

B06 - OT Path to Baseline

Ulrich Heintz (Brown University), Petra Merkel (Fermilab)

HL LHC CMS Detector Upgrade CD-1 Review

October 23rd, 2019

Prerequisites for Baseline

Preliminary design

- Resolve remaining technical questions
- Definitive scope, cost, and schedule
- Resource loaded schedule suitable to measure Earned Value
- Implementation of Earned Value Monitoring System (EVMS)
 Charge #3
 - Measure performance against fixed baseline
 - Formal change control
 - Analyze cost and schedule variances
 - Produce metrics for DOE's project reporting system (PARS-II).

Preliminary Design

Predecessors to "Ready for CD2" milestone

T4 - Outer Tracker - Ready for CD-3A 9/30/2019 9/30/2019 CMS - OT sensor contract placed by CERN

■ T4 - MaPSA Prototyping complete 8/12/2020

T5 - Functional PS module completed (East Coast) 10/9/2020

T5 - Functional PS module completed (Fermilab) 10/9/2020

 T5 - First functional CBC3 prototype available 7/21/2020

T5 - Inner plank prototype tested

■ T4 - Ring Mechanics Prototype Complete

T5 - Inner layer prototype assembly complete

	7 / 0	/ 20	20
	B	AC	
ch	Mgmt	Tech	
0%	100%	100%	
	100%	100%	
10/	000/	049/	

5/1/2020

3/16/2020

7/8/2020

	Sen	sors	Electi	ronics	Mod	ules	Mechanics		Integr	ation	A۱	/E	BAC		
ОТ	Mgmt	Tech	Mgmt	Tech	Mgmt	Te ch	Mgmt	Te ch	Mgmt	Tech	Mgmt	Tech	Mgmt	Te ch	
Conceptual Design	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Preliminary Design	100%	100%	98%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
Final Design	100%	100%	100%	95%	100%	86%	93%	95%	87%	95%	96%	94%	99%	91%	
Detailed Design	50%	80%	50%	20%	50%	20%	50%	20%	50%	20%	50%	32%	50%	31%	
Construction Readiness	48%	75%	19%	20%	22%	20%	19%	20%	19%	20%	25%	31%	26%	30%	

Preliminary Design – Sensors

- Contract was signed between CERN and HPK (8/23/19)
 - Cost is fixed (in JPY)
 - Delivery schedule is agreed upon
 - Sensor specifications are finalized
- Sensor thickness decision was taken (9/17/19)
 - Demonstrated that FZ290 sensors satisfy our needs
- Sensor design is close to final
 - Final PS-s design was transmitted to HPK
 - 2S design is being finalized
 - PS-p design will be finalized after experience with prototypes
- QC center setups close to complete
 - Brown is hosting a CMS-wide sensor QC workshop in November to finalize procedures
 - Will be ready to accept preproduction sensors in 2020
- We are ready for CD3a (target: March 2020)

Preliminary Design – MAPSA

- MaPSA prototype round 2
 - Round 1 of prototype MaPSAs (Oct 2019 and Jan 2020)
 - Round 2 of prototype MaPSAs (May 2020)
 - Contract awarded to two vendors
 - Test round 2 prototype MaPSAs
- Ready for CD-2 in August 2020

Preliminary Design – 2S Modules

- Complete 2S module design
 - CMS milestone on 3/31/20
 - Adapt current design to final sensor thickness
- Functional 2S prototype modules
 - CMS has built 17 2S functional modules, 2 with 8CBC3 hybrids
 - includes 2 at FNAL and 3 at Brown, 1 with 8CBC3 hybrids
 - Noise performance within specs (<10k e⁻)
 - Service hybrids needed for full functionality (Q2-2020)
- Assembly procedure
 - Decide about automation options (Dec 2019)
- Ready for CD2 in July 2020

Preliminary Design – PS Modules

- Complete PS module design
 - CMS milestone on 7/20/20
 - Adapt current design to final sensor thickness
- Needed to build functional PS module
 - MaPSA (Oct 2019)
 - PS-s sensor (Jan 2020)
 - PS-FEH for 1.6 mm modules (Apr 2020)
 - PS-POH and PS-ROH (Q2 2020)
- Assembly procedure
 - Ready for automated assembly in Jul 2020
- Ready for CD-2 in October 2020

Preliminary Design – Mechanics & Integration

- Build and test inner plank prototype
 - Perform final thermal and mechanical tests (May 2020)
 - Fabricate final prototypes (Feb 2020)
 - Plank Mechanics Prototype Design Complete (Sep 2019 done)
- Build ring mechanics prototype
 - Done
- Assemble inner layer prototype
 - Mechanical coupling of tilted and flat barrels
 - Fiber/cable routing prototype
 - Cooling manifold prototype
- Ready for CD-2 by July 2020

Scope, Cost, and Schedule

Scope defined in KPPs

needed for the Outer Tracker. 952 Modules will be used to construct the "Flat" Inner Barrel, the inner three layers of barrel modules. Outer Tracker Track	WBS	Threshold KPP	Objective KPP
approximately 30% of the total number of Modules needed for the Outer Tracker. 952 Modules will be used to construct the "Flat" Inner Barrel, the inner three layers of barrel modules. Outer Tracker	402.2		
The project shall integrate the "Flat" Inner Barrel detector into the full Outer Tracker, and test and		The Project will build, test, and grade approximately 30% of the total number of Modules needed for the Outer Tracker. 952 Modules will be used to construct the "Flat" Inner Barrel, the inner three layers of barrel modules. The modules and Flat Barrel shall have sufficient granularity and noise performance to ensure a projected occupancy of < 5%, and capable of	The Project will build, test, and grade approximately 33% of the total number of Modules needed for the Outer Tracker. 952 Modules will be used to construct the "Flat" Inner Barrel, the inner three layers of barrel modules. The modules and Flat Barrel shall have sufficient granularity and noise performance to ensure a projected occupancy of < 5%, and capable of forming and sending track pT information to the L1 trigger at LHC bunch crossing rates. The project shall integrate the "Flat" Inner Barrel

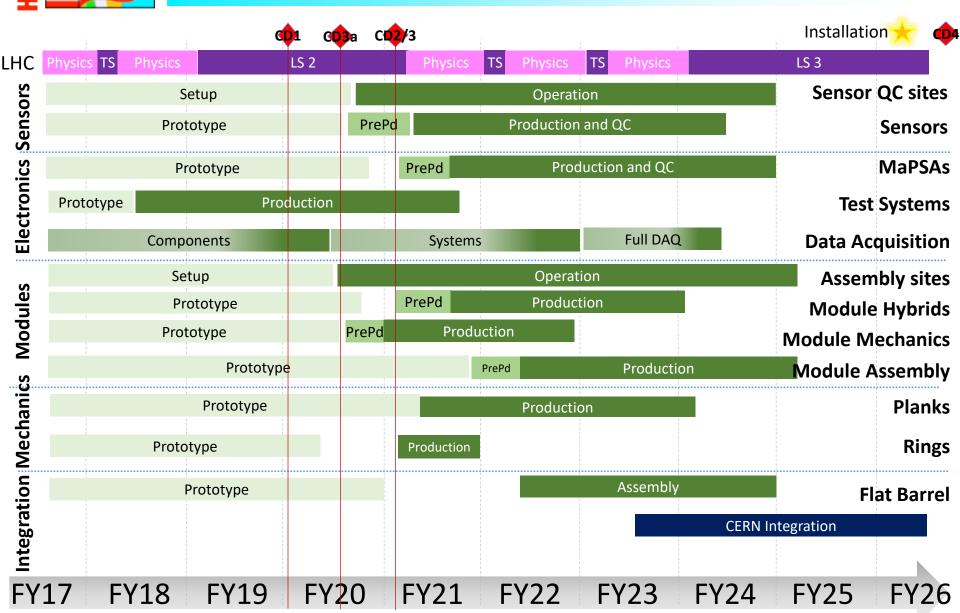
Refined Estimates of Resources and Durations

- Fundamental structure of sequenced activities is established
- Further rounds of prototyping should validate estimated hours and durations
- Completion of vendor inquiries and validation iterations will confirm costs and procurement structures


Cost – Basis of Estimate https://go.usa.gov/xnSwv

- Project divided into 15 estimate documents
 - Maintain similarity in topics while parsing into finite number of digestible chunks
- Follows Project Office guidance via Key **Assumptions Document**
- Standard BOE format
 - Scope
 - Narrative for cost basis
 - May cite supplementary material in same or connected DocDB container
 - Summary Tables
 - M&S and Labor
 - Connected to costbook via "BoeRef"

2 Parent: WBS : 402.2 OT - OUTER TRACKER (15)	
L3 Parent:WBS: 402.2.2 OT - Management (1) 402.2.2 OT - Management	CMS-doc-12824
L3 Parent:WBS: 402.2.3 OT - Sensors (4)	
402.2.3.1 OT - QC Centers	CMS-doc-12989
402.2.3.2 OT - PS-P Sensors	CMS-doc-12991
402.2.3.3 OT - PS-S Sensors	CMS-doc-12993
402.2.3.4 OT - 2S Sensors	CMS-doc-12995
L3 Parent:WBS: 402.2.4 OT - Electronics (3)	
402.2.4.1 OT - Macro Pixel Sub-Assembly	CMS-doc-12997
402.2.4.2 OT - Test Systems	CMS-doc-12998
402.2.4.3 OT - DAQ	CMS-doc-13000
.3 Parent:WBS: 402.2.5 OT - Modules (5)	
402.2.5.1.1 OT - Module Assembly Facilities - East Coast	CMS-doc-13008
402.2.5.1.2 OT - Module Assembly Facilities - Fermilab	CMS-doc-13009
402.2.5.1.3 OT - Module Assembly Infrastructure	CMS-doc-13002
402.2.5.2 OT - Module Components	CMS-doc-13010
402.2.5.3 OT - Module Assembly	CMS-doc-13012
.3 Parent:WBS: 402.2.6 OT - Mechanics (1)	
402.2.6 OT - Mechanics	CMS-doc-13005
.3 Parent:WBS: 402.2.7 OT - Integration and Testing (1)	
402.2.7 OT - Integration and Testing	CMS-doc-13014



Cost – Example BOE

Activ	ity ID	Activity Name	Institute	Resource Name	Labor (hours)	Direct M&S \$	Direct + Indirect + Eso (\$)	Estimate Uncertainty (%)	Estimate Uncertainty (\$)	Total Cost (\$)	
	Resource Type				0	750,151	7,7,447		161,692	959,139	
	BoE Ref: CMS	-doc-12991-MS-09			0	48,091	49,484		9,897	59,381	
	OT320550	CERN delivers preproduction PS-P sensors	TD2	M&S Exempt - Award	0	18,171	18,697	20%	3,739	22,437	
	OT320550	CERN delivers preproduction PS-P secons	TD2	M&S Exempt - Award	0	29,920	30,787	20%	6,157	36,944	
	BoE Ref: CMS	-doc-12991-MS-10			0	688,160	725,940		145,188	871,128	
	OT320780	CERN delivers production PS-P sensors (Lot 01)	TD2	M&S Exempt - Award	0	68,816	72,594	20%	14,519	87,113	
	OT320960	CERN delivers production PS-P sensors (Lot 02)	TD2	M&S Exempt - Award	0	68,816	72,594	20%	14,519	87,113	
	OT321140	CERN delivers production PS-P sensors (Lot 03)	TD2	M&S Exempt - Award	0	68,816	72,594	20%	14,519	87,113	
	OT321320	CERN delivers production PS-P sensors (Lot 04)	TD2	M&S Exempt - Award	0	68,816	72,594	20%	14,519	87,113	
	OT321500	CERN delivers production PS-P sensors (Lot 05)	TD2	M&S Exempt - Award	0	68,816	72,594	20%	14,519	87,113	
	OT321680	CERN delivers production PS-P sensors (Lot 06)	TD2	M&S Exempt - Award	0	68,816	72,594	20%	14,519	87,113	
	OT321860	CERN delivers production PS-P sensors (Lot 07)	TD2	M&S Exempt - Award	0	68,816	72,594	20%	14,519	87,113	
	OT322040	CERN delivers production PS-P sensors (Lot 08)	TD2	M&S Exempt - Award	0	68,816	72,594	20%	14,519	87,113	
Ш	OT322220	CERN delivers production PS-P sensors (Lot 09)	TD2	M&S Exempt - Award	0	68,816	72,594	20%	14,519	87,113	
	OT322400	CERN delivers production PS-P sensors (Lot 10)	TD2	M&S Exempt - Award	0	68,816	72,594	20%	14,519	87,113	

OT Cartoon Schedule

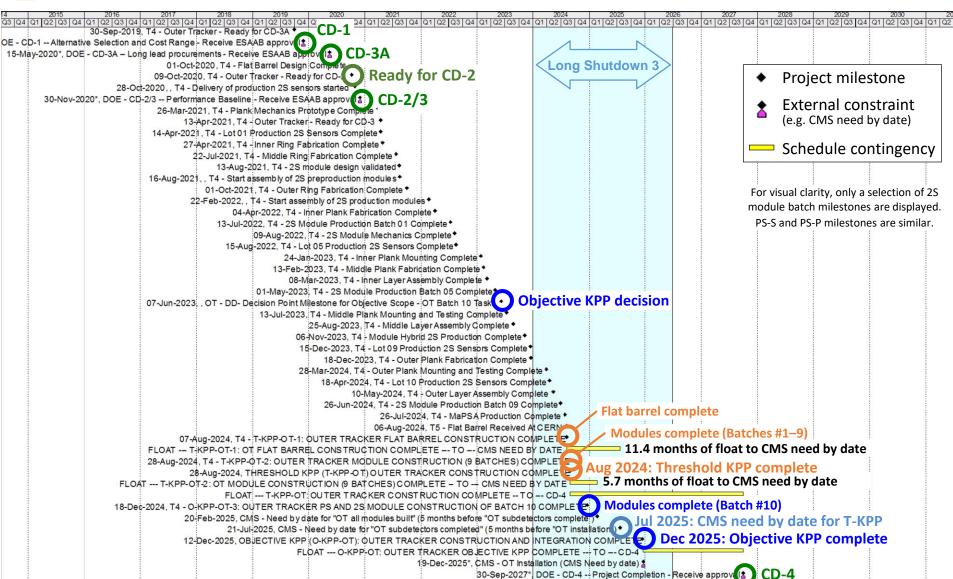
Resource-Loaded Schedule (RLS)

Charge #3,7

∨La	yout: UH - my layout	Fiff	er: All Activities											
#	Activity ID		Planned Duration		Finish	Planned Labor HRs	Planned Labor Cost	Planned NonFNAL labor HRs		Planned M/S Burdened Cost	Planned Total Burdened Cost			
1	DOE-CD1-402.2 402.2 OT - Outer Tracker (at DOE CD1)	3835	2950d	04-Jan-2016	01-Oct-2027	151230h	\$10,448,899.16	225849h	\$8,581,485.53	\$23,841,144.34	\$42,871,529.03			

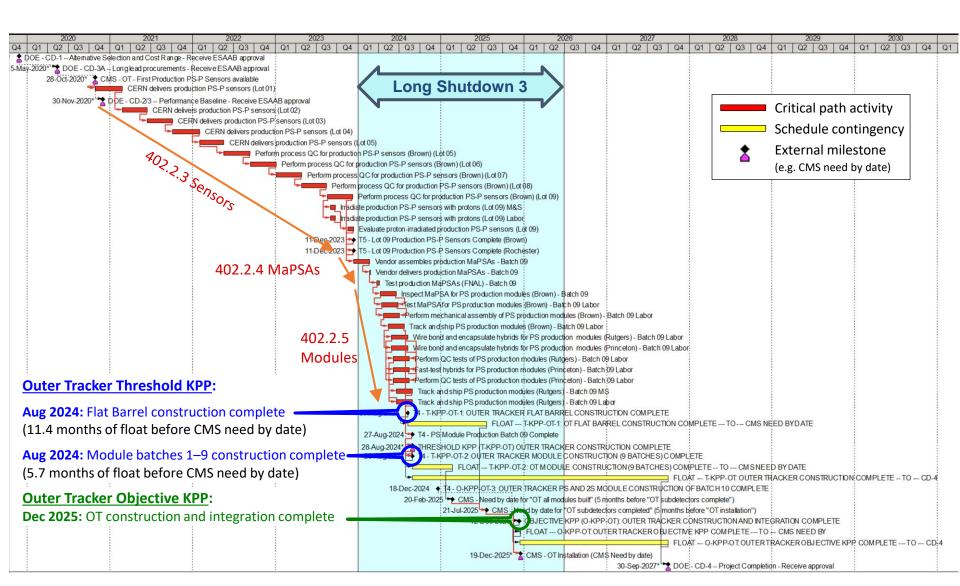
- Fully Resource-Loaded Schedule captures the OT project
 - Follows best practices of FNAL Office of Project Support Services
 - Vetted by other O413.3B projects: Mu2e, g-2, Phase 1, LBNF/DUNE, et al
 - Uses Industry-standard scheduling (Primavera, aka "P6") and cost processing tools (Cobra)
 - Site-specific overhead, escalation computed by tools
 - M&S budgeted in direct dollars
 - FNAL labor and Institute labor budgeted in hours, site-specific labor rates applied
- Reviewed by OPSS in March 2017
 - 47 comments, all addressed: <u>DocDB 13298</u>
 - Valuable learning experience for the OT team

Production Schedule

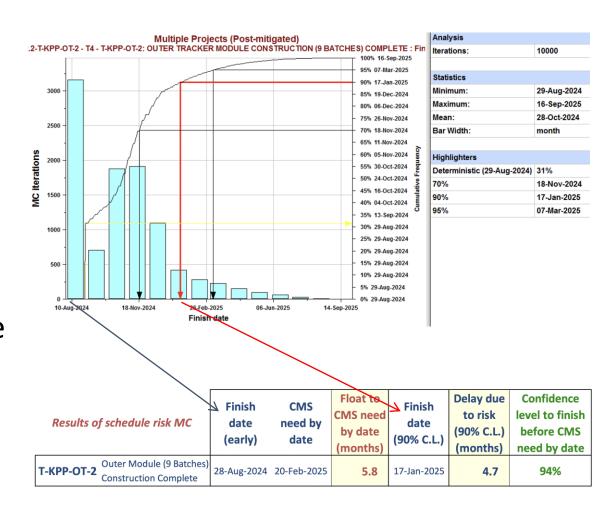


- Balance between granularity and maintainability
 - Cannot have activities for each of the module
- Break up production for each type of module into batches
 - Preproduction + 10 production batches
 - Propagates to Sensors, MaPSAs, Components, Assembly
 - Example: PS Assembly Batch takes 104 workdays to process, all pipelined

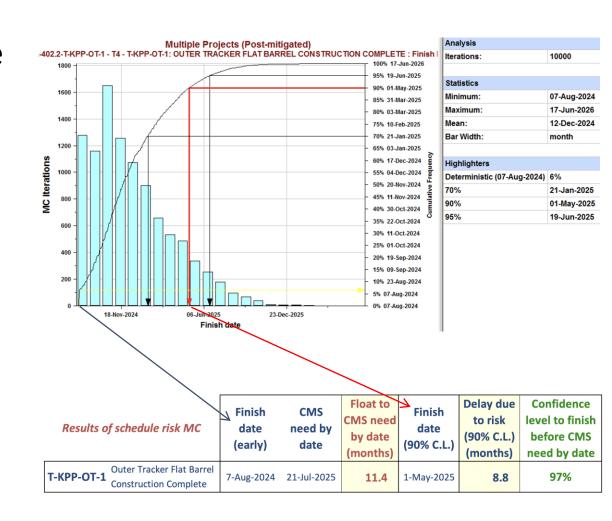
	,																											
2021	FY202	FY2022 FY2023 FY2024 FY2025 FY2026				26		FY2027 FY20					028		FY2029													
FQ3 FQ4	FQ1 FQ2 F	Q3 FQ4	FQ1	FQ2 FQ3	FQ4	FQ1 F	Q2 FG	3 F	Q4 FQ1	FQ2	FQ3 F	Q4	FQ1	FQ2 F	Q3 I	FQ4	FQ1	FQ2	FQ3	FQ4	FQ1	FQ2	FQ3	FQ4	FQ1	FQ2	FQ3 I	FQ4
	0-Jun-2022		19-Au	g-2022, lr	rspect	sensor	s for P	Spro	oduction	modu	iles (FN	IAL)	- Bat	ch 01														
	0-Jun-2022		19-Au	g-2022, Ir	spect	mechar	nica) co	ompo	nents fo	r PS p	roduct	ion f	nodul	es (FN	AL)	- Bati	h 01											
	0-Jun-2022		9-Au	g-2022, Ir	spect	Hybrids	for P	S pro	duction	modu	iles (FN	IAL)	- Bat	ch 01						con	po	ner	nt					
	17-Jun-2022		26-Aŭ	ig-2022, 1	lest hy	brids fo	or PS p	rodu	iction mo	dules	(FNAL) - 티	atch	01 Lab	or				Γ	insp	ect	ion	&	test	ing			
	23-Jun-2022		01-Sé	ep-2022, I	nspec	MaP\$/	tor P	Spro	duction	modul	les (FN	AL)	- Bato	ch 01	i								-		8			
	30-Jun-2022		09-S	ер-2022,	Test M	aPSA f	or PS p	orojdu	uction mo	dules	(FNAL	.) - 🛊	atch	01 Lab	or			_	J									
	08-Jul-2022	2 🚃	16-S	ер-2022,	Perfor	m mech	anical	asse	emb ly of	PS pr	oductio	n m	odule	s (FNA	L) - [Batch	01 L	abor	}-	asse	emk	oly						
	05-Aug-20	22 🔳	14	-Oct-2022	Wire	bond h	ybrids	for P	S produ	ction r	nodule:	s (F	NAL)	- Batch	01 l	Labo	r		1			-						
	05-Aug-20	22	14	-Oct-2022	, Fast	test hyl	orids f	or PS	product	tion m	odules	(FN	AL) -	Batch (01 L	abor			-	Wir	e b	ond	l, te	st,	end	aps	sula	te l
	05-Aug-20	22 🔳	14	-Oct-2022	Enca	psulate	hybric	ls for	r P\$ prod	uction	n modu	les (FNAL) - Bat	ch Ó	1 Lat	or						′					
	12-Aug-20)22	21	-Oct-2022	2 Perf	orm QC	tests (of PS	product	ion m	odules	(FN	AL) -	Batch (01 L'a	abor			}-	QC								
	26-Aug-2	022 🔳	<u> </u>	4-No√-202	22, Tra	ck and	ship P:	Spro	duction	modul	es (FN	IAL)	- Bat	ch 01 L	_abo	r			}-	ship)							
												- 1																



Key milestones and schedule contingency


Critical Path and Schedule Contingency

Schedule Contingency: Modules


- Risk MC aggregates delays stochastically in the full P6 schedule
- Risks will delay finish by < 4.7 months at 90% confidence level
- Plan has 5.8 months of float before the CMS need by date
- T-KPP will finish before the need by date at 94% confidence level
- Will revisit schedule risk when new LHC schedule is known

Schedule Contingency: Flat Barrel

- Risk MC aggregates delays stochastically in the full P6 schedule
- Risks will delay finish by < 8.8 months at 90% confidence level
- Plan has 11.4 months of float before the CMS need by date
- T-KPP will finish before the need by date at 97% confidence level
- Will revisit schedule risk when new LHC schedule is known

Responsibility Assignment Matrix

- RLS fully factorized into Earned Value Monitoring Units
 - Control Accounts are the lowest level quantum for agency monitoring

8 402.2 OT - Outer Tracker (at DOE CD1)	42,871,529
□ Narain, Meenakshi	15,379,014
OT - Module Sites	5,324,064
	10,054,950
⊟ Heintz, Ulrich	7,371,148
® OT - Sensors	7,371,148
☐ Spiegel, Lenny	6,406,966
⊙ OT - Module Components	6,406,966
⊟ Gershtein, Yuri	857,430
⊕ OT - Test Systems	857,430
⊟ Gruenendahl, Stefan	6,366,701
⊕ OT - FB Mechanics	2,380,031
OT - Integration and Testing	3,986,670
⊟ Merkel, Petra	1,125,217
OT - Management	1,125,217
☐ Canepa, Anadi	5,365,054
	2,468,116
® OT - DAQ	2,896,938

Statusing

- What is it?
 - Monthly collection of Work Performed
 - Objective measure based on pre-declared measurement technique (Performance Measurement Technique, "PMT")
 - Monthly collection of Actual Cost
 - From FNAL fiscal system
- When does it start?
 - Required to demonstrate >3 months of EVMS reporting before CD-2
- OT started statusing a practice schedule in Jan 2018
 - Experience with the process while the schedule can still be modified
 - Project team gets familiar with the demanding EVMS cycle
 - Added benefit: Can relinquish contingency on completed activities
 - Project office resources were not sufficient to sustain monthly statusing while developing CD-1 documentation for all subprojects
 - Plan is to resume monthly statusing following this review

Design Maturity

- Preliminary design essentially complete
- Ready for CD3a (long lead time procurements)
- Further prototype cycles to validate design

OT Cost and Schedule

- Structure is suitable for the deliverables of the project
- BOE documentation is well developed
- Firm up cost and schedule based on prototyping and vendor surveys

Resource Loaded Schedule

- Developed beyond requirements for CD-1
- Suitable to support EVMS
- Already conducted first statusing exercises
- Target for CD-2 review is November 2020