

B01: 402.2.3 Sensors

<u>Regina Demina (University of Rochester)</u> HL LHC CMS Detector Upgrade CD-1 Review October 23rd, 2019

Scope and Design

- Deliverables
- Design
- R&D Activities
- Cost and Schedule
 - Schedule
 - Risk
 - Resource Optimization
- Project Organization
 - Participating institutes
 - ESH&Q
 - Quality Assurance/Control

Summary

Education/ employment:

- BS, MS Novosibirsk State University, 1988
- Researcher Budker Institute of Nuclear Physics, 1988-1991
- PhD Northeastern University, 1995
- Research Associate Fermilab 1995-1999
- Assistant Professor Kansas State University, 1999-2003
- Associate, Full Professor University of Rochester, 2003-now

Experience

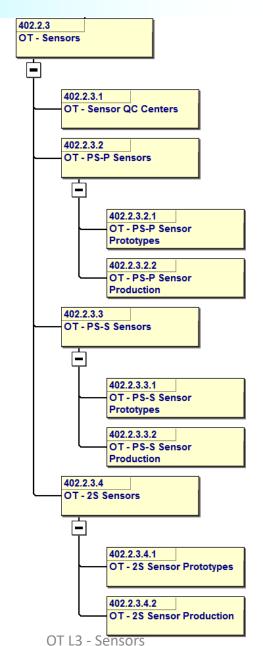
- Drift chamber construction CMD at Budker
- Fiber tracker construction D0, CDF at FNAL
- Silicon detectors since 1998: L00, ISL (CDF), L0 (D0), TOB (CMS), RD50
- Low level silicon clusters reco, tracking D0, CMS
- Bottom, charm-tagging CDF, D0, CMS
- Top quark, Higgs, SUSY, b-physics D0, CDF, CMS
- Awards:
 - OJI 2001
 - American physics society fellow 2015

- The outer tracker consists of 13200 modules
 - Each module is built of two coplanar sensors, the mechanical structure, and the associated readout and service electronics
- Ultimate goal
 - Ensure high-quality and radiation hardness of silicon sensors for the modules assembled at US institutions

Activities

- Prototyping sensor design
- Evaluation of sensor vendors
- Development of QC centers
- QC of production sensors
- Irradiation of test structures

Module types


- PS modules at radii of 20-60 cm
 - one pixel sensor (PS-p) and one strip sensor (PS-s), 5 cm x 10 cm in size
- 2S modules at radii of 60-120 cm
 - two strip sensors (2S), 10 cm x 10 cm in size

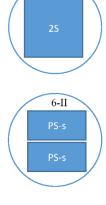
Charge #2

Sensors WBS Structure

- 402.2.3 Sensors
 - 402.2.3.1 QC Centers
 - Setup of the QC centers for the sensor production at Brown University and University of Rochester. Costs include labor and equipment needed to set up these centers. Costs also include general expenses for consumables and maintenance of the centers.
 - 402.2.3.2 PS-p Sensors
 - Procurement and evaluation of PS-p sensor prototypes (40 sensors) and market survey (20 sensors)
 - Procurement and QC of 125 preproduction and 2750 production PS-p sensors
 - 402.2.3.3 PS-s Sensors
 - Procurement and evaluation of PS-s sensor prototypes (40 sensors) and market survey (20 sensors)
 - Procurement and QC of 125 preproduction and 2750 production PS-s sensors
 - 402.2.3.4 2S Sensors
 - Procurement and evaluation of 2S sensor prototypes (60 sensors) and market survey (20 sensors)
 - Procurement and QC of 200 preproduction and 4400 production 2S sensors

Design and QA/QC

Occupancy

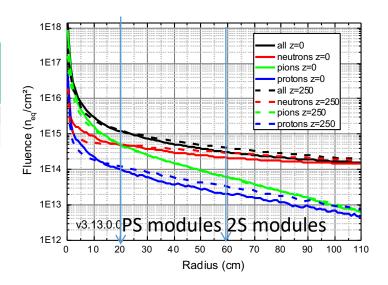

- Efficient tracking performance requires low occupancy
- Fine granularity macro pixel sensors and short strips in outer tracker
- Support of the level-1 track trigger
 - L1 track trigger requires on-detector data reduction
 - pT modules allow local track stub reconstruction
- Radiation hardness
 - The lifetime of the upgraded tracker must be matched to the target integrated luminosity of 3000/fb +safety factor, variable n/p ratio
 - High efficiency, low noise, avoid thermal runaway
- Reduced material
 - Tracker and calorimeter performance can be improved by reducing the material in the volume of the current tracker
- Practical cost
 - Higher cost must be justified by significant improvement in performance

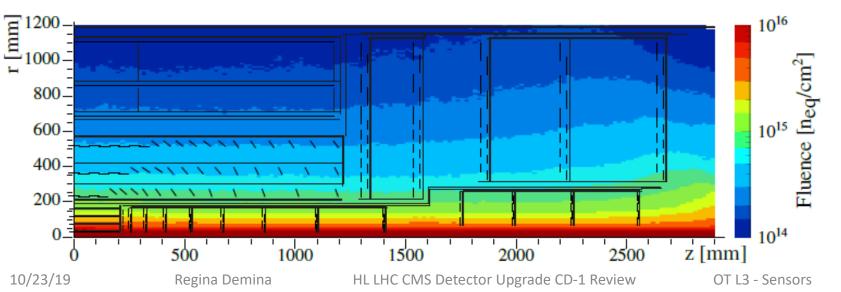
Charge #2

- Sensor size
 - Segmentation chosen to ensure fine granularity
 - Dimensions optimized to fit on 6" wafers
- Sensor types
 - 2S sensor
 - AC coupled sensor with 2×1016 strips
 - Two per 2S module
 - PS-s sensor
 - AC coupled sensor with 2×960 strips
 - One per PS module
 - PS-p sensor
 - DC coupled sensor with 32×960 macro pixels
 - One per PS module

6-l

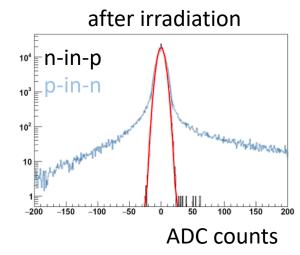
in mm


Numbers do not include spares


Sensor type	Physical Width Length		Active Width Length		Segme Pitch	ntation Length	Total number	
25	94.183	102.700	91.440	100.548	0.090	50.274	15216	
PS-s	98.140	49.160	96.000	46.944	0.100	23.472	5592	
PS-p	98.740	49.160	96.000	46.944	0.100	1.467	5592	
10/23/19	Regina Demina		HL LHC CMS Detector Upgrade CD-1 R		eview OT L3 - Sens		sors 8	

Fluencies after 3000/fb at sqrt(s)=14 TeV simulated by FLUKA

Module type 10 ¹⁴ n _{eq} /cm²		Protons 10 ¹⁴ n _{eq} /cm²	Total 10 ¹⁴ n _{eq} /cm²	Fn/Ftot	
2S	2.5	0.5	3	83%	
PS	4	6	10	40%	



Vendor choice

- CMS conducted extensive market survey
- Three vendors were qualified and considered Novati, Infineon, HPK
- Novati, Infineon withdrew themselves from further consideration
- HPK is a reliable long term partner

Radiation hard material choice

- n-in-p doping
 - p-in-n (used in current tracker): smaller signal after irradiation, non Gaussian noise
- P-stop isolation
 - p-spray: poor performance, disfavored by vendors
- Material choice
 - MCz: reduced reverse annealing but high noise and yield concerns
 - Deep diffusion (active thickness of 200 μm): HPK had difficulties producing deep diffusion
 - Float Zone (FZ) Silicon with active thickness of ${\approx}290~\mu m$ and thinned 240 μm

Sensor material/thickness choice

ddFZ200: deep diffused sensor

- Originally considered in the TDR for better rad hard performance
- Deep diffusion introduces defects and contamination to the bulk
 - Significantly higher [O] might improve radiation hardness
- Fixed physical thickness at 320 μm
- Backside implant can be up to 120 μm thick reducing active thickness to 200 μm

HPK could ensure reliable

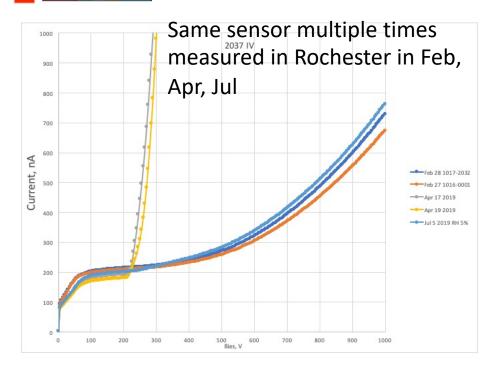

processing. Not available for production!

FZ290: "HPK standard" sensor

- Same production technology as currently used sensors (now in n-on-p)!
- Fixed active (physical) thickness at 290(320) μm
- Robust against mechanical damage due to 30 μm deep backside implant
- Backside implant acts as excellent field stop improving IV characteristics

thFZ240: thinned sensor

- Initially uses same wafer material as FZ290
- Thinning at HPK after most of frontside processing
- Backside implant can only be 1 μm thick
- Active thickness (almost) identical to physical thickness
- More complex production (additional process, higher losses) leads to +15% higher costs and longer lead times
- HPK suggested withdrawing this option due to unreliable results during processing

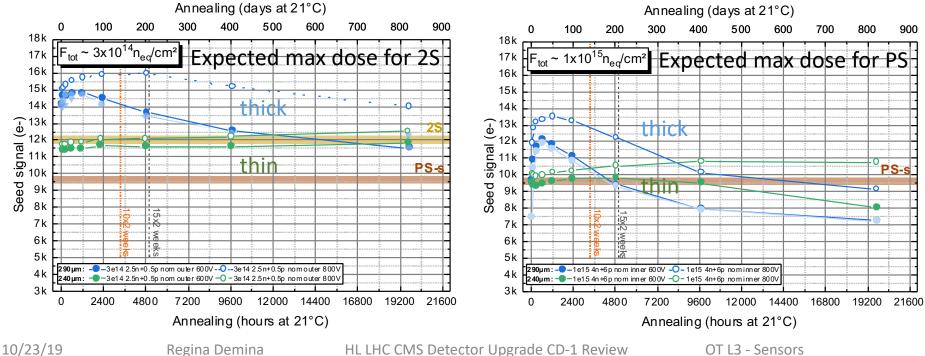


Wafer pre-thinned to 320 μm thickness with a 30 μm backside implant

320 µm

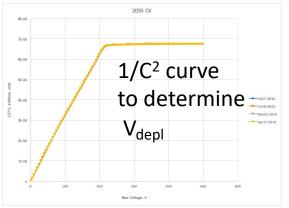
240 µm

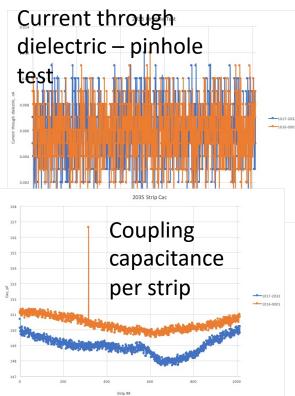
Sensor qualification


Tests on pilot sensors were performed at multiple QC centers

- US sites played a crucial role in identifying problems with thin sensors
- Thin (240 µm) sensors delivered by HPK this spring demonstrated higher leakage current, breakdown after reaching the depletion voltage, unstable performance

Irradiation studies of thick and thin sensors


- Thin (240 µm) sensors delivered by HPK this spring demonstrated higher leakage current, breakdown behavior
- They did not show the expected advantage in irradiation campaign
- Thin sensors are 15% more expensive
- After discussions and based on the feedback from HPK the final decision was made on Sep 17 to order thick (290µm) sensors



Charge #2

- A detailed QC plan developed in the framework of international CMS - workshop at Brown in November to finalize the tests and specs
- Vendor QC
 - IV on sensors and test structures
 - IV, CV and strip conductivity tests are carried out by vendor for every sensor, but no quantitative strip tests
- Sensor QC
 - 2 sensors per batch will be tested (8%)
 - Visual inspection
 - IV, CV, strip and interstrip properties
 - Setup is operational at both QCs
 - Rochester final version
 - Brown optimized
- Process QC
 - Carried out by QC centers for 1-2 test structures per batch
 - PQC Setup
 - Brown fully operational
 - Rochester(backup) setup in progress
- Irradiation QC
 - Carried out by QC center for a sample of test structures and small sensors
 - We characterized research reactor at Rhode Island Nuclear Science Center for neutron irradiation
 - Routinely used during OT sensor R&D
 - FNAL proton irradiation facility

10/23/19

HL LHC CMS Detector Upgrade CD-1 Review

Development before Production

- Basic sensor design done
- Decided about thickness of sensors done
 - Irradiation tests of 320 μm silicon with neutrons
- Finalized wafer layout design done
 - Validation of prototypes
 - Finalize design of test structures
- Contract with HPK signed
 - Frame contract signed August 2019 done
 - Placement of order imminent
- Quality Control
 - Complete setup of QC equipment infrastructure
 - Final at Rochester
 - Under optimization at Brown
 - Optimize sensor QC procedure
 - Develop process QC infrastructure
 - Done at Brown
 - In progress at Rochester
 - Set up long term test station
 - Complete at Brown
 - Single sensor at Rochester
 - Setup local database, interface with central CMS database

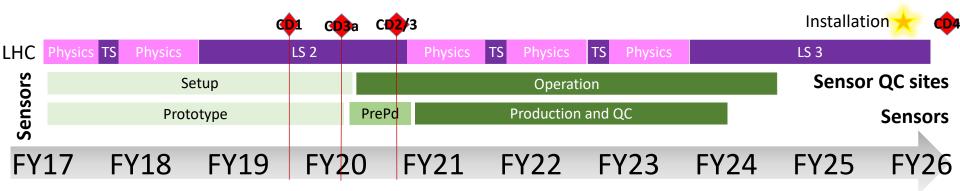
OT Sensor Procurement

CMS Pre-PRR Part 1	29 January 2019		
Finalisation of draft IT documents and related documents	13 March 2019		
CMS Pre-PRR Part 2	14 March 2019		
Specification Committee	25 March 2019		
Dispatch of IT documents	3 April 2019		
Reply to IT documents	29 April 2019		
Submission of FC paper	29 April 2019		
Peers review meeting for FC	9 May 2019		
FC meeting	18/19 June 2019		
Frame contract signature with both materials/thicknesses as option	(June/July) 23 August 2019		
Baseline irradiation plan completed	(July) September 2019		
Additional Studies completed	(August) September 2019		
Review of all results and decision on material/thickness	17 September 2019		
Placement of order	30 September 2019		
CMS PRR	Early 2020		
(Pre-) production start	(April) July 2020		

OT L3 - Sensors

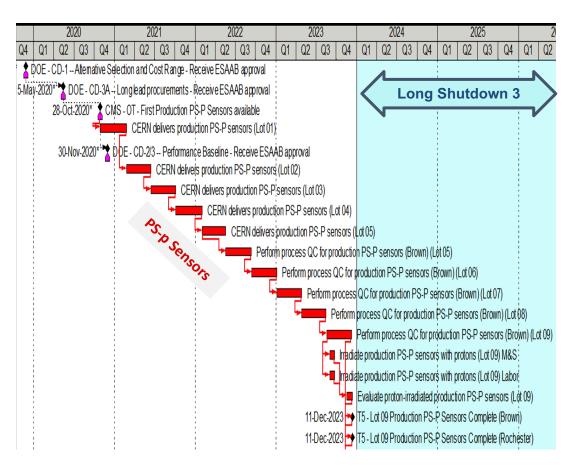
Design completion percentage

	Sensors		
ОТ	Mgmt	Tech	
Conceptual Design	100%	100%	
Preliminary Design	100%	100%	
Final Design	100%	100%	
Detailed Design	50%	80%	
Construction Readiness	48%	75%	


- Sensor design is final; detailed design for PS-s sensors done, first order is imminent. 2S and PS-p detailed designs next.
- See also <u>cms-doc-13417</u>

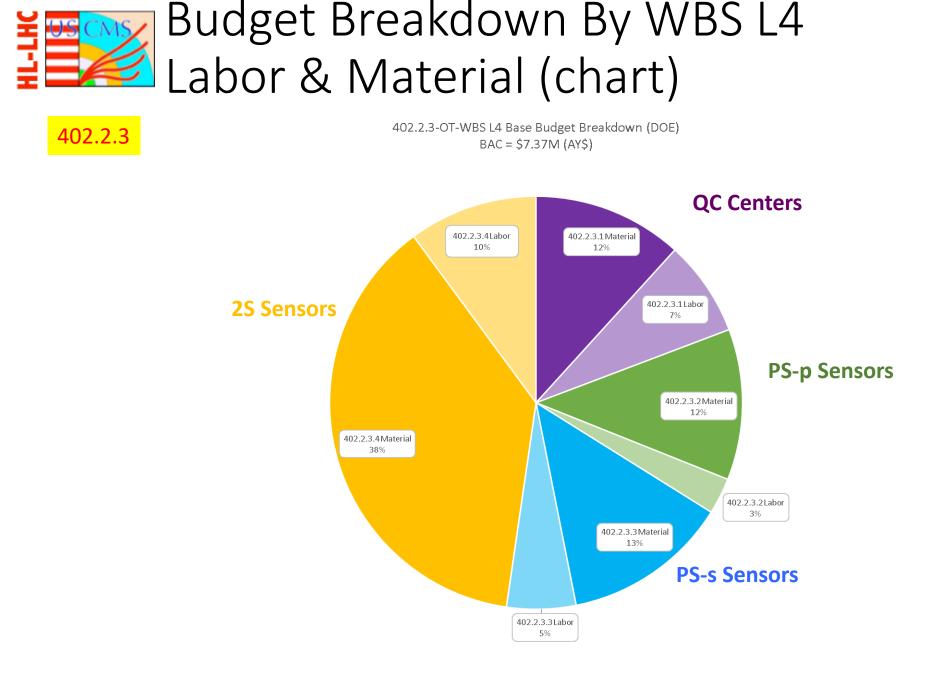
Cost and Schedule

Charge #3

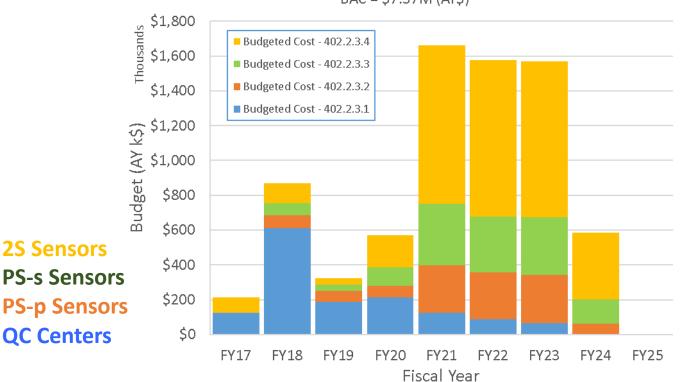

The sensor schedule has three phases

- Setup of QC centers, prototyping of sensors, evaluation of vendors
- Preproduction
- Production
 - Driven by sensor delivery schedule
 - Drives module assembly schedule for most of the project

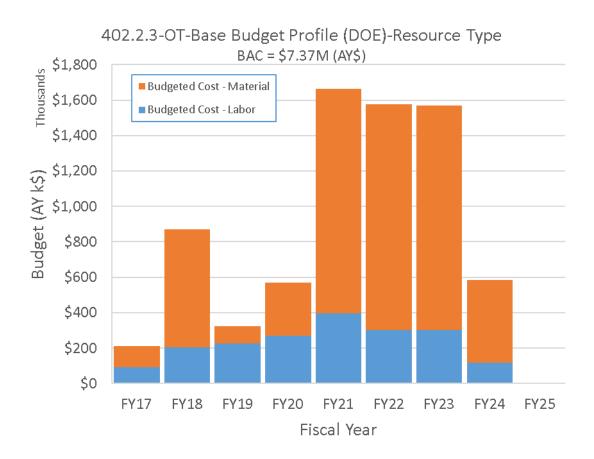
Critical Path Items for Sensors


- Sensor production distributed over 3 years
 - At this rate QC and module assembly can keep up
 - Schedule driven by sensor production

Costs: Sensors

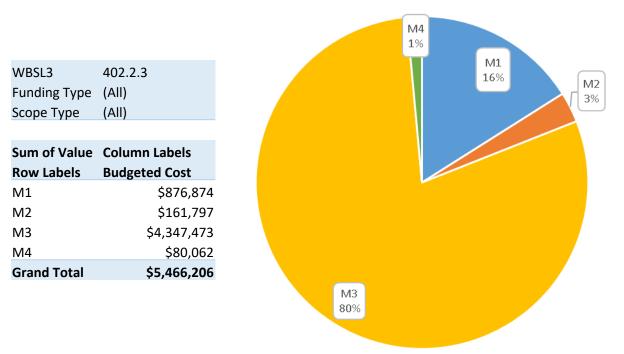

WBS	Direct M&S (\$)	Labor (Hours)	FTE	Direct + Indirect + Esc. (\$)	Estimate Uncertainty (\$)	Total Cost(\$)
DOE-CD1-402.2 402.2 OT - Outer Tracker (at DOE CD1)	20,575,450	376978	213.22	42,871,529	9,891,026	52,762,555
DOE-CD1-402.2.2 OT - Management	959,000	43537	24.63	1,125,217	87,120	1,212,337
DOE-CD1-402.2.3 OT - Sensors	4,993,973	31778	17.97	7,371,148	1,309,487	8,680,634
DOE-CD1-402.2.3.1 OT - Sensor QC Centers	682,480	7678	4.34	1,418,107	95,316	1,513,423
DOE-CD1-402.2.3.2 OT - PS-P Sensors	813,108	3132	1.77	1,079,959	206,472	1,286,431
DOE-CD1-402.2.3.2.1 OT - PS-P Sensor Prototypes	62,957	1470	0.83	160,177	8,080	168,257
DOE-CD1-402.2.3.2.2 OT - PS-P Sensor Production	750,151	1662	0.94	919,782	198,392	1,118,175
DOE-CD1-402.2.3.3 OT - PS-S Sensors	889,677	7262	4.11	1,356,764	286,122	1,642,885
DOE-CD1-402.2.3.3.1 OT - PS-S Sensor Prototypes	41,110	1387	0.78	129,963	7,953	137,917
DOE-CD1-402.2.3.3.2 OT - PS-S Sensor Production	848,567	5875	3.32	1,226,800	278,168	1,504,969
DOE-CD1-402.2.3.4 OT - 2S Sensors	2,608,708	13706	7.75	3,516,318	721,577	4,237,895
DOE-CD1-402.2.3.4.1 OT - 2S Sensor Prototypes	141,781	2203	1.25	283,904	12,374	296,278
DOE-CD1-402.2.3.4.2 OT - 2S Sensor Production	2,466,927	11503	6.51	3,232,414	709,203	3,941,617
DOE-CD1-402.2.4 OT - Electronics	2,740,374	33044	18.69	6,222,484	1,241,158	7,463,642
DOE-CD1-402.2.5 OT - Modules	9,074,091	212390	120.13	21,785,980	5,113,007	26,898,987
DOE-CD1-402.2.6 OT - FB Mechanics	543,000	20289	11.48	2,380,031	762,785	3,142,815
DOE-CD1-402.2.7 OT - Integration and Testing	2,265,012	35940	20.33	3,986,670	1,377,470	5,364,140

Base Budget Profile By WBS Level 4 (chart)


402.2.3

402.2.3-OT-Base Budget Profile (DOE)-WBS L4 Subprojects BAC = \$7.37M (AY\$)

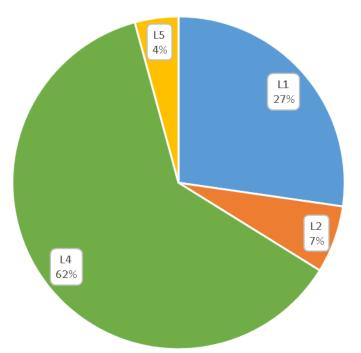
402.2.3



M&S Budget Breakdown By Est. Uncertainty Code (chart)

402.2.<mark>3</mark>

402.2.3-OT-Estimate Uncertainty Breakdown-M&S (DOE) BAC (M&S)=\$5.47M (AY\$)

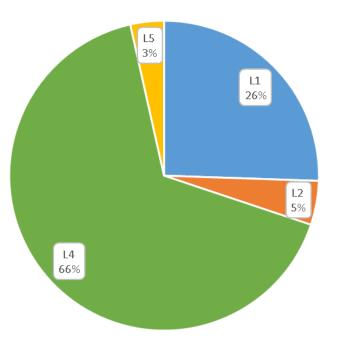

Labor Budget Breakdown By Est. Uncertainty Code (chart)

402.2.3

402.2.3-OT-Estimate Uncertainty Breakdown-Labor (DOE) BAC (Labor Budget)=\$1.90M (AY\$)

WBSL3	402.2.3
Funding Type	(All)
Scope Туре	(All)

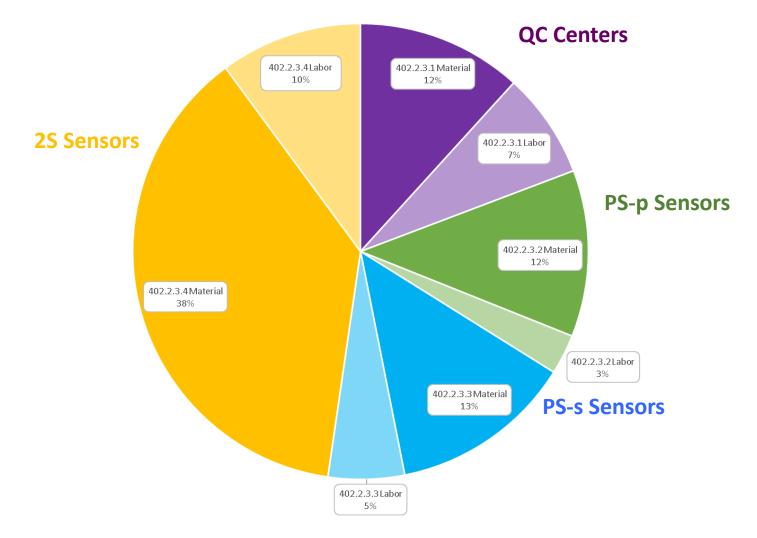
Sum of Value	Column Labels		
Row Labels	Budgeted Cost		
L1	\$519,590		
L2	\$124,848		
L4	\$1,179,604		
L5	\$80,899		
Grand Total	\$1,904,942		



Labor FTE Breakdown By Est. Uncertainty Code (chart)

402.2.<mark>3</mark>

402.2.3-OT-Estimate Uncertainty Breakdown-Labor (DOE) BAC (Labor Units)=18.0 FTE-Yrs


WBSL3	402.2.3
Funding Type	(All)
Scope Type	(All)
Sum of Value	Column Labels
Row Labels	FTEs
	FIL3
L1	4.6
L1	4.6
L1 L2	4.6 0.8

402.2.3-OT-WBS L4 Base Budget Breakdown (DOE) BAC = \$7.37M (AY\$)

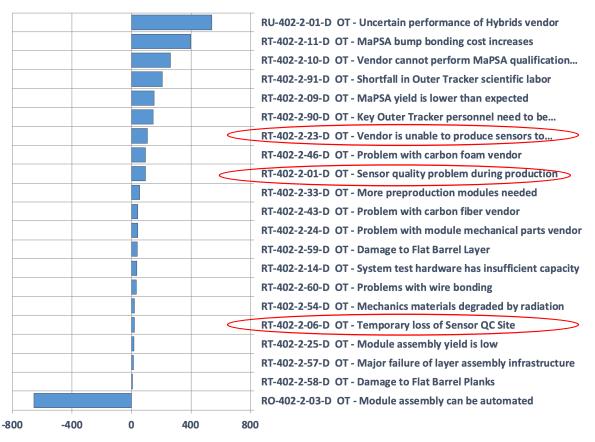
10/23/19

Regina Demina

HL LHC CMS Detector Upgrade CD-1 Review

M&S drivers

- Sensor procurement is a significant cost driver for the project
- Handled centrally through CERN
 - Market survey
 - Call for tender
 - Signing frame contract
 - Placement of order


Labor drivers

 Sensor labor is not a significant cost driver of the OT project

	CMS Driver		Labor BAC	M&S BAC	Total BAC
			(M\$)	(M\$)	(M\$)
	OT.5 - Produce and test modules	57.3	8.6	1.5	10.2
	OT.3 - Procure Sensors	0.0	0.0	4.5	4.5
	OT.5 - Module mechanics	2.2	0.3	3.0	3.3
ר	OT.5 - Procure hybrids	0.0	0.0	3.2	3.2
	OT.5 - Establish / maintain module assembly site (East Coast)	5.0	0.7	2.1	2.8
	OT.4 - MaPSA purchase and testing	2.3	0.1	2.3	2.4
	OT.6 - Plank and Ring mechanics	11.2	1.7	0.6	2.4
	OT - Outer Tracker integration and commissioning	0.0	0.0	2.3	2.3
	OT.4 - DAQ development	8.0	1.6	0.1	1.7
	OT.3 - Sensor prototyping, production and testing	14.6	1.5	0.1	1.6
	OT.7 - Flat Barrel design, assembly and test	5.3	1.3	0.2	1.5

- Vendor is unable to produce sensors to specification
 - Requires 1 3 preproduction cycles
- Sensor quality problem during production
 - Min: 2 months delay
 - Max: 6 month delay
 - Depending on when/how quickly it is diagnosed
- Temporary loss of sensor QC site
 - If one center becomes unavailable the other one can pick up the load
 - Delay is time needed to transfer activities
 - Cost covers repair of equipment

Risk Contingency (k\$)

Charge #3

Project Organization

Contributing Institutions

Brown University

- Faculty: Ulrich Heintz
 - F-disk design and sensor QC for D0 Silicon Microstrip Tracker 1996-1998
 - L2 manager of D0 Silicon L2 Track Trigger 1999-2006
 - L3 manager/CAM of Phase 1 CMS HF FE upgrade 2013-2017
 - L3 manager/CAM of USCMS phase-2 Outer Tracker Sensors since 2016
 - Co-coordinator of CMS modules group since 2017
- Research Scientist:
 - Andrei Korotkov, PhD Phys & Math, Russian Acad. Sciences, Nizhny Novgorod, CMB Spectrometry
- Technical stuff:
 - Nick Hinton, BS Eng Phys UIUC, phase 1 FPIX construction at Purdue 2012-2017
 - Eric Spencer, MS physics UCSD, phase 0 FPIX construction 2002-2007

University of Rochester

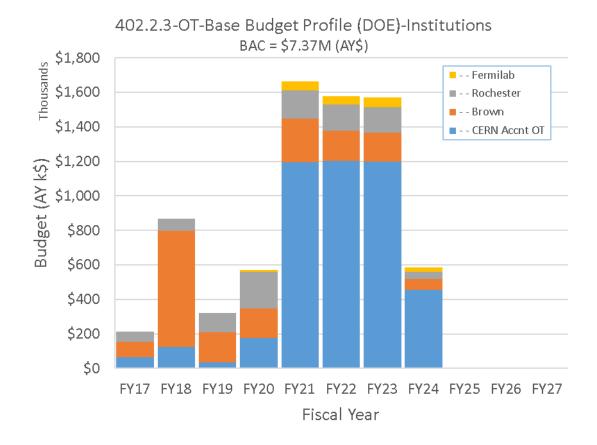
- Faculty: Regina Demina
 - Silicon QC for CDF L00 and ISL
 - Development of sensors for D0 L0
 - Deputy L2 project manager for phase 0 TOB construction 2000-2009
 - L2 manager of the US tracker operations 2009-2013
- Engineer: Sergey Korjenevski
 - Rad testing and QC for D0 Silicon Microstrip Tracker
 - Sensor QC, cosmic ray testing, and commissioning for phase 0 CMS Tracker
 - Rad hard sensor development with CMS/RD50

- Previous expertise
 - Senior personnel at both institutions have expertise in silicon detectors and sensor QC
- Infrastructure
 - Part of the infrastructure needed for sensor QC existed and allowed to start R&D work immediately
- Intellectual engagement
 - Brown has participated in sensor R&D since 2012 with the CMS sensor group and provided a strong link with international CMS
 - Rochester developed rad hard sensor technology since 2005 as a part of RD50, and since 2009 for CMS upgrade
- Vendors
 - Equipment is generally purchased off the shelf (used/refurbished if possible)
 - Some modifications are made in house if more cost-effective
 - Silicon vendor(s) are(is) selected by CERN market survey
 - Silicon vendor provides first level of QC. Past experience (CMS phase 0, D0) has shown that we need to verify vendor qualification and carry out more detailed measurements that would drive up the sensor cost if done by vendors

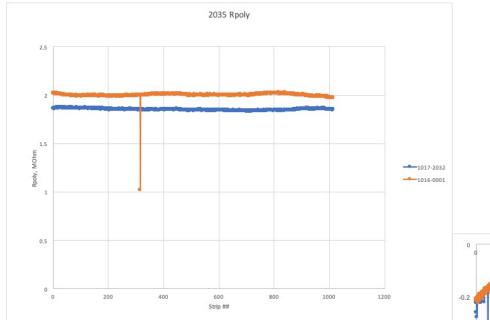
- FNAL ES&H policy
 - Project-wide development through ESH coordinator in PO
 - Documented in <u>DocDb 13394</u> and <u>DocDb 13395</u>
- Specific Hazards for 402.2.3 Sensors are
 - Radioactivity
 - Sr-90 source for sensor testing comply with institutional radiation safety practices
 - Irradiated sensor materials left at irradiation site until safe for handling
 - Laser
 - For sensor testing comply with institutional laser safety practices

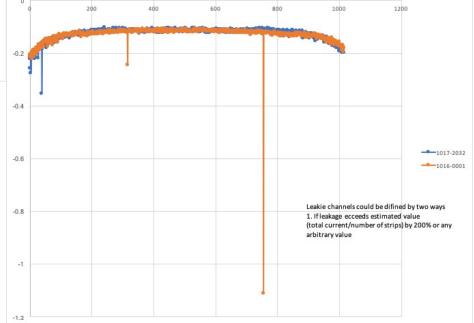
Summary

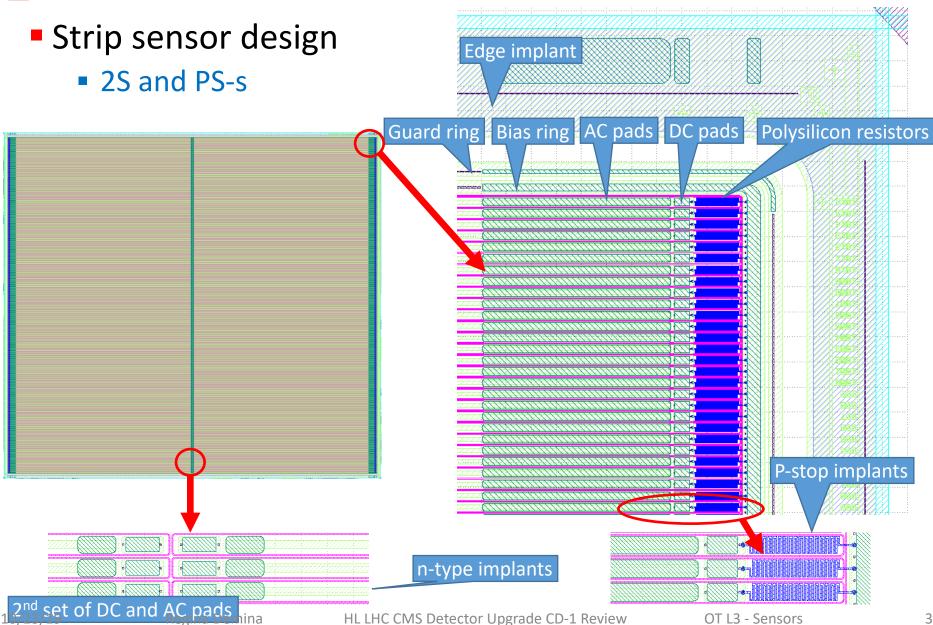
- We have developed the sensor technology to satisfy the requirements of the HL LHC tracker upgrade
- We have performed a market survey and qualified vendors
 - We are down to one vendor, HPK, but it is a reliable long term partner
 - Frame contract with HPK was signed in Aug2019
- We have evaluated sensor prototypes
 - Based on the prototype studies the decision on sensor thickness has been reached order thick (290 μm) sensors
- We have developed an extensive QC program for sensor production
 - In November we will have a workshop at Brown to finalize the testing procedures
- The team includes physicists and engineers/techs, all with experience in silicon tracking systems
- Cost estimate is solid, labor based on experience with existing tracker and prototyping and M&S based on quotes
- Schedule has been developed based on experience with previous projects, prototyping and schedule agreed with the vendor
- The risks are understood and mitigation plans are in place

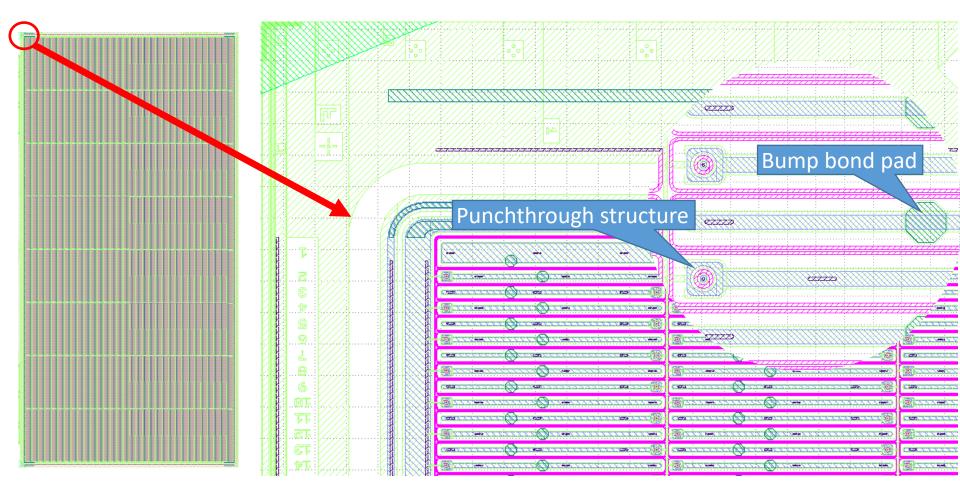

Backup

10/23/19


Base Budget Profile By Institution (chart)


402.2.3


More tests


Charge #2

Pixel sensor design

PS-p

10/23/19

Charge #2

Charge #2

Specification

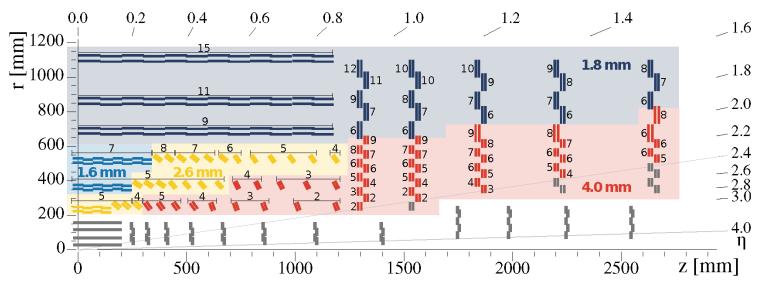
- Develop suitable specifications to ensure that sensors satisfy the requirements
- These specifications have been developed in the framework of international CMS
- Evaluation of prototype sensors
 - Verify that performance of sensors satisfies requirements
 - Confirm that vendors can produce sensors within specifications
- Design of wafer layout
 - Include test structures to monitor production quality

Mea	surement		VQC	SQC	PQC	IQC
		Global measurements (2S, PS-s, PS-p)				
mati	TIX	Depletion voltage, current, break down	\checkmark	\checkmark	\checkmark	\checkmark
		Long term stability		\checkmark		
		Measurements after irradiation				
		Breakdown and interstrip resistance				\checkmark
		Strip measurements (2S, PS-s)				
		Strip current		\checkmark		\checkmark
		Bias resistor median		\checkmark	\checkmark	
		Bias resistor uniformity		\checkmark		
		Coupling capacitance		\checkmark	\checkmark	
		Interstrip capacitance and resistance		\checkmark	\checkmark	\checkmark
		Pinhole check	\checkmark	\checkmark		
		Bad strips		\checkmark		
		Pixel measurements (PS-p)				
		Pixel current, interpixel resistance			\checkmark	
		Number of bad pixels				
		Test structure measurements				
		Strip/pixel implant/aluminum resistivity			\checkmark	
		Dielectric breakdown			\checkmark	
/19	Regina Demina	HETHC CMS Detector Upgrade CD-1 Review		OT 13 - S	onsors	

Regina Demina

HL LHC CMS Detector Upgrade CD-1 Review

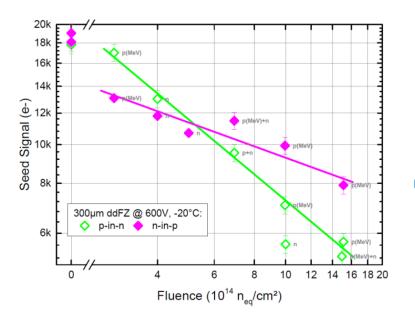
42

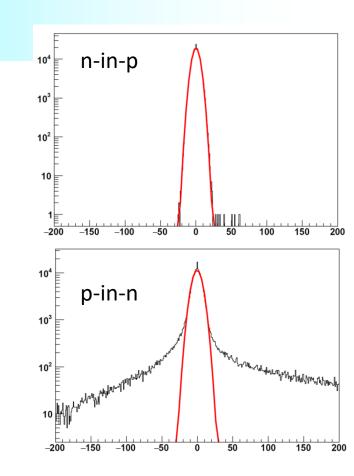


L3 Parent:WBS : 402.2.3 OT - Sensors (4)

402.2.3.1 OT - QC Centers	CMS-doc-12989
402.2.3.2 OT - PS-P Sensors	CMS-doc-12991
402.2.3.3 OT - PS-S Sensors	CMS-doc-12993
402.2.3.4 OT - 2S Sensors	CMS-doc-12995

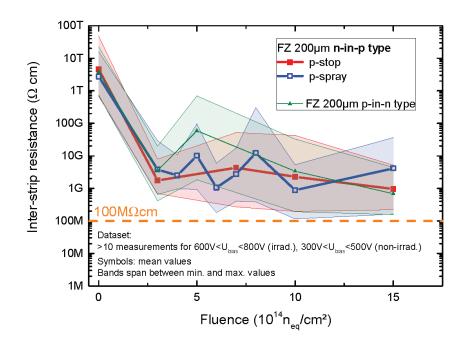
Geometry of upgraded tracker


Module types


- 2S modules
 - Consist of two strip sensors (2S)
 - Radius > 600 mm
- PS modules
 - Consist of one strip sensor (PS-s) and one macro pixel sensor (PS-p)
 - 200 mm < radius < 600 mm

Proposed Design

- Bulk and implant doping
 - Pedestal distribution after irradiation with fluence = 5x10¹⁴n_{eq}/cm²
 - High fields at p+ implants lead to non-Gaussian noise in p-in-n sensors



 Seed signal larger for n-in-p than p-inn for fluence > 5 × 10¹⁴ n_{eq}/cm²

- Strip isolation
 - Isolate n+ strips against shorts to neighboring strips through electron accumulation layer at Si-SiO₂ interface
 - p-stop or p-spray implants are feasible

p-stop appears more reliable and preferred by vendors

10/23/19

Risk Register

CMS-doc-13480

🗆 WBS / Ops La	b Activity : 402.2 OT - Outer Tracker (21)	Probability	Cost Impact	Schedule Impact	P * Impact (k\$)	P * Impact (mon
∃ Risk Rank : 3	(High) (5)					
RU-402-2-01-D	OT - Uncertain performance of Hybrids vendor	100 %	0 168 648 k\$	0 2 12 months	272	4.7
RT-402-2-91-D	OT - Shortfall in Outer Tracker scientific labor	30 %	0 0 1049 k\$	0 months	105	0.0
RT-402-2-01-D	OT - Sensor quality problem during production	50 %	46 79 163 k\$	2 3 6 months	48	1.8
RT-402-2-46-D	OT - Problem with carbon foam vendor	25 %	23 158 396 k\$	1 6 12 months	48	1.6
RO-402-2-03-D	OT - Module assembly can be automated	66 %	-500 k\$	-2 months	-330	-1.3
■ Risk Rank : 2	(Medium) (15)					
RT-402-2-11-D	OT - MaPSA bump bonding cost increases	20 %	500 1000 1500 k\$	0 months	200	0.0
RT-402-2-10-D	OT - Vendor cannot perform MaPSA qualification tests	33 %	200 400 600 k\$	0 months	132	0.0
RT-402-2-09-D	OT - MaPSA yield is lower than expected	15 %	370 640 k\$	0 months	76	0.0
RT-402-2-90-D	OT - Key Outer Tracker personnel need to be replaced	25 %	75 225 570 k\$	0 0 3 months	73	0.3
RT-402-2-23-D	OT - Vendor is unable to produce sensors to specifications	5 %	210 315 2720 k\$	6 9 12 months	54	0.5
RT-402-2-33-D	OT - More preproduction modules needed	25 %	0 0 330 k\$	0 0 6 months	28	0.5
RT-402-2-24-D	OT - Problem with module mechanical parts vendor	20 %	0 0 324 k\$	0 0 6 months	22	0.4
RT-402-2-43-D	OT - Problem with carbon fiber vendor	25 %	23 79 158 k\$	1 3 6 months	22	0.8
RT-402-2-59-D	OT - Damage to Flat Barrel Layer	1 %	930 1880 3150 k\$	6 9 12 months	20	0.1
RT-402-2-14-D	OT - System test hardware has insufficient capacity	10 %	71 169 292 k\$	2 3 4 months	18	0.3
RT-402-2-60-D	OT - Problems with wire bonding	80 %	13.5 27 k\$	1 2 months	16	1.2
RT-402-2-06-D	OT - Temporary loss of Sensor QC Site	20 %	22 48 86 k\$	1 2 4 months	10	0.5
RT-402-2-54-D	OT - Mechanics materials degraded by radiation	10 %	48 96 144 k\$	1 2 3 months	10	0.2
RT-402-2-25-D	OT - Module assembly yield is low	10 %	0 40 240 k\$	0 0 6 months	9	0.2
RT-402-2-58-D	OT - Damage to Flat Barrel Planks	5 %	30 91 141 k\$	1 1 2 months	4	0.1
■ Risk Rank : 1	(Low) (1)					
RT-402-2-57-D	OT - Major failure of layer assembly infrastructure	5 %	56 112 178 k\$	2 4 6 months	6	0.2

Regina Demina

RT-402-2-01-D OT - Sensor quality problem during production

Risk Rank:	3 (High) Scores: Probability: 4 (H); Cost: 1 (L) Schedule: 2 (M))	Risk Status:	Open
Summary:	If the sensor vendor delivers sensors that do not meet specifications then the	degraded performance of the tr	acker jeopardizes the physics performance of the
	upgraded detector.		
Risk Type:	Threat	Owner:	Ulrich Heintz
WBS:	402.2 OT - Outer Tracker	Risk Area:	External Risk / Vendors
Probability (P):	50%	Technical Impact:	2 (M) - significantly substandard
Cost Impact:	PDF = 3-point - triangular	Schedule Impact:	PDF = 3-point - triangular
	Minimum = 46 k\$		Minimum = 2.0 months
	Most likely = 79 k\$		Most likely = 3.0 months
	Maximum = 163 k\$		Maximum = 6.0 months
	Mean = 96.0 k\$		Mean = 3.67 months
	P * <impact> = 48.0 k\$</impact>		P * <impact> = 1.835 months</impact>
	Maximal schedule impact: this happens during preproduction and the prepro	duction cycle has to be repeated	l, leading to a delay of about 6 months and extra labor
	cost of about \$25k (cost for preproduction cycle of one sensor type). The L3 burn rate due to the delay of downstream activities is \$23k/month (Cl Min cost = \$0k + 2months * \$23k burn rate = \$46k. Likely cost = \$10k + 3month * \$23k burn rate = \$79k. Max cost = \$25k + 6months * \$23k burn rate = \$163k. The problem has to either persist over many batches or not be noticed during Problems that affect a single batch of sensors (eg because of some contamina batch will only add a week or two to the production period. Based on past exp we assign 50% probability for each sensor type.	gQC at the vendor (for example tion or processing mistake) will perience with the vendor we exp	l not lead to a significant delay because reprocessing a bect this to happen at least once during production an
Cause or Trigger:	The L3 burn rate due to the delay of downstream activities is \$23k/month (Cl Min cost = \$0k + 2months * \$23k burn rate = \$46k. Likely cost = \$10k + 3month * \$23k burn rate = \$79k. Max cost = \$25k + 6months * \$23k burn rate = \$163k. The problem has to either persist over many batches or not be noticed during Problems that affect a single batch of sensors (eg because of some contamina batch will only add a week or two to the production period. Based on past exp	gQC at the vendor (for example tion or processing mistake) will	l not lead to a significant delay because reprocessing a
	The L3 burn rate due to the delay of downstream activities is \$23k/month (Cl Min cost = \$0k + 2months * \$23k burn rate = \$46k. Likely cost = \$10k + 3month * \$23k burn rate = \$79k. Max cost = \$25k + 6months * \$23k burn rate = \$163k. The problem has to either persist over many batches or not be noticed during Problems that affect a single batch of sensors (eg because of some contamina batch will only add a week or two to the production period. Based on past exp we assign 50% probability for each sensor type.	gQC at the vendor (for example tion or processing mistake) will perience with the vendor we exp	l not lead to a significant delay because reprocessing a beet this to happen at least once during production an Sensor procurement activities and downstream activities. This applies to each type of sensor, but the probability should be 5% per type (PS-s, PS-p 2S). This should be implemented for each of the three sensor types (2S, PS-p, PS-s) so that the probabili
Cause or Trigger: Start date: Risk Mitigations:	The L3 burn rate due to the delay of downstream activities is \$23k/month (Cl Min cost = \$0k + 2months * \$23k burn rate = \$46k. Likely cost = \$10k + 3month * \$23k burn rate = \$79k. Max cost = \$25k + 6months * \$23k burn rate = \$163k. The problem has to either persist over many batches or not be noticed during Problems that affect a single batch of sensors (eg because of some contamina batch will only add a week or two to the production period. Based on past exp we assign 50% probability for each sensor type. Sensors do not satisfy specifications	gQC at the vendor (for example tion or processing mistake) will berience with the vendor we exp Impacted Activities: <u>End date:</u> te contract for sensor production beasurements before the sensor	 I not lead to a significant delay because reprocessing a beet this to happen at least once during production an Sensor procurement activities and downstream activities. This applies to each type of sensor, but the probability should be 5% per type (PS-s, PS-p 2S). This should be implemented for each of the three sensor types (2S, PS-p, PS-s) so that the probabili of 50%/sensor type. 31-Dec-2024 n to make sure that vensors understand our is are shipped to CERN and distributed to QC centers.
Start date:	The L3 burn rate due to the delay of downstream activities is \$23k/month (Cl Min cost = \$0k + 2months * \$23k burn rate = \$46k. Likely cost = \$10k + 3month * \$23k burn rate = \$79k. Max cost = \$25k + 6months * \$23k burn rate = \$163k. The problem has to either persist over many batches or not be noticed during Problems that affect a single batch of sensors (eg because of some contamina batch will only add a week or two to the production period. Based on past exp we assign 50% probability for each sensor type. Sensors do not satisfy specifications 1-Apr-2020 We carry out extensive prototyping work with the vendors prior to placing th specifications and can meet them. The vendor will carry out a first set of QC m This ensures that most problems will be caught quickly and do not lead to sig	gQC at the vendor (for example tion or processing mistake) will berience with the vendor we exp Impacted Activities: End date: te contract for sensor production teasurements before the sensor nificant impact on the project. T	 I not lead to a significant delay because reprocessing a beet this to happen at least once during production an Sensor procurement activities and downstream activities. This applies to each type of sensor, but the probability should be 5% per type (PS-s, PS-p 2S). This should be implemented for each of the three sensor types (2S, PS-p, PS-s) so that the probabili of 50%/sensor type. 31-Dec-2024 n to make sure that vensors understand our is are shipped to CERN and distributed to QC centers.

RT-402-2-06-D OT - Temporary loss of Sensor QC Site

Risk Rank:	2 (Medium) Scores: Probability : 2 (L) ; Cost: 0 (N) Schedule: 2 (M))	Risk Status:	Open	
Summary:	If a Sensor QC facility temporarily becomes inoperable due to loss or dama	ge of critical equipment (e.g. due to a wate	er leak) then the resultant dip in
	sensor throughput may jeopardize timely completion of the project.			
Risk Type:	Threat	Owner:	Ulrich Heintz	
WBS:	402.2 OT - Outer Tracker	Risk Area:	Technical Risk	/ ES&H
Probability (P):	20%	Technical Impact:	0 (N) - negligib	le technical impact
Cost Impact:	PDF = 3-point - triangular	Schedule Impact:	PDF	= 3-point - triangular
	Minimum = 22 k		Minimum	= 1.0 months
	Most likely = 48 k\$		Most likely	= 2.0 months
	Maximum = 86 k		Maximum	= 4.0 months
	Mean = 52.0 k\$		Mean	= 2.33 months
	P * <impact> = 10.0 k\$</impact>		P * <impact></impact>	= 0.466 months
	Phase 1 pixel where one incident occurred in $O(10)$ sites. If one center has a major equipment failure the second center can pick up t Min/likely/max delay = $1/2/4$ months delay for the inefficiency in the logi	stics to transfer materials	and people back	and forth. Min/likely/max
	If one center has a major equipment failure the second center can pick up t	stics to transfer materials	and people back	and forth. Min/likely/max
Cause or Trigger:	If one center has a major equipment failure the second center can pick up t Min/likely/max delay = 1/2/4 months delay for the inefficiency in the logi repair estimate is 10/25/40 k\$. This assumes insurance will cover loss/da downstream activities is \$23k/month (CMS-doc-13481). Min cost = \$10k + 1 month * \$23k burn rate = \$33k. Likely cost = \$25k + 2 months * \$23k burn rate = \$71k.	stics to transfer materials	This is implem events for the t Rochester). At in a correlated on the 3 sensor	and forth. Min/likely/max
Cause or Trigger: Start date:	If one center has a major equipment failure the second center can pick up t Min/likely/max delay = 1/2/4 months delay for the inefficiency in the logi repair estimate is 10/25/40 k\$. This assumes insurance will cover loss/da downstream activities is \$23k/month (CMS-doc-13481). Min cost = \$10k + 1 month * \$23k burn rate = \$33k. Likely cost = \$25k + 2 months * \$23k burn rate = \$71k.	stics to transfer materials mage of major equipmen	This is implem events for the t Rochester). At in a correlated on the 3 sensor	and forth. Min/likely/max te due to the delay of ented as two independent risk two QC sites (Brown and each site, 3 tasks are impacted way, representing the QC work types. The impact is modeled
Start date:	If one center has a major equipment failure the second center can pick up t Min/likely/max delay = 1/2/4 months delay for the inefficiency in the logi repair estimate is 10/25/40 k\$. This assumes insurance will cover loss/da downstream activities is \$23k/month (CMS-doc-13481). Min cost = \$10k + 1 month * \$23k burn rate = \$33k. Likely cost = \$25k + 2 months * \$23k burn rate = \$71k. Max cost = \$40k + 4months * \$23k burn rate = \$132k. 1-Apr-2020 Having two sites is already a hedge against the complete stoppage of sensor would be redirected to the other site temporarily to mitigate the impact.	stics to transfer materials mage of major equipmen Impacted Activities: <u>End date:</u> or testing, and should one	This is implem events for the t Rochester). At in a correlated on the 3 sensor in the middle o 31-Dec-2024 site become tem	and forth. Min/likely/max te due to the delay of ented as two independent risk two QC sites (Brown and each site, 3 tasks are impacted way, representing the QC work types. The impact is modeled f the QC work (Lot 5). porarily inoperable, sensors
	If one center has a major equipment failure the second center can pick up t Min/likely/max delay = 1/2/4 months delay for the inefficiency in the logi repair estimate is 10/25/40 k\$. This assumes insurance will cover loss/da downstream activities is \$23k/month (CMS-doc-13481). Min cost = \$10k + 1 month * \$23k burn rate = \$33k. Likely cost = \$25k + 2 months * \$23k burn rate = \$71k. Max cost = \$40k + 4months * \$23k burn rate = \$132k. 1-Apr-2020 Having two sites is already a hedge against the complete stoppage of sense	stics to transfer materials mage of major equipmen Impacted Activities: <u>End date:</u> or testing, and should one and additional resources	This is implem events for the t Rochester). At in a correlated on the 3 sensor in the middle o 31-Dec-2024 site become tem	and forth. Min/likely/max te due to the delay of ented as two independent risk two QC sites (Brown and each site, 3 tasks are impacted way, representing the QC work types. The impact is modeled f the QC work (Lot 5). porarily inoperable, sensors

RT-402-2-23-D OT - Vendor is unable to produce sensors to specifications

Risk Rank:	2 (Medium) Scores: Probability : 1 (VL) ; Cost: 3 (H) Schedule: 3 (H))	Risk Status:	Open
Summary:	If vendor is unable to produce sensors that meet CMS Specification then the timely and on-budget completion of the project	e additonal cost and dela	ay of identifying a new vendor jeopardizes the
Risk Type:	Threat	Owner:	Ulrich Heintz
WBS:	402.2 OT - Outer Tracker	Risk Area:	External Risk / Vendors
Probability (P):	5%	Technical Impact:	3 (H) - extremely substandard or KPP in jeopardy
Cost Impact:	PDF = 3-point - triangular Minimum = 210 k\$ Most likely = 315 k\$ Maximum = 2,720 k\$ Mean = 1,081.7 k\$ P* <impact> = 54.0 k\$</impact>	Schedule Impact:	PDF= 3-point - triangularMinimum= 6.0 monthsMost likely= 9.0 monthsMaximum= 12.0 monthsMean= 9 monthsP* <impact>= 0.45 months</impact>
Basis of Estimate:	If the selected vendor is unable to produce sensors to specifications a new preproduction run (6 month delay). At a maximum one to two prototype ru The burn rate for the entire Outer Tracker is \$70k/month (CMS-doc-1348 thereby incurring a burn rate of \$35k/month. Min impact = no direct cost increase. Burn rate = 6 *\$35k = \$210k.	uns may also be required	d (12 months delay).
	Likely impact: cost increase is covered by the 30% sensor estimate uncerta Max impact: the worst case scenario based on informal cost information re by 2/3 = 66%. 30% are covered by the cost uncertainty. The additional cost \$420k. Total = \$2,720k. We have identified a vendor (HPK) who has already produced sensors of a reliable performance of HPK it is very unlikely that this threat will occur. W specifications after a purchase was negotiated. Hence the probability is cor	eccived during the marke st of 36% of the \$6.5M se Il types that satisfy our s Ve are not aware that HP	et survey is an increase in the cost of the sensors nsor purchase is \$2.3M.Burn rate = 12 *\$35k = pecifications. Together with the historically
Cause or Trigger:	Max impact: the worst case scenario based on informal cost information re by 2/3 = 66%. 30% are covered by the cost uncertainty. The additional cos \$420k. Total = \$2,720k. We have identified a vendor (HPK) who has already produced sensors of a reliable performance of HPK it is very unlikely that this threat will occur. W specifications after a purchase was negotiated. Hence the probability is con Sensors delivered by vendor are substandard and vendor is unable to fix the problem.	eccived during the market st of 36% of the \$6.5M se Il types that satisfy our s Ve are not aware that HP nsidered to be low. Impacted Activities:	et survey is an increase in the cost of the sensors nsor purchase is \$2.3M.Burn rate = 12 *\$35k = pecifications. Together with the historically K has ever failed to produce sensors to Sensor production and QC. Cost risk is implemented as a single risk. Schedule risk is implemented as three seperate risks (probability depends on sensor type). There are three risk hooks for the three sensor types, but because 2S and PS-s are similar, would split the probability: 1% for PS-s (hook A), 2% for 2S (hook C), 2% for PS-p (hook B). Note: PR/ does not support fractions of percent.
Cause or Trigger: Start date:	Max impact: the worst case scenario based on informal cost information re by 2/3 = 66%. 30% are covered by the cost uncertainty. The additional cost \$420k. Total = \$2,720k. We have identified a vendor (HPK) who has already produced sensors of a reliable performance of HPK it is very unlikely that this threat will occur. W specifications after a purchase was negotiated. Hence the probability is con Sensors delivered by vendor are substandard and vendor is unable to fix	eccived during the marke st of 36% of the \$6.5M se Il types that satisfy our s Ve are not aware that HP nsidered to be low.	et survey is an increase in the cost of the sensors nsor purchase is \$2.3M.Burn rate = 12 *\$35k = pecifications. Together with the historically 'K has ever failed to produce sensors to Sensor production and QC. Cost risk is implemented as a single risk. Schedule risk is implemented as three seperate risks (probability depends on sensor type). There are three risk hooks for the three sensor types, but because 2S and PS-s are similar, would split the probability: 1% for PS-s (hook A), 2% for 2S (hook C), 2% for PS-p (hook B). Note: PRA
	Max impact: the worst case scenario based on informal cost information re by 2/3 = 66%. 30% are covered by the cost uncertainty. The additional cos \$420k. Total = \$2,720k. We have identified a vendor (HPK) who has already produced sensors of a reliable performance of HPK it is very unlikely that this threat will occur. W specifications after a purchase was negotiated. Hence the probability is con Sensors delivered by vendor are substandard and vendor is unable to fix the problem.	eceived during the market st of 36% of the \$6.5M se Il types that satisfy our s Ve are not aware that HP nsidered to be low. Impacted Activities: <u>End date:</u> nies are selected based o AS within a two-year per	et survey is an increase in the cost of the sensors nsor purchase is \$2.3M.Burn rate = 12 *\$35k = pecifications. Together with the historically K has ever failed to produce sensors to Sensor production and QC. Cost risk is implemented as a single risk. Schedule risk is implemented as three seperate risks (probability depends on sensor type). There are three risk hooks for the three sensor types, but because 2S and PS-s are similar, would split the probability: 1% for PS-s (hook A), 2% for 2S (hook C), 2% for PS-p (hook B). Note: PRA does not support fractions of percent. 3-Dec-2024 n their capability to produce sensors that satisfy iod. Companies have to be qualified by producing
Start date:	Max impact: the worst case scenario based on informal cost information re by 2/3 = 66%. 30% are covered by the cost uncertainty. The additional cos \$420k. Total = \$2,720k. We have identified a vendor (HPK) who has already produced sensors of a reliable performance of HPK it is very unlikely that this threat will occur. W specifications after a purchase was negotiated. Hence the probability is con Sensors delivered by vendor are substandard and vendor is unable to fix the problem.	eceived during the market st of 36% of the \$6.5M se Il types that satisfy our s Ve are not aware that HP nsidered to be low. Impacted Activities: <u>End date:</u> nies are selected based o AS within a two-year per	et survey is an increase in the cost of the sensors nsor purchase is \$2.3M.Burn rate = 12 *\$35k = pecifications. Together with the historically K has ever failed to produce sensors to Sensor production and QC. Cost risk is implemented as a single risk. Schedule risk is implemented as three seperate risks (probability depends on sensor type). There are three risk hooks for the three sensor types, but because 2S and PS-s are similar, would split the probability: 1% for PS-s (hook A), 2% for 2S (hook C), 2% for PS-p (hook B). Note: PR/ does not support fractions of percent. 3-Dec-2024 n their capability to produce sensors that satisfy iod. Companies have to be qualified by producing