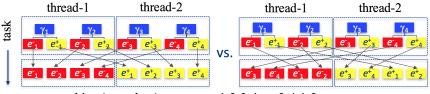
Reproducibility of concurrent particle transport simulation

Soon Yung Jun, Philippe Canal

Sept. 13, 2019 PDS Geant R&D Retreat

2019 Geant R&D Retreat


Reproducibility

ヨト くヨト

э.

Introduction

- GeantV physics processes use scalar/vector pRNG under concurrent tasks - VecRNG provides parallel pseudo random number generation (pRNG) for both SIMD and SIMT workflows
- Reproducibility is a stringent requirement for HEP simulation
 - the execution order of threads is fragile and unpredictable (example: pair-production and tracking particles by the type)

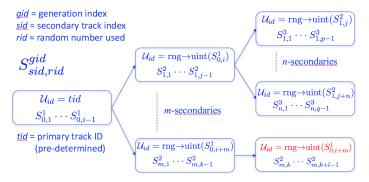
* tracking (\approx random) sequence: 1-2-3-4 vs. 3-4-1-2

• how to maintain absolute reproducibility of random number sequences for concurrent simulation tasks?

Reproducibility under Concurrent Tasks

- Challenges for track-level parallelism under concurrent simulation work flows of GeantV
 - events are mixed and track processing order is not deterministic
 - maintain reproducibility between different modes and repeatability within the same mode
 - utilize vectorized pRNG efficiently keeping reproducibility
- Strategy: a track owns a pRNG state (or object)
 - generate output variate and update the given state in a thread-independent way

r1 = rng->Uniform(track.RngState());

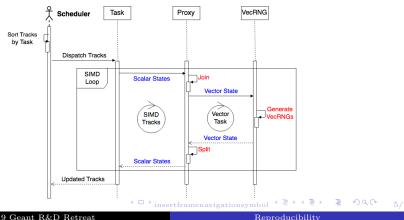

• assign a unique sequence (stream) to each track in a collision resistant way (example: initialize the random state of a new secondary track with the random state of the parent)

```
index = rng->UniformIndex(track.RngState());
secondaryTrack.InitializeState(index);
```

= nar

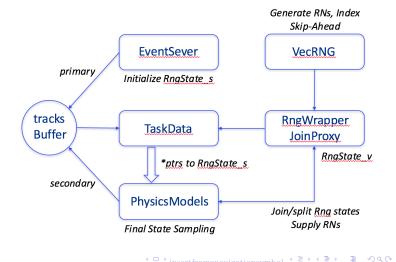
Reproducibility: Stream Assignment (A Solution)

- Reproducibility of the random forest of tracking trees under task-level parallelism: S= random state of the track
 - seed = run ID \otimes event ID
 - unique stream ID, $\mathcal{U}_{id} = \operatorname{rng} \rightarrow \operatorname{UniformIndex}(S) \equiv \operatorname{rng} \rightarrow \operatorname{uint}(S)$ (ex: output of Random123 is a collision-resistant AES/ARS hash)

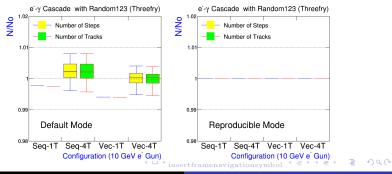

insertframenavigationsym

< 臣 ▶ < 臣 ▶ 臣 の < @

4/9


Reproducibility: Strategies for Vector Tasks

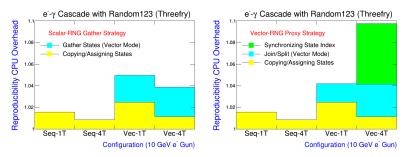
- Results of simulation should be reproducible (identical) between different modes (scalar vs. vector)
- Extension for deterministic vectorized sampling with vector rngs
 - Gather approach: generate scalar Rngs \rightarrow gather to a SIMD array
 - Proxy approach: join-states \rightarrow generate VecRngs \rightarrow split-state


2019 Geant R&D Retreat

• A simplified picture of the RngState workflow for reproducibility

Reproducibility: Verification

- $\bullet\,$ Test setup with 10 GeV e^- with a subset of GeantV EM physics
 - passage through 50 layers of LAr-Pb calorimeter (TestEM3 [?])
 - $e^{--\gamma}$ cascade (Bremsstrahlung, Ionisation and Compton)
 - 20 measurements (runs) of 1000 events, 10 e^- /event
 - configuration: (Sequential/Vector) \otimes (1Thread/4Threads)
- The total number of steps (tracks) normalized to those of the first run of the reproducible Seq-1T mode, N_o (~ 5.6 × 10⁸ steps)



2019 Geant R&D Retreat

Reproducibility

Reproducibility: Overhead

- Reproducibility introduces overhead due to
 - copying/assigning RNG states during workflows
 - gather RNGs to a SIMD array or join/split states
 - synchronizing the index of states in output (Random123 specific)
- Overhead: Time(Reproducibility)/Time(Fast Mode)

• the overhead of join/split of the proxy approach will be negligible if N(vector random numbers used) $\gg 1$ per join/split.

2019 Geant R&D Retreat

 $_{
m nbol}$ $\checkmark \equiv \triangleright \checkmark \equiv
angle$ Reproducibility э.

insertframenavigationsym

- Demonstrated reproducibility of propagating multiple particles in parallel in HEP event simulation with concurrent workflows.
 - For full reproducibility, it is important to develop common physics kernels for both scalar and vector tasks.
- The CPU overhead for full reproducibility is $\sim (5-10)\%$.
- Studied different strategies for efficient uses of vectorized pRNG.

= 900