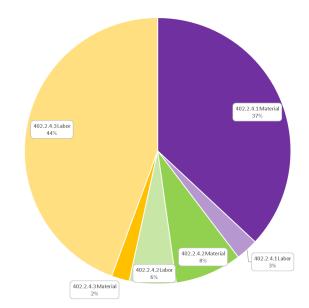
Major Milestones for 402.2.4 Electronics

Test Systems

 MaPSALite test system complete 	5-May-17
Proto/prod burn-in system complete:	3-Jan-18/21-Jul-21
 Electrical/optical module test systems complete: 	24-Mar-20/8-Apr-20
 MaPSA proto/prod test systems complete: 	2-Apr-18/23-Oct-20
DAQ	
 Development for GLIB test setup complete 	20-Jul-17
 Development of FC7 test setup for single module complete 	24-Jan-18
 OTSDAQ/Middleware ready for single module testing 	31-Mar-20
 OTSDAQ/Middleware ready for integration in global runs 	31-Mar-23

Critical path: Electronics is not on a critical path, except for the last batch (1/9) of MaPSAs. Will be covered in Doug's talk.

10/23/19


Y. Gershtein

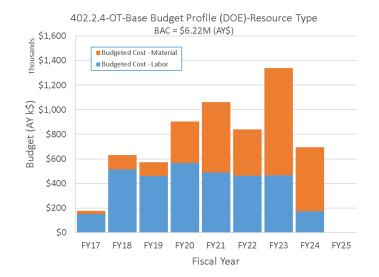
Overall Cost 402.2.4 Electronics

						Charge #3
WBS	Direct M&S (\$)	Labor (Hours)	FTE	Direct + Indirect + Esc. (\$)	Estimate Uncertainty (\$)	Total Cost (\$)
DOE-CD1-402.2 402.2 OT - Outer Tracker (at DOE CD1)	20,575,450	376978	213.22	42,871,529	9,891,026	52,762,555
DOE-CD1-402.2.2 OT - Management	959,000	43537	24.63	1,125,217	87,120	1,212,337
DOE-CD1-402.2.3 OT - Sensors	4,993,973	31778	17.97	7,371,148	1,309,487	8,680,634
DOE-CD1-402.2.3.1 OT - Sensor QC Centers	682,480	7678	4.34	1,418,107	95,316	1,513,423
DOE-CD1-402.2.3.2 OT - PS-P Sensors	813,108	3132	1.77	1,079,959	206,472	1,286,431
DOE-CD1-402.2.3.3 OT - PS-S Sensors	889,677	7262	4.11	1,356,764	286,122	1,642,885
DOF-CD1-402.2.3.4. OT - 2S Sensors	2 608 708	13706	7 75	3 516 318	721 577	1 237 895
DOE-CD1-402.2.4 OT - Electronics	2,740,374	33044	18.69	6,222,484	1,241,158	7,463,642
DOE-CD1-402.2.4.1 OT - Macro Pixel Sub-Assembly	2,162,244	4645	2.63	2,468,116	737,873	3,205,989
DOE-CD1-402.2.4.2 OT - Test Systems	451,140	5081	2.87	857,430	162,291	1,019,721
DOE-CD1-402.2.4.3 OT - DAQ	126.990	23318	13.19	2.896.938	340.994	3.237.932
DOE-CD1-402.2.5 OT - Modules 402.2.	.4-OT-WBS L4 Base Budg		i	1,785,980	5,113,007	26,898,987

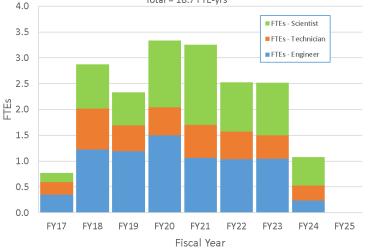
BAC = \$6.22M (AY\$)

Y. Gershtein

Fiscal Year Cost Profile


M&S

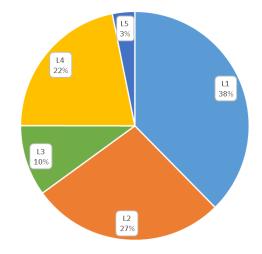
- FY17-19: components for test systems
- FY21-24: MaPSA assembly


Labor

- FY17-24: DAQ development
- FY17-20: test systems development

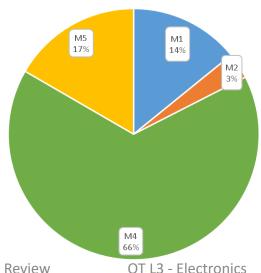
FTE	Total
AD	0.00
EN	7.63
TE	4.00
SC	7.05
Grand Total	18.69

Y. Gershtein



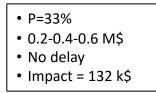
Contingency Breakdown

Labor


 Most of labor is on DAQ development, which is scheduled over the entire duration of the project and detailed needs are still uncertain 402.2.4-OT-Estimate Uncertainty Breakdown-Labor (DOE) BAC (Labor Budget)=\$3.28M (AY\$)

Charge #3

M&S


 Large variance in MaPSA bump bonding cost; EU will go down with vendor selection, and when final contracts are in place (<Q4/20) 402.2.4-OT-Estimate Uncertainty Breakdown-M&S (DOE) BAC (M&S)=\$2.94M (AY\$)

	Risks				Cha	rge #
B WBS / Ops Lab	Activity : 402.2 OT - Outer Tracker (21)				CMS-doc-1	3480
■ Risk Rank : 3	(High) (5)					
RU-402-2-01-D	OT - Uncertain performance of Hybrids vendor	100 %	0 168 648 k\$	0 2 12 months	272	4.7
RT-402-2-91-D	OT - Shortfall in Outer Tracker scientific labor	30 %	0 0 1049 k\$	0 months	105	0.0
RT-402-2-01-D	OT - Sensor quality problem during production	50 %	46 79 163 k\$	2 3 6 months	48	1.8
RT-402-2-46-D	OT - Problem with carbon foam vendor	25 %	23 158 396 k\$	1 6 12 months	48	1.6
RO-402-2-03-D	OT - Module assembly can be automated	66 %	-500 k\$	-2 months	-330	-1.3
∃ Risk Rank : 2	(Medium) (15)					
RT-402-2-11-D	OT - MaPSA bump bonding cost increases	20 %	500 1000 1500 k\$	0 months	200	0.0
RT-402-2-10-D	OT - Vendor cannot perform MaPSA qualification tests	33 %	200 400 600 k\$	0 months	132	0.0
RT-402-2-09-D	OT - MaPSA yield is lower than expected	15 %	370 640 k\$	0 months	76	0.0
RT-402-2-90-D	OT - Key Outer Tracker personnel need to be replaced	25 %	75 225 570 k\$	0 0 3 months	73	0.3
RT-402-2-23-D	OT - Vendor is unable to produce sensors to specifications	5 %	210 315 2720 k\$	6 9 12 months	54	0.5
RT-402-2-33-D	OT - More preproduction modules needed	25 %	0 0 330 k\$	0 0 6 months	28	0.5
RT-402-2-24-D	OT - Problem with module mechanical parts vendor	20 %	0 0 324 k\$	0 0 6 months	22	0.4
RT-402-2-43-D	OT - Problem with carbon fiber vendor	25 %	23 79 158 k\$	1 3 6 months	22	0.8
RT-402-2-59-D	OT - Damage to Flat Barrel Layer	1 %	930 1880 3150 k\$	6 9 12 months	20	0.1
RT-402-2-14-D	OT - System test hardware has insufficient capacity	10 %	71 169 292 k\$	2 3 4 months	18	0.3

MaPSA vendor cannot perform QC tests

- In that case we will perform QC for all MaPSAs at Fermilab (additional labor)
- System Test hardware has insufficient capacity
 - In that case we will acquire additional hardware and pay for additional labor

P=10%
0.07-0.17-0.3 M\$
2 - 3 - 4 months
Impact = 0.02 M\$ and 0.3 months

10/23/19

HS CMC

Project Organization

Contributing Institutions

Charge #4,5

Fermilab

- Scientists:
 - Doug Berry: CMS phase 1 FPIX, CMS ECAL operations
 - Anadi Canepa: CDF L00 Silicon, CDF L2 Trigger upgrade, ATLAS New Small Wheel upgrade, CMS L2 Deputy OT, iCMS Systems Test Convener
 - Ron Lipton: D0 Silicon Microstrip Tracker, CMS OT & HGCal sensor design, L3 manager CMS OT Mechanics & Integration
 - Petra Merkel: CDF Silicon Strip Tracker, CMS phase 0 FPIX bump bonding & construction, L3 CMS phase 1 FPIX Assembly & Testing, L3 CMS OT Electronics
 - Lorenzo Uplegger: CMS phase 0 & phase 1 FPIX DAQ, test beam DAQ
- Engineers:
 - Greg Derylo: CDF Silicon Tracker, DES camera, CMS phase 1 FPIX mechanics
 - Sergey Los: CMS phase 0 & 1 FPIX electronics
 - Alan Prosser: CMS phase 1 FPIX & phase 2 IT/OT optical link development
 - Ryan Rivera: CMS phase 0 & phase 1 FPIX DAQ, test beam DAQ
- Technicians:
 - John Chramovicz: CMS phase 1 FPIX & phase 2 IT/OT optical link development
 - Bert Gonzalez: chief technician at SiDet, leading technician on many projects
 - Michelle Jonas: wire bonding technician, has worked on many silicon projects
 - Jorge Montes: CMS phase 1 FPIX & DES metrology, mech. tech.

- Rutgers University
 - Scientists:
 - Yuri Gershtein: D0 track trigger, silicon detector, muon system upgrades, SSC GEM muon system R&D, CMS Quartz Fiber calorimetry R&D, CMS ECAL
 - Eva Halkiadakis: CDF Silicon detector, CMS PLT
 - Bob Stone: CMS phase 0 & 1 FPIX, CMS PLT
 - Technician:
 - Jonathan Harrop (senior in Rutgers Engineering, expect to keep him on the project after graduation)
 - Engineer:
 - Ed Bartz: CMS phase 0 & 1 FPIX TBM chip development, CMS phase 0 FPIX FEC firmware
- Princeton University
 - Scientist:
 - Dan Marlow: Belle Silicon detector, CMS PLT
 - Technician:
 - Bert Harrop: Silicon detector packaging expert, Belle, CMS PLT

Contributions to test beam campaigns:

- **Rochester:** Regina Demina (fac), Sergey Korjenevsky (eng), Otto Hindrichs (pd)
- **Boston:** Tulika Bose (fac), Shouxiang Wu, Eric Hazen (eng), Dylan Rankin (stu)
- **Iowa:** Maksat Haytmyradov (stu)
- Wayne State: Nabin Poudyal (stu)

Previous expertise

 Senior personnel at all three institutions have expertise in silicon detectors, electronics and DAQ development.

Infrastructure

 All infrastructure needed for electronics and DAQ development and MaPSA testing existed and R&D work could start immediately.

Intellectual engagement

 With the development of electronics for test systems for all levels of components, firmware and software development for the readout system and DAQ, as well as responsibility in MaPSA vendor qualification and process optimization and QC, and convenership in the iCMS System Tests Working Group, this WBS is very well positioned within iCMS.

Vendors

- Due to large spread in quoted assembly costs, extensive vendor qualification has to take place during the prototyping phase. Bump bonding vendors provide first level (all) of QC.
- Equipment is generally purchased off the shelf or from iCMS partners.

- All ES&H aspects of the HL LHC CMS Detector Upgrade Project will be handled in accordance with the Fermilab Integrated Safety Management approach, and the rules and procedures laid out in the Fermilab ES&H Manual (FESHM)
- In General Safety is achieved through standard Lab/Institute practices
 - Items comply with local safety standards in site of fabrication and operation
 - Radiation campaigns/test beams require appropriate safety training and ORC
 - No construction, accelerator operation, or exotic fabrication
 - No imminent peril situations or unusual hazards

Specific Hazards for Electronics

NONE

4*05/21*8/19

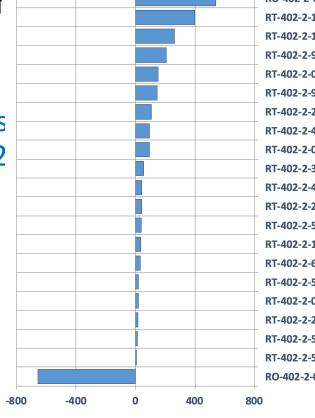
Summary

- Test Systems
 - Prototypes for all test systems already exist
 - Final versions expected well in advance of module production
- DAQ
 - Firmware and software development ongoing
 - Will provide maintenance and support throughout construction phase
- Cost and schedule aspects are suitable for CD-1

Backup

HL LHC CMS Detector Upgrade CD-1 Review OT L3 - Electronics Technical Milestones - Electronics

402.2W.4.1 OT - Macro Pixel Sub-Assembly		3-Oct-16	26-Jul-24	
OT410010	T5 - Start MaPSA Prototypes	3-Oct-16		T5
OT410115	T5 - Vendor 2 prototype MaPSAs delivered - Round 1		13-Sep-19	T5
OT410095	T5 - Vendor 1 prototype MaPSA delivered - Round 1		13-Sep-19	T5
01410095	15 - vendor i prototype marsa denvered - kound i		13-3eb-19	15
OT410205	T5 - Vendor 3 delivers prototype MaPSA - Round 2		13-May-20	T5
DT410175	T5 - Vendor 2 delivers prototype MaPSA - Round 2		13-May-20	T5
OT410145	T5 - Vendor 1 delivers prototype MaPSA - Round 2		13-May-20	T5
OT410230	T4 - MaPSA Prototyping complete		12-Aug-20	T4
DT410750	T4 - MaPSA Production Complete		26-Jul-24	T4
02.2W.4.2 OT - Test Systems		3-Oct-16	17-Dec-21	
OT421700	T5 - Beginning of MAPSALite Test System Develoment	3-Oct-16		T5
DT421710	T5 - Beginning of MAPSALite probe card development	3-Oct-16		T5
OT421730	T5 - Completion of MAPSAlite probe card design	0 000 10	5-Jan-17	T5
		2 4 17	J-JdII-17	
DT420300	T5 - Beginning of Prototype Burnin Box	3-Apr-17		T5
OT421790	T5 - Completion of MAPSAlite probe card		15-May-17	T5
DT421800	T5 - Beginning of MAPSA test system development	16-May-17		T5
DT420400	T5 - Completion of Burnin Proto Design		26-Jun-17	T5
DT420430	T5 - Completion of Burnin Proto Development		20-Sep-17	T5
DT421860	T5 - Completion of MAPSA prototype probecard design		4-Dec-17	T5
			4-Dec-17 4-Dec-17	T5
OT421850	T5 - Completion of MAPSA prototype interface board design			
OT420580	T4 - Prototype Burn-in system complete		3-Jan-18	T4
DT422010	T5 - Completion of Prototype MAPSA Test System		2-Apr-18	T5
DT422200	T5 - Start Production MAPSA Test System	1-Oct-19		T5
OT420700	T5 - Beginning of Burnin Final	1-Oct-19		T5
OT421300	T5 - Start Building Single Module Test System	19-Dec-19		T5
OT421299	T5 - Test systems for electrical readout available	19-Dec-19*		T5
OT421610	T5 - Electrical test system complete		24-Mar-20	T5
OT422230	T5 - Completion of production MAPSA probecard design		25-Mar-20	T5
OT422300	T5 - Completion of production MAPSA interface board design		25-Mar-20	T5
OT750520	T5 - Module test system complete		8-Apr-20	T5
DT420750	T5 - Final Burnin box design complete		4-Aug-20	T5
DT422400	T5 - Completion MAPSA test system development		23-Oct-20	T5
		16-Mar-21	23-001-20	T5
OT422600	T5 - Start Procurement of DAQ Components			
DT420000	T5 - Beginning prod test systems for hybrids	16-Mar-21		T5
DT420200	T5 - Completion of prod test systems for hybrids (BR)		6-Apr-21	T5
DT420190	T5 - Completion of prod test systems for hybrids (FN)		6-Apr-21	T5
DT421200	T4 - Final Burn-in system complete		12-Jul-21	T4
OT422740	T5 - DAQ Components Complete		17-Dec-21	T5
102.2W.4.3 OT - DAQ		3-0ct-16	10-May-24	
OT430000	T5 - Start DAQ for System Test	3-0ct-16	10 Widy-24	T5
		5-001-10	00	
OT430020	T5 - Completion of Test System (GLIB)		20-Jul-17	T5
DT430040	T5 - Completion development of FC7 test setup for single module		24-Jan-18	T5
OT430135	T5 - OTSDAQ ready for module testing		31-Mar-20	T5
OT430225	T5 - OTSDAQ ready for integration in global runs		31-Mar-23	T5
OT430550	T5 - End DAQ for System Test		10-May-24	T5



Outer Tracker risks

Updated 8 Oct 2019

Main risk changes ir past 12 months are

- Key personnel and scientific labor risks now managed at L2
- More stuff?
- More stuff?
- More stuff?

Risk Contingency (k\$)

OT risk contingency ≈ **\$3.58M** * (8.4% of OT BAC)

* Total includes the OT share of common risks (escalation, OH, exchange rates, etc.)

RU-402-2-01-D OT - Uncertain performance of Hybrids vendor RT-402-2-11-D OT - MaPSA bump bonding cost increases RT-402-2-10-D OT - Vendor cannot perform MaPSA qualification... RT-402-2-91-D OT - Shortfall in Outer Tracker scientific labor RT-402-2-09-D OT - MaPSA yield is lower than expected RT-402-2-90-D OT - Key Outer Tracker personnel need to be... RT-402-2-23-D OT - Vendor is unable to produce sensors to ... RT-402-2-46-D OT - Problem with carbon foam vendor RT-402-2-01-D OT - Sensor quality problem during production RT-402-2-33-D OT - More preproduction modules needed RT-402-2-43-D OT - Problem with carbon fiber vendor RT-402-2-24-D OT - Problem with module mechanical parts vendor RT-402-2-59-D OT - Damage to Flat Barrel Layer RT-402-2-14-D OT - System test hardware has insufficient capacity RT-402-2-60-D OT - Problems with wire bonding RT-402-2-54-D OT - Mechanics materials degraded by radiation RT-402-2-06-D OT - Temporary loss of Sensor QC Site RT-402-2-25-D OT - Module assembly yield is low RT-402-2-57-D OT - Major failure of layer assembly infrastructure RT-402-2-58-D OT - Damage to Flat Barrel Planks RO-402-2-03-D OT - Module assembly can be automated

> Was \$0.3M at DOE IPR, June 2018 = \$1.8M threats -\$1.5M opportunities

DOE CD-1 Review Cost, Schedule and Risk

Lucas Taylor, 22-24 October 2019

HL LHC CMS Detector Upgrade CD-1 Review

OT L3 - Electronics

Risk Register CMS-doc-13480

Risk Register for the HL-LHC CMS Detector Upgrades Project

RT-402-2-09-D OT - MaPSA yield is lower than expected

Risk Rank:	2 (Medium) Scores: Probability : 2 (L); Cost: 2 (M) Schedule: 0 (N)	Risk Status:	Open
Summary:	If MaPSA yield is lower than expected, the additional wastage also sac		
, i i i i i i i i i i i i i i i i i i i	at the project's cost.		
Risk Type:	Threat	Owner:	Ron Lipton
WBS:	402.2 OT - Outer Tracker	Risk Area:	Technical Risk / Quality
Probability (P):	15%	Technical Impact:	0 (N) - negligible technical impact
Cost Impact:	PDF = 2-point - flat range	Schedule Impact:	PDF = 1-point - single value
	Minimum = 370 k \$		Minimum = months
	Most likely = k		Most likely = 0 months
	Maximum = 640 k \$		Maximum = months
	Mean = 505 k\$		Mean = 0 months
	P * < Impact > = 76 k		P * <impact> = 0.0 months</impact>
Basis of Estimate:	For each loss of 10% in yield, we would need 10% more sensors, estin	nated at 245k, and 10% more	MPA chips, estimated at 125k. The range covers
	wastage between 10 and 20%. Implemented between Testing batch 3	and Vendor producing batch	5.
Cause or Trigger:	A myriad number of problems at the bump bonding stage might reduc	e Impacted Activities:	Increased wastage during the MaPSA assembly
	the yield, or handling during the assembly.		would require additional components, namely
			PS sensors and MPA chips
Start date:	2/Sep/2021	End date:	20/Sep/2023
Risk Mitigations:			
Risk Responses:			
More details:			

RT-402-2-10-D OT - Vendor cannot perform MaPSA qualification tests

Risk Rank:	2 (Medium) Scores: Probability : 3 (M) ; Cost: 2 (M) Schedule: 0 (N))	Risk Status:	Open				
Summary:	MaPSA qualification is done at the vendor site. The current cost estimate n	nay increase considerably	if the vendors do not have the proper				
	infrastructure to qualify the parts.						
Risk Type:	Threat	Owner:	Ron Lipton				
WBS:	402.2 OT - Outer Tracker Risk Area: Technical Risk / Complexity						
Probability (P):	33%	Technical Impact:	0 (N) - negligible technical impact				
Cost Impact:	PDF = 3-point - triangular	Schedule Impact:	PDF = 1-point - single value				
	Minimum = 200 k\$		Minimum = months				
	Most likely = 400 k\$		Most likely = 0 months				
	Maximum = 600 k\$		Maximum = months				
	Mean = 400 k\$		Mean = 0 months				
	P * <impact> = 132 k\$</impact>		P * <impact> = 0.0 months</impact>				
Basis of Estimate:	Qualification of MaPSAs may require sophisticated probing equipment, wh comissioning of the requisite equipment, potentially at several vendors.	ich can cost up between 2	200-600k for procurement, installation, and				
Cause or Trigger:		Impacted Activities:	MaPSA procurement costs would				
		-	increase. Implemented as a cost increase after				
			round 2 of MaPSA prototyping.				
Start date:	1/Jan/2019	End date:	14/Jun/2023				
Risk Mitigations:							
Risk Responses:	Work with vendor to improve their infrastructure or move testing to differ	ent site (other vendor or	collaborator)				
More details:			-				

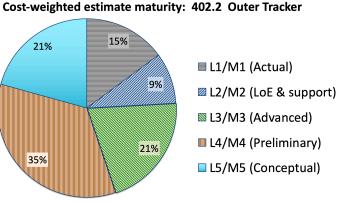
RT-402-2-11-D OT - MaPSA bump bonding cost increases

Risk Rank:	2 (Medium) Sc	cores: Probability : 2 (L) ; Cost: 3 (H) Schedule: 0 (N))	Risk Status:	Open	
Summary:	Currently we ha	ave several MaPSA estimates,with a very broad range betwe	en high and low, indicatir	ng the industry d	oes not give a clear indication
	of the actual cos	st. This risk is to cover the possibility that this high cost ite	m exceeds the nominal es	stimate uncertai	nty, M5 at the moment.
Risk Type:	Threat		Owner:	Ron Lipton	
WBS:	402.2 OT - Oute	er Tracker	Risk Area:	External Risk /	Vendors
Probability (P):	20%		Technical Impact:	0 (N) - negligib	le technical impact
Cost Impact:	PDF	= 3-point - triangular	Schedule Impact:	PDF	= 1-point - single value
	Minimum	= 500 k\$		Minimum	= months
	Most likely	= 1000 k\$		Most likely	= 0 months
	Maximum	= 1500 k\$		Maximum	= months
	Mean	= 1000 k\$		Mean	= 0 months
	P * <impact></impact>	= 200 k\$		P * <impact></impact>	= 0.0 months
Basis of Estimate:	Currently we ha	ave several MaPSA estimates,with a very broad range betwe	en high and low, indicatir	ng the industry d	oes not give a clear indication of
	the actual cost.	This risk is to cover the possibility that this high cost item e	xceeds the nominal estim	ate uncertainty,	M5 at the moment.
Cause or Trigger:			Impacted Activities:	The costs of Ma	aPSA bump bonding would
				increase, increa	asing the costs of PS module
				fabrication.	
Start date:	1/Jan/2019		End date:	14/Jun/2023	
Risk Mitigations:	Prototypes will	l be used to validate low bidders, for which there is not yet o	confidence of delivering w	vith requisite qua	ality. There is more confidence
	for high cost bio	dders, which will also be validated in the prototyping phase	, but even there the quote	s are still prelim	inary.
Risk Responses:					
More details:					

Risk Register CMS-doc-13480

RT-402-2-14-D OT - System test hardware has insufficient capacity

Risk Rank:	2 (Medium) Scores: Probability : 2 (L) ; Cost: 2 (M) Schedule: 2 (M))	Risk Status:	Open			
Summary:	If unforeseen problems occur during assembly and testing, then the baseli throughput. This would necessitate the procurement and commissioning o					
Risk Type:	Threat	Owner:	Anadi Canepa			
WBS:	402.2 OT - Outer Tracker	Risk Area:	Technical Risk	/ Reliability or Performance		
Probability (P):	10%	Technical Impact:	0 (N) - negligible technical impact			
Cost Impact:	PDF = 3-point - triangular	Schedule Impact:	PDF	= 3-point - triangular		
	Minimum = 71 k\$		Minimum	= 2 months		
	Most likely = 169 k\$		Most likely	= 3 months		
	Maximum = 292 k\$		Maximum	= 4 months		
	Mean = 177 k\$		Mean	= 3 months		
	P * <impact> = 18 k\$</impact>		P * <impact></impact>	= 0.3 months		
	The min/likely/max schedule impact of 2/3/4 months is estimated assum rate due to the delay of downstream activities is \$23k/month (CMS-doc-12) Min impact = \$25k + 2 months * \$23k/month = \$71k. Likely impact = \$100k + 3 months * \$23k/month = \$169k.	• ·				
	rate due to the delay of downstream activities is \$23k/month (CMS-doc-1) Min impact = \$25k + 2 months * \$23k/month = \$71k.	• ·				
Cause or Trigger:	rate due to the delay of downstream activities is \$23k/month (CMS-doc-1	• ·	More module t required, poss module testing equipment. In FNAL PS modu Module produc Production (C) production (D)	testing equipment would be ibly more cold boxes, single g, or hybrid testing nplemented as a cost impact o ile production, A, East Coast P ction (B), FNAL 2S Module), and East Coast 2S module). Sites should be delayed the		
	rate due to the delay of downstream activities is \$23k/month (CMS-doc-1) Min impact = \$25k + 2 months * \$23k/month = \$71k. Likely impact = \$100k + 3 months * \$23k/month = \$169k. Max impact = \$200k + 4 months * \$23k = \$292k.	3481). Impacted Activities:	More module t required, poss module testing equipment. Im FNAL PS modu Module produc Production (C) production (D) same amount, split evenly be	testing equipment would be ibly more cold boxes, single g, or hybrid testing nplemented as a cost impact of ile production, A, East Coast PS ction (B), FNAL 2S Module		
Start date:	rate due to the delay of downstream activities is \$23k/month (CMS-doc-1) Min impact = \$25k + 2 months * \$23k/month = \$71k. Likely impact = \$100k + 3 months * \$23k/month = \$169k. Max impact = \$200k + 4 months * \$23k = \$292k.	3481). Impacted Activities: End date:	More module t required, poss module testing equipment. Im FNAL PS modu Module produc Production (C) production (D) same amount, split evenly be 31/Dec/2024	testing equipment would be ibly more cold boxes, single g, or hybrid testing nplemented as a cost impact of ile production, A, East Coast PS ction (B), FNAL 2S Module), and East Coast 2S module). Sites should be delayed the but the probability should be tween PS (A,C) and 2S (B,D)		
<u>Start date:</u> Risk Mitigations:	rate due to the delay of downstream activities is \$23k/month (CMS-doc-1) Min impact = \$25k + 2 months * \$23k/month = \$71k. Likely impact = \$100k + 3 months * \$23k/month = \$169k. Max impact = \$200k + 4 months * \$23k = \$292k.	3481). Impacted Activities: <u>End date:</u> ress of the USCMS module	More module t required, poss module testing equipment. In FNAL PS modu Module product Production (C) production (D) same amount, split evenly be 31/Dec/2024 e production and	testing equipment would be ibly more cold boxes, single g, or hybrid testing nplemented as a cost impact of ile production, A, East Coast P ction (B), FNAL 2S Module), and East Coast 2S module). Sites should be delayed the but the probability should be tween PS (A,C) and 2S (B,D)		
Start date:	rate due to the delay of downstream activities is \$23k/month (CMS-doc-1) Min impact = \$25k + 2 months * \$23k/month = \$71k. Likely impact = \$100k + 3 months * \$23k/month = \$169k. Max impact = \$200k + 4 months * \$23k = \$292k. 1/Jan/2022 The testing hardware is an external deliverable. We will monitor the prog equipment is purchased when necessary and delivered when the producti	3481). Impacted Activities: <u>End date:</u> ress of the USCMS module	More module t required, poss module testing equipment. In FNAL PS modu Module product Production (C) production (D) same amount, split evenly be 31/Dec/2024 e production and	testing equipment would be ibly more cold boxes, single g, or hybrid testing nplemented as a cost impact of ile production, A, East Coast P ction (B), FNAL 2S Module), and East Coast 2S module). Sites should be delayed the but the probability should be tween PS (A,C) and 2S (B,D)		


Design Maturity

Charge #2

	L3s													
	Sensors		Electr	ronics	Mod	ules	Mech	anics	Integr	ation	AVE		BAC	
от	Mgmt	Tech	Mgmt	Tech	Mgmt	Tech	Mgmt	Tech	Mgmt	Tech	Mgmt	Tech	Mgmt	Tech
Conceptual Design	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Preliminary Design	100%	100%	98%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Final Design	100%	100%	100%	95%	100%	86%	93%	95%	87%	95%	96%	94%	99%	91%
Detailed Design	50%	80%	50%	20%	50%	20%	50%	20%	50%	20%	50%	32%	50%	31%
Construction Readiness	48%	75%	19%	20%	22%	20%	19%	20%	19%	20%	25%	31%	26%	30%

Test Systems

- MaPSA: components already exist, adapt test systems for vendors
- Module burn-in: system exists
- DAQ
 - OTSDAQ: software design/development for MaPSA, burn-in, DB capabilities, large systems, cDAQ in CMS still largely missing
 - DTC: international effort recently defined; BE fw/sw and FE fw/sw design/development starting up

^{402.2} Outer Tracker. Electronics CMS-doc-13215

Updated 6 Oct 2019

WBS	Direct M&S (\$)	Labor (Hours)	FTE	Direct + Indirect + Esc. (\$)	Estimate Uncertainty (\$)	Total Cost(\$)
DOE-CD1-402.2 402.2 OT - Outer Tracker (at DOE CD1)	20,575,450	376978	213.22	42,871,529	9,891,026	52,762,555
DOE-CD1-402.2.2 OT - Management	959,000	43537	24.63	1,125,217	87,120	1,212,337
DOE-CD1-402.2.3 OT - Sensors	4,993,973	31778	17.97	7,371,148	1,309,487	8,680,634
DOE-CD1-402.2.4 OT - Electronics	2,740,374	33044	18.69	6,222,484	1,241,158	7,463,642
DOE-CD1-402.2.4.1 OT - Macro Pixel Sub-Assembly	2,162,244	4645	2.63	2,468,116	737,873	3,205,989
DOE-CD1-402.2.4.1.1 OT - MaPSA Prototypes	328,000	2025	1.15	486,140	136,020	622,159
DOE-CD1-402.2.4.1.2 OT - MaPSA Production	1,834,244	2620	1.48	1,981,976	601,853	2,583,829
DOE-CD1-402.2.4.2 OT - Test Systems	451,140	5081	2.87	857,430	162,291	1,019,721
DOE-CD1-402.2.4.2.1 OT - Hybrid Test System	20,724	160	0.09	29,059	9,620	38,679
DOE-CD1-402.2.4.2.2 OT - Modules Test System	287,490	3493	1.98	507,211	122,939	630,150
DOE-CD1-402.2.4.2.3 OT - MaPSA Test System	95,406	1388	0.79	261,696	0	261,696
DOE-CD1-402.2.4.2.4 OT - DAQ Components	47,520	40	0.02	59,464	29,732	89,196
DOE-CD1-402.2.4.3 OT - DAQ	126,990	23318	13.19	2,896,938	340,994	3,237,932
DOE-CD1-402.2.5 OT - Modules	9,074,091	212390	120.13	21,785,980	5,113,007	26,898,987
DOE-CD1-402.2.6 OT - FB Mechanics	543,000	20289	11.48	2,380,031	762,785	3,142,815
DOE-CD1-402.2.7 OT - Integration and Testing	2,265,012	35940	20.33	3,986,670	1,377,470	5,364,140
DOE-CD1-402.2.7 OT - Integration and Testing	2,265,012	35940	20.33	3,986,670	1,377,470	5,3