

B02 - Trigger algorithm development, performance, and demonstration

Nhan Tran HL LHC CMS CD-1 Review October 22-24, 2019

Technical design

- Algorithms overview and physics performance
- Algorithm design
- Firmware demonstration

Management aspects

Risk, quality assurance Milestones and progress *Cost and schedule (see talk later by Jeff)*

Nhan Tran

Wilson Fellow (Fermilab)

- L3 Manager: Correlator trigger
- Development of Particle Flow and PUPPI in L1 trigger
- Lead on hls4ml: high level synthesis for machine learning

Postdoc (Fermilab)

Track trigger ASIC development and testing for Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

Development of PUPPI algorithm

Trigger Scope Overview

Maintain performant trigger under high luminosity conditions

Upgrade L1 trigger accept rate: 750 kHz Upgrade L1 trigger total latency: 12.5 µs

Detector/Trigger Upgrades

Tracking trigger for tracks with pT > 2 GeV

New high granularity endcap calorimeter

Full crystal readout of barrel ECal

New muon detectors for improved high η coverage and higher granularity readout

DOE trigger scope

402.6.3: Calorimeter (regional barrel and forward calorimeter, global) 402.6.5: Correlator trigger (combining muon, calorimeter, tracker inputs)

Deliver a suite of algorithms which cover both **robustness** and **optimized physics performance**

Single system triggers*

Robust, simpler algorithms Global Calorimeter Trigger objects Track-only Trigger objects * muon system only triggers in NSF scope

Multi-system optimized reconstruction

More complex, performant algorithms Track + muon + calorimeter correlated (particle flow and PUPPI) trigger objects

Devise algorithms and study physics performance for the correlator (Particle Flow) and calorimeter triggers

Implement and integrate algorithms into firmware Within latency, bandwidth, and resource requirements

From *robust*, single-system algorithms to *optimized* multi-system algorithms

- Calorimeter and Track-only objects
- Particle Flow with PUPPI

Functional algorithm diagram

Functional algorithm diagram

Steps of algorithm development path:

- Understand physics case
- Define algorithm and interfaces (inputs & downstream) Develop firmware, estimate latency and resources Integrate within full trigger architecture Demonstrate full implementation feasibility
- n.b. difficult to present all steps for all algorithms
- 1) Calorimeter clustering example
- 2) Vertexing example
- 2) **Particle flow** example larger focus, most complex in terms of algorithm size and input interfaces

A note on algorithm development

FPGA development of algorithms in languages like VHDL or Verilog (RTL) have long development cycles and require a lot of engineering support

New tools: HLS, high level synthesis

C-level programming with specialized preprocessor directives which synthesizes optimized firmware

Particle flow example:

Core first version of firmware developed in 2-3 months using HLS, only physicists

Engineering firmware support still required (of course!) — our experience: system interfaces, infrastructure, and signal routing, etc.

Barrel **Regional Calorimeter Trigger** takes as input single ECal crystals and HCal towers to build clusters

Calorimeter clustering

- Input: 17x4x5x5 ECAL crystals and 16x4 HCAL towers.
- > 1-RCT card covers $17\eta \ge 4\varphi$ towers
- > Divide card in regions of $3\eta \ge 4\varphi$ towers to make clusters.
- > Building clusters in $3\eta \ge 4\varphi$ region:
 - Search for seed crystal > 1 GeV
 - Make 3x5 clusters at crystal level
 - \circ Select maximum of 5 highest ET cluster in $3\eta \ge 4\varphi$ region

- Move to next 3x4 towers and then do the merging around the neighbors if cluster is at the boundary of the tower
- > For 1-RCT card, there are $5 (3\eta \times 4\varphi)$ regions = 30 clusters
- Sort and send a maximum of 12 highest ET clusters
- To these 12 highest ET clusters, if there is a HCAL tower behind the ECAL tower, HCAL ET is also added to the cluster.
- Output: 12 Clusters (ECAL + HCAL)

First Barrel RCT algorithm has reasonable resource usage and latency of 40 clock cycles @ 240 MHz for large resource FPGA (VU9P)

Two 17x2 blocks split across SLRs for better floor planning

Candidate for smaller form factor FPGA

Xilinx VU9P, 240 MHz

= Utilization Est	360 MH	1Z			
Summary:	++	+	+		
Name	BRAM_18K	DSP48E	FF	LUT	URAM
 DSP	-	+ -			_
Expression	-	-1	0	504	-
FIFO	-	-1	-	-	-
Instance	0	-1	46529	35250	-
Memory	-	-1	-	-	-
Multiplexer		-1	-	8106	-
Register	0	-1	32007	7680	-
Total	0	0	78536	51540	0
Available	4320	6840	2364480	1182240	960
Utilization (%)	++ 0	+	3	4	0

Similar resource utilization for clock @ 240 MHz

Vertexing can be done in parallel to particle flow but is needed for pileup mitigation techniques

First "fast histogramming" algorithms implemented as a baseline

Algorithm implemented in HLS with VHDL wrapper to support feeding in tracks and reading out results

VU9P		FF	LUT		BRAM		DSP	
Vertexin	ng	117735		154979		1		1
Availabl	е	2364480		1182240		2160		6840
% used		5		13		0		0
rst track arrives 0	Buffer-	I ⊦Addition	Last track arrives	is do histogr Merge	$pT sum$ $pne \Rightarrow$ $am in Z$ 48	Verte	exing	Vertex position is found 166
		110		38	~	17+	1	

Algorithm finished in time to pass to PF+PUPPI

Use inspiration from offline reconstruction for best performance **Particle Flow:**

efficient combination of complementary detector subsystems

Detector	p _T -resolution	η/Φ-segmentation	
Tracker	0.6% (0.2 GeV) – 5% (500 GeV)	0.002 x 0.003 (first pixel layer)	
ECAL	1% (20 GeV) – 0.4% (500 GeV)	0.017 x 0.017 (barrel)	
HCAL	30% (30 GeV) – <mark>5%</mark> (500 GeV)	0.087 x 0.087 (barrel)	

Large gains from PF on jet and MET resolutions

arXiv:1706.04965 [PF paper]

Particle flow regions

Jet and MET performance

objects

Continual improvements to algorithms

Jet algorithms still offline style, work in progress

Input definitions

Implementation, VU9P, 240 MHz, 18 FPGAs (barrel)

Architecture (Exploded View)

(More in Sridhara's talk)

- Gen-0 (in operation at UW and CERN)
 - CTP7-based (3 cards, 96 total active links @ 10.0G available)
 - HLS interface grafted onto Phase 1 8b10b link infrastructure
 - 64-bit link interfaces
- Gen-1 (in operation at UW)
 - APd1 single card setup
 - Iridis-style 64b66b transport
 - Early APx shell functionality
 - Asynchronous processing clock
- Gen-2 (underway)
 - Multicard test setup
 - Iridis-style signaling and APx shell environment
 - Common emulated TCDS timebase in ATCA/MicroTCA crates using CTP7

Demonstration

Demonstration

Bitwise simulation

Name	Value		1,430	ns	1,440 ns	5	1,450 ns	1,460 ns	1,470_ns 1,48
V 🖬 link_object_in	39b,008,0,0,000,0007	0)	(39b, 0 0	з 🛛 06	d,04d	(000,000,0	, 0, 000, 0000, 0	00, (2, 9, 18) , 214748
> 👹 .phi[9:0]	-101	0	-10	- X	109	< <u> </u>			0
> 👹.eta[9:0]	8	0	(8		77	< <u> </u>			0
🕌 .quality	0								
🕌 .lsEM	0								
> 👹.z0[9:0]	0							e	
> 👹 .otherPt[15:0]	7	0	\leftarrow	7		< <u> </u>			0
> 👹.pt[15:0]	76	0	876	· · · · · X •	8				©
> Washington .small_region	2,9,18		<u> </u>	0-	C)		2,9,18	
🕌 .source_fiber	0	2)	\leftarrow	Θ					2147483647
isource_event_index	0	2)	\leftarrow	Θ					2147483647
> # din[63:0]	000e6c080007004c	0)	000e6c	∍X00	э́1Ь44			000	00000000000000
₩ wr_en	1								
₩ rd_en	0								
> 🖬 dout[63:0]	000000000000000000000000000000000000000			00000000	00000000		X		000e6c080007004c
₩ full	0								
🕌 almost_full	0								
🖟 empty	1								

Utilization within project requirements Less than 50% (70%) for algorithm (total) firmware Recent milestone: all elements integrated and meeting timing with full place & route

Demonstration

Particle Flow and PUPPI

Summary of algorithm status

	baseline algo	firmware
Clustering		
ID		
Calibration		
Track prop		
PF block		
Vertexing		
PUPPI		
trk jet		
τ's		
calo e/γ		

Suite of algorithms to meet physics needs (menu) demonstrated

Firmware for most resource intensive algorithms within system requirements to meet mission need

Achieved

- Full simulation framework for studying algorithm physics performance
- Algorithm development with High Level Synthesis (HLS) tools and bitwise validation of firmware/software
- Integration of HLS IP blocks into firmware infrastructure in multiple modes (direct to infra, through intermediate VHDL)

Needed before production

Final specification of algorithm interfaces for board-to-board communication (with USCMS and iCMS technologies)

Contributing institutions

- Clustering and ID: UW
- Calibration: MIT, Fermilab, UIC
- Track propagation: TAMU
- Muon-track correlation: UCLA, UF, TAMU, Fermilab
- Vertexing and track-based objects: CU Boulder, Rutgers
- Particle Flow and PUPPI: MIT, Fermilab, UIC
- Calo-based objects: UW

Risk register

Threat	RT-402-6-02-D	TD - Board or parts vendor non-performance (DOE)
Threat	RT-402-6-03-D	TD - I/O performance does not meet requirements (DOE)
Threat	RT-402-6-04-D	TD - Additional board redesign is required (DOE)
Threat	RT-402-6-05-D	TD - Additional firmware development is required (DOE)
Threat	RT-402-6-06-D	TD - Baseline FPGA does not satisfy requirements (DOE)
Threat	RT-402-6-90-D	TD - Key Trigger or DAQ personnel need to be replaced (DOE)
Threat	RT-402-6-91-D	TD - Shortfall in Trigger or DAQ scientific labor (DOE)

RT-402-6-05: Risk Rank = Medium, firmware does not meet technical specifications Probability: 20%, Impact: \$10-60k Mitigation: allocate more time to on-project engineering, or new hire RT-402-6-90: Risk Rank = Low, due to lack of base funding Probability: 30%, Impact: \$0-292k Mitigation: replace with costed labor, other USCMS or iCMS institutions

Quality assurance plan (<u>cms-doc-13093,cms-doc-13318</u>) Flows down from the engineering requirements Acceptance plans based on QC activities For algorithms, basic requirements on resource and latency met with each firmware release Important: SW and FW stored and maintained in repositories

TD-QC-004	Design Verification and Measurement/ Testing T	50%) of activities that verify that the firmware fits within the chin
-----------	--	---

 As with entire project, we follow the Integrated Safety Management Plan (<u>cms-doc-13395</u>) and have documented our hazards in the preliminary Hazard Awareness Report (<u>cms-doc-13394</u>)

Algorithm performance and firmware have progressed since 2018 CD1

Algorithms for: barrel calorimeter trigger, global calorimeter trigger, correlator (including vertexing, track-based objects)

Full demonstration system for algorithm firmware progressing

First demonstration performed

In sync with iCMS milestones for TDR in 2019

