

B01 : BTL Overview 402.8.3

Adi Bornheim Caltech HL-LHC CMS CD-1 Review 23 October 2019

- Adi Bornheim, Caltech
- Roles in international MTD :
 - L3: BTL Technical Manager BTL
 - L4 : BTL Manager of Mechanics & Integration
- Roles in USCMS MTD :
 - L3 : BTL Manager
 - L4 : BTL Assembly, Integration and Commissioning
- Experience :
 - CMS since 2002
 - CMS ECAL R&D, installation, commissioning, operation, Higgs and SM physics
 - Precision timing detector R&D since 2012
 - Postdoc on CLEO, PhD on ZEUS/HERA

- Conceptual Design
- Scope and Deliverables for BTL (402.8.3)
- Cost and Schedule
- Contributing Institutions
- Resource Optimization
- ES&H
- QA/QC
- Summary

Conceptual Design, Scope and Deliverables

10/23/2019

Adi Bornheim HL-LHC CMS CD-1 Review MTD - BTL Overview

4

Introduct

Introduction to BTL

BTL: LYSO bars + SiPM readout:

- TK / ECAL interface: |η| < 1.45
- · Inner radius: 1148 mm (40 mm thick)
- Length: ±2.6 m along z
- Surface ~38 m²; 332k channels
- Fluence at 4 ab⁻¹: 2x10¹⁴ n_{eq}/cm²

BTL technology choice – SiPM/LYSO :

- Timing performance <30 ps with MIPs in LYSO/SiPM demonstrated.</p>
- Radiation hardness established at the required level.
- Extensive experience with SiPM in CMS & LYSO in HEP & PET
- Cost effective mass market components

Design constraints & Performance

- Time resolution 30-40 ps at the start of HL-LHC, <60 ps up to 3000 fb⁻¹.
- Radiation levels for BTL at the end of HL-LHC :
 - Fluence $1.65 1.85 \times 10^{14} n_{eq}/cm^2$, Dose : 16-20 kGy
- Maintenance free operation inside the tracker cold volume.
 - Requirement to run SiPMs at -30 C to limit dark count rate (DCR).
- Cover ~36 m² of area at the outer circumference of the CMS tracker.
- Design facilitating quick and efficient assembly and integration.

BTL project (402.8.3) subdivided into 6 tasks :

- SiPM sensor (402.8.3.2)
 - Purchase and testing of part of the SiPMs
 - M. Wayne → separate talk
- Concentrator Card (402.8.3.3)
 - Design and production of all CC
 - Y. Maravin \rightarrow separate talk
- Assembly (402.8.3.4)
 - Assembly of ~60% of the modules and the trays, delivery to CERN
 - A. Bornheim
- Integration and Commissioning (402.8.3.6)
 - Participation in I&C activity at CERN, jointly with other BTL collaborators.
 - A. Bornheim

BTL will be attached to the inner wall of the Tracker Support Tube (TST).

Cold volume shared with Tracker (TRK).

BTL Segmentation :

- 72 trays (36 in φ × 2 in η)
- 331k readout channels, 165k LYSO bars, organized in 6 Readout Units per tray.
- Tray dimensions : 250 x 18 x 2.5 cm

Current TST – HL-LHC upgrade very similar

- BTL tray design :
 - Front End electronics, segmented into Readout Units
 - Sensor layer, segmented into modules
 - Cooling tray, providing mechanical support, CO₂ cooling pipes.

- BTL module :
 - 1. LYSO matrix
 - 2. SiPM array
 - 3. Connectivity to FE cards
 - 4. Aluminum profiles providing mechanical and thermal contact to cooling tray.

BTL Assembly, Integration & Commissioning

- Module and tray assembly :
 - Mating of LYSO and SiPM, connecting cables.
 - Mounting of modules and RU on cooling plate.
 - 2 assembly centers in the US
- Integration into the TST :
 - Trays sliding into support rails, connecting services.

BTL services channel TST with BTL trays and services **BTL services channel** mockup

R&D achieved and remaining

- Sensor R&D concluding
 - Profiting from many years of R&D for HCAL
 - LYSO R&D now focused on producer choice and production details, selecting from commercially available solutions.
 - Gluing and wrapping of LYSO
 - SiPM : See presentation by M. Wayne
- Concentrator Card :
 - Prototyping ongoing, using common components from CMS
 - See presentation by Y. Maravin
- Assembly
 - Benefit from experience gained in existing detector projects : CMS ECAL, CMS HCAL, CALICE AHCAL.
 - Module and tray design now transitioning from conceptual to engineering design.
 - Industrialization options for module production being explored in detail.
- Installation and Commissioning
 - Joined project with Tracker, schedule and location (TIF) agreed.
 - Installation procedure to be worked out in detail.
- Remaining R&D focused on optimization and vendor choice.

- Sensors :
 - Specs of LYSO and SiPMs, sensor boards, connectivity to FE
- Readout electronics :
 - Matching specs of CC and ASIC card, services, tray mechanics.
- Overall detector :
 - BTL resides in the same cold volume as TRK, radial space assignment to BTL signed off by TRK.
 - BTL shares service channel cooling, power, data fibers with the TRK. Preliminary design of all services exists.

Documented in <u>cms-doc-13536</u>

Schedule and Cost

Adi Bornheim HL-LHC CMS CD-1 Review MTD - BTL Overview

Schedule Overview

- BTL schedule constrained by Tracker integration
 - Flexibility by parallel work on both TST ends.
- Assembly and integration driven by FE boards (ASIC).
 - Assembly can be accelerated using teams working in parallel.
- Detailed schedule, resource loaded, available.
 - MTD approved by LHCC/UCG in September 2019

Charge #3

Milestones for 402.8.3

Milestones defined and documented : <u>cms-doc-13321</u>

Finer grained milestones are listed in P6

Critical Path for 402.8.3

Further details in F. Chlebana`s talk.

2017	2018 2019	2020	2021	2022	2023	2024	2025	2026	6 2027	2028	2029	2030	2031	2032	2033
01102 00 04	27-Nov-2019* \$1	DOE - CD-1 -	- Alternative Sel	lection and Cos	st Range - Rece	ve ESAAB ap	proval			14 001 002 003 004		4 41 42 45			
	16 Dec-2019*	CMS - BTL -	FE board availa	ble for module	and trav assen	bly pre-produc	tion								
	14-Feb-2020*,	CMS - BTI	- LYSO crystal	s available for	preproduction o	fmodules									
	15-Apr-2020	*, 🛓 CMS - E	TL - Componer	t ASICs ready	for CC pre-pro	duction					Г				
	15-May-202	0*, 🛔 CMS -	BTL - BTL.EDR	- BTL Engine	ering design rev	iew held							Critical pat	h activity	,
	15-May-20	20* 20E -	CD-3A Long I	lead procurem	ents - Receive E	SAAB approva	al						Schodulo	ontingon	~
	18-May-202	0*, 🛔 CMS -	BTL - IpGBT an	d DCDC - Pre	production vers	ion available							Schedule	onungen	Cy
	15-Jun-2020* CMS - BTL - LYSO pre-production complete											•	External milestone		
	30-Nov-2020*** DOE - CD-2/3 Performance Baseline - Receive ESAAB approval														
		15-Apr-202	1*, 🛓 CMS - B	TL - IpGBT and	DCDC - Produ	ction version a	vailable						(c.g. civis ne		
Apr 2	022. Ready to start		15-Apr-2022	2* CMS - E	TL - B.FE.6 - F	E 10% complet	е								
		DIE	15-Apt-202	22 01L - 14	- Ready to star	TBTL module p	roduction								
	nodule production			BIL-	Module batch U	(CT) - Produc	e modules								
					- Module batch	04 (CT) - Plou	uce modules							8	
					BTI Module bat	atch 10 (CT)	Produce modules								
				L	BTL - Module D	batch 13 (CT)	Produce module								
				L L	BTL - Module	e batch 13 (CT	- Integrate mo	dules and	electronics into tr	avs					
					BTL - Modu	e batch 13 (CT) - Test module	s and tra	vs	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
					BTL - Modu	le batch 13 (CT) - Update DB	and prep	are travs for shippi	na					
				10-Feb-2023	BTL - T5 - N	Iodule batch 13	(CT) - Produc	tion com	olete						
					BTL - Mod	ule batch 13 (C	T) - Ship travs t	O CERN							
Timin	<u>g Layer Threshold</u>	<u> KPP</u> :		03-Mar-202	3 🛨 BTL - T7 -	T-KPP (9 batch	es) production	assembly	y complete - before	any risks					
				06-Mar-202	3 BTL - T4 -	T-KPP (9 batch	es) production	assembl	y complete						
Mar 20	323: BTL construction	on comp	lete —	00-Iviai-202	T-KPP-TL	1B: BARREL 1	IMING LAYER	CONSTR	RUCTION COMPLE	ETÉ					
(11.0 r	nonths float before	CMS ne	ed by date	e)		FLOAT T	KPP-TL-1B: B	ARREL	TIMING LAYER CO	NSTRUCTION C	OMPLETE -	TO CMS	NEED BY		
•				09-Jun	202 1.0-KPF	TL-18: BARR	EL TIMING LAY	ER CON	ISTRUCTION AND	INSTALLATION	COMPLETE				
					· · ·	FLOAT	O-KPP-TL-1B	BARRE	L TIMING LAYER I	&C COMPLETE	TO CM	IS NEED BY			
					01-Feb-2024*	CMS - BTL	B.A.6 - Tray p	roduction	100% complete (i	ncluding iMTD sc	hedule contir	ngency as lag)			
			:		26-Mar-202	4* 🔁 CMS - BT	L - B.A.8.1 - TS	ST- end o	f access for BTL (C	MS need by date	e)				
					17-Apr-20	24 - THRESH	IOLD KPP (T-K	(PP-TL)	TIMING LAYER CO	INSTRUCTION C	OMPLETE				
						4 -				FLOAT T-KPF	-TL-1: TIMIN	IG LAYER CO	NSTRUCTION CO	MPLETE T	0 CD-4
Timin	a Lovor Objective	KDD.				09-Jun-		UNE KI	2P (0-KPP-TL)				LEATION COMPL	LIL MOLETE 7	
10000	g Layer Objective	<u>INFF</u> .							20 0	PEUAI U-KPI	- IL-1: IIMIN	ING LATER OB	JECTIVE KPP C	WIPLETE	U UD-4
Jun 20	23: BTL constructio	on and in	stallation	complete		Long S	Shutdowr	13	30-Sep-2027**	UUE - CD-4 PI	ibject Compl	etion - Receive	e approvai		
5011 20			standton	compiete					-	-	1	:			

- M&S cost drivers :
 - Purchase fraction of SiPM
- Labor cost drivers :
 - Module and tray assembly, CC card design and production

402.8.3-TL-Base Budget Profile (DOE)-WBS L4 Subprojects

- Project governed by Fermilab Risk Management plan.
- Risk workshop with external reviewers conducted.
- Dominated by changes to interfaces.
- Documented in <u>cms-doc-13480</u>

RI-ID	Title	Probability	Cost Impact	Schedule Impact	P * Impact (k\$)	P * Impact (month
HWBS / Ops La	ub Activity : 402.8 TL - Timing Layer (general risks) (2)					
🗆 WBS / Ops La	ab Activity : 402.8.3 BTL - Barrel Timing Layer (14)					
Bisk Rank : 3	3 (High) (2)					
RT-402-8-30-D	BTL - Concentrator Card requires significant design changes	50 %	40 135 175 k\$	1 3 6 months	58	
RT-402-8-07-D	BTL - Concentrator Card delay in external component deliveries	50 %	50 k\$	3 6 9 months	25	
Bisk Rank : 2	2 (Medium) (4)					
RT-402-8-05-D	BTL - Change in interfaces of tray assembly components	20 %	150 250 350 k\$	3 months	50	
RT-402-8-46-D	BTL - Problems with sensor gluing facility	50 %	90 k\$	1 2 3 months	45	
RT-402-8-33-D	BTL - Difficulties procuring LYSO from international suppliers	10 %	100 250 400 k\$	3 6 9 months	25	
RT-402-8-14-D	BTL - Problems with SiPM vendor	20 %	32 96 128 k\$	2 6 8 months	17	
Bisk Rank : 1	1 (Low) (8)					
RT-402-8-15-D	BTL - Batch shipment of SiPMs lost in transport	5 %	224 k\$	1 months	11	
RT-402-8-35-D	BTL - Delays or damage of tray in transport to CERN	5 %	220 k\$	1 months	11	
RT-402-8-04-D	BTL - LYSO matrices not meeting specifications	10 %	100 k\$	1 2 3 months	10	
RT-402-8-36-D	BTL - Interface to iCMS changes	20 %	30 k\$	1 2 3 months	6	
RT-402-8-34-D	BTL - Delay in delivery of components from iCMS	20 %	10 20 30 k\$	1 2 3 months	4	
RT-402-8-18-D	BTL - Concentrator card production & testing facility problem	20 %	10 k\$	0.5 1 2 months	2	
RT-402-8-08-D	BTL - Delay in cooling plate delivery	10 %	10 20 30 k\$	1 2 3 months	2	
RT-402-8-42-D	BTL - Problems with module assembly site	10 %	10 20 30 k\$	1 2 3 months	2	

Contributing Institutions and Resource Optimization

- Main contributing institutions for the WBS 402.8.3 are Caltech, Iowa, Notre Dame, UVA, KSU, Princeton, FNAL, NEU.
- All have substantial experience in detector design, R&D, prototyping, construction and commissioning as well as in generic detector R&D.
- In CMS, experience in ECAL and HCAL
- Substantial experience with scintillating crystals, SiPMs and precision timing.

- We follow value engineering in organization of the project and optimal use of resources (<u>cms-doc-13475</u>).
- Participating institutions has very strong track record in the relevant technologies.
- Make maximal use of commercially available items for cost drivers (LYSO and SiPMs).
- Make maximal use of industrial processes and techniques for production and assembly.

- All ES&H aspects of the HL LHC CMS Detector Upgrade Project will be handled in accordance with the Fermilab Integrated Safety Management approach, and the rules and procedures laid out in the Fermilab ES&H Manual (FESHM)
 - The current construction plan involves no materials of identified environmental risk : cooling plant is based on CO₂
- Detector will be operated in a refrigerated mode (-30°C), similar to TRK.
 - Standard operational procedures will be developed and documented to allow safe operation
- Handling of trays with a weight of 20 kg.
 - Proper handling procedures will be applied.
- Electrical hazards and discharges, voltages up to 100 V.
 - Standard operational procedures will be developed and documented to allow safe operation
- R&D and some production testing will involve the use of ionizing radiation and lasers.
 - These tests will be performed at commonly-used radiation and test beam facilities
- Documented in <u>cms-doc-13394</u>

- Following the strategy of maximal usage of commercial and industrial technologies, use respective standards for QA/QC.
- Extensive testing in prototyping, preproduction and production.
- Quality Assurance & Control plan documented in <u>cms-doc-13093</u>.

<u>WBS</u>	<u>WBS Title</u>	<u>L2, L3, L4 Lead</u>	<u>QA/QC Activity</u> <u>Name</u>	<u>Responsible</u> Institution	<u>QA/QC</u> <u>Coordinator/</u> Contact	<u>QA/QC Activity ID</u>	Quality Control or Assurance Activity/ Parameter	Quality Assurance Activities	<u>Quality Control</u> <u>Activities</u>	Specification(s)	<u>Requirement ID</u>	<u>Requirement Title</u>
402.08.3.2	BTL: SiPMs	Chris Neu, Adi Bornheim, Mitch Wayne	Prototype/preprodu ction iterations. Production part QC.	University of Notre Dame / work to be performed in our SiPM lab at CERN	Yuri Musienko	MT-QA-001, MT-QC-001	characterization of approximately 175,000 channels of	procedures, based on previous HCAL project. Setup test	measured in QA/QC will be verified in beam tests and	[SiPM spec dwg/doc number]	MTD-engr-001, 016, 032, 037	SiPM radiation hardness
402.8.3.3	BTL Concentrator Card	Chris Neu, Adi Bornheim, Yurii Maravin	Prototype testing and qualification. Production testing of all parts.	Kansas State University	Yuri Maravin	MT-QA-002, MT-QC-002	Power test and digital functionality	stands and test procedures using early prototype boards. Document	electrical functionality. Verify each part with visual inspection for any	[Concentrator Card spec dwg/doc number]	MTD-engr-013, 026, 027	Electrical Hazards, BTL Concentrator Card performance; Backend Electronics
402.8.3.4	BTL Assembly	Chris Neu, Adi Bornheim, Adi Bornheim	Prototype qualification. Production inspection and testing	University of Virginia, Caltech	Adi Bornheim	MT-QA-003, MT-QC-003	Measurement of mechanical parameters. Measurement of performance	Development of test stands and test procedures using early prototype RUS and travs	Validation of electrical performance. Measurement of conformity to	[BTL Assembly dwg/doc number]	MTD-engr-002, 006, 007, 008, 009, 010, 011, 012, 014, 015, 030; 035, 036	Hit Multiplicity; Module Cooling; MTD thermal performance; MTD Magnetic Field
402.8.3.6	BTL: Integration and Commissioning	Chris Neu, Adi Bornheim, Adi Bornheim	Participate in installation and commissioning at CERN with international	University of Virginia, Caltech, Notre Dame, KSU / CERN	Adi Bornheim	MT-QA-004, MT-QC-004	electronic performance and cooling and mechanical	Development of cooling system at TIF, test stands, and test procedures.	validation of full tray with background rate and cosmic ray based tests	[BTL System dwg/doc and installation procedures dwg/doc numbers]	MTD-engr-003, 004, 010, 011, 012, 014, 015	Impact on the OT and HGCal performance and design; Integration and accessibility of

- Significant progress over the past year :
 - BTL design well advanced
 - SiPM and LYSO ready to move from R&D to preproduction
 - Close collaboration with Tracker on integration and technical coordination.
- Cost, schedule and risks well understood and documented
- Strong team of contributing institutions with significant experience of designing, building, and testing scintillator based detectors.
- Conceptual design is complete and well on the way to baselining.