
Status of GeantV Integration
in CMSSW

Kevin Pedro, Sunanda Banerjee
(FNAL)

September 13, 2019

• Repositories: install-geant, SimGVCore

 Generate events in CMSSW framework, convert HepMC to GeantV format

 Build CMSSW geometry natively and pass to GeantV engine (using TGeo)

• Using constant magnetic field, limited EM-only physics list

 Calorimeter scoring adapted

 Run GeantV using CMSSW ExternalWork feature:

o Asynchronous, non-blocking, task-based processing

GeantV Integration in CMSSW

External
processing

CMSSW
thread acquire()

GeantV

produce()(other work)

2

https://github.com/kpedro88/install-geant
https://github.com/kpedro88/SimGVCore

• Sensitive detectors (SD) and scoring trickiest to adapt
o Necessary to test “full chain” (simulation → digitization → reconstruction)
o Significantly more complicated than Geant4 MT

• Duplicate SD objects per event per thread, then aggregate
→ 4 streams, 4 threads = 16 SD objects
o GeantV TaskData supports this approach

 Use template wrappers to unify interfaces and operations
o Avoid upsetting delicate and complicated SD code, minimize overhead
o See backup for more details

Geant4 vs. GeantV Scoring

Event Geant4 SDSDSDParticles Hits

Event Geant4 SDSDSDParticles Hits

Geant4 shares memory, but each
event processed in separate thread

Event
GeantV

SDSDSDHits

Event SDSDSD

Each event processed in multiple
threads, mixed in with other events

?

3

GeantV Data Aggregation

• Each ScoringClass object has instance of CaloSteppingAction
o Some additional memory overhead from duplicated class members

• GeantV assigns slot number to each event
o May not match stream number in CMSSW, keep track w/ StreamCache

• Merged ScoringClass object in UserApp puts output products into event

RunManager

threads

TaskData
DataPerThread

TaskData
DataPerThread

events

ScoringClass ScoringClass ScoringClass ScoringClass

1 2 1 2

A B
UserApplication

TaskDataHandle

ScoringClass[2]

merge

4

• Need to validate physics and measure CPU and memory performance

• Previously saw discrepancy in # hits (more in GV than G4)

• Investigated and understood:

o All CMS-specific G4 optimizations disabled

o Same production cuts (default 1mm)

o Confirmed intra-simulation reproducibility in single-thread mode
(run GV twice on same input, get same output)

o Found slightly better agreement with magnetic field disabled
→ in single thread mode, but not multithread mode?

 Fixed main culprit: data race in CMS Geant4 application (affected
Watchers used for scoring demo , not sensitive detectors used in prod)

• Latest validation results and initial performance results follow

Testing GeantV in CMSSW

5

• Generate 1000 events of single electrons at 100 GeV with a fixed direction
(η = 1.0, φ = 1.1)

1. Run Geant4 and GeantV setup on single thread with same input file, B = 0
and compare GeantV against Geant4

2. Compare GeantV against Geant4 for 100 GeV electrons with B = 3.8 Tesla

3. Generate 1000 events of single electrons at 2, 10 and 50 GeV at a fixed
direction and compare GeantV against Geant4 with magnetic field off and
on at 3.8 Tesla

4. Generate 100 events of 50 GeV double electrons at 50 GeV with -3 < η < 3
and 0 < φ < 2π, run in multi-threaded mode (4 threads), B = 0 Tesla

5. Repeat multi-threaded test with B = 3.8 Tesla

Physics Validation

6

• The number of entries differ by 0.3% (7.4%) in EB (EE) with the electrons
going in the barrel

• The means differ by 0.2% for EB and 2.5% for EE

1. Energy Deposits for 100 GeV e- (B=0)

7

• Means differ by 0.07% for EB and 0.13% for EE with the electrons going in
the barrel

• GeantV and Geant4 applications provide roughly the same distributions

1. Hit Time for 100 GeV e- (B=0)

8

• The number of entries differ by 0.4% (23.3%) in EB (HB) with the electrons
going in the barrel

• The means differ by 2.2% for EB and 8.8% for HB

2. Energy Deposits for 100 GeV e- (B=3.8)

9

• The means differ by 0.03% for EB and 1.15% for EE with the electrons
going in the barrel

• There is a small difference in the physics results of GeantV and Geant4
applications in the presence of B-field

2. Hit Time for 100 GeV e- (B=3.8)

10

• Number of hits is the same for all 3 energies. The differences are at the level
of 0.1/0.3/0.2% for 2, 10 and 50 GeV

• The means differ by 0.8/0.6/0.4% at the three energies

3. Energy Deposit with B = 0
2 GeV Electrons 10 GeV Electrons 50 GeV Electrons

11

• Number of hits is the same for all 3 energies. The differences are at the level
of 27.7/6.7/1.3% for 2, 10 and 50 GeV

• The means differ by 0.5/1.6/1.7% at the three energies

3. Energy Deposit with B = 3.8
2 GeV Electrons 10 GeV Electrons 50 GeV Electrons

12

• Events are generated with 50 GeV electrons having random direction within
a limited range of η and φ

• The agreement is pretty good in the B=0 option for both # of hits as well as
in the shape of the distributions for EB and EE

4. Energy Deposit with B = 0, MT

13

• Hit time distributions are also in good agreement for the B=0 option in EB
as well as in EE

4. Hit Times with B = 0, MT

14

• Same events (50 GeV electrons, random direction within a limited range of
η and φ) are simulated in a uniform B-field option of 3.8 Tesla

• The agreement is still good for both # of hits as well as in the shape of the
distributions for EB and EE

5. Energy Deposit with B = 3.8, MT

15

• Hit time distributions are also in reasonable agreement for the B = 3.8 Tesla
option in EB as well as in EE

5. Hit Times with B = 3.8, MT

16

• Compare GeantV and Geant4 CPU usage simulating exact same generated
1000 events (2 electrons w/ E = 50 GeV, random directions)

• Running on FermiCloud VM with:
o Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz
o sse4.2 instructions

• Keep other threads busy when running MT tests
• Track memory with CMSSW TimeMemoryInfo tool
o Measures VSIZE, RSS per event
o Also measures wall clock time → calculate speedup

• Track CPU usage with igprof (measures all threads together):
o total = other + geant + output
o other = initialization, overhead, etc.
o geant = event loop in Geant4 or GeantV code
 scoring = subset of event loop in user code

o output = writing hits to CMSSW EDM ROOT file

Performance Tests

17

• G4 has better scaling w/ # threads than GV (expected?)

Time Performance

18

• GV close to factor of 2 better than G4 in total CPU usage

o ~3× in event loop, ~2× in scoring, similar in output, worse in initialization

CPU Performance

19

• Expected GV to use more memory than G4
• True for 1 thread, but not for MT → dominated by output?
• Some fluctuations observed in GV, to be investigated
• Memory overhead from duplicated ScoringClass instances can be optimized

Memory Performance

20

 Demonstrator of first “full” GeantV-CMSSW integration is ready

o Major remaining item: magnetic field map

• “Rosetta stone” mostly contained in StepWrapper and VolumeWrapper:

• Physics validation nearly complete

o Gaining confidence that G4 and GV are simulating the same things

• Now starting to test computing performance

 Promising early results!

Outlook

Geant4 GeantV
StepWrapper StepWrapper
VolumeWrapper VolumeWrapper

21

https://github.com/kpedro88/SimGVCore/blob/SensDetTemplateWrapper/CaloG4/interface/StepWrapper.h
https://github.com/kpedro88/SimGVCore/blob/SensDetTemplateWrapper/CaloGV/interface/StepWrapper.h
https://github.com/kpedro88/SimGVCore/blob/SensDetTemplateWrapper/CaloG4/interface/VolumeWrapper.h
https://github.com/kpedro88/SimGVCore/blob/SensDetTemplateWrapper/CaloGV/interface/VolumeWrapper.h

Backup

 Goal: use exact same SD code for Geant4 and GeantV
• Problem: totally incompatible APIs
o Example: G4Step::GetTotalEnergyDeposit() vs. geant::Track::Edep()

• Solution: template wrapper with unified interface
e.g. StepWrapper<T>::getEnergyDeposit()
o SD code only calls the wrapper
o Wrapper stores pointer to T (minimize overhead)

• Current wrappers:
o BeginRun
o BeginEvent
o Step
o Volume
o EndEvent
o EndRun

Template Wrappers

23

• Collect Geant4/GeantV-specific types and wrappers into unified Traits class:
struct G4Traits {
typedef G4Step Step;
typedef sim::StepWrapper<Step> StepWrapper;

};
struct GVTraits {
typedef geant::Track Step;
typedef sim::StepWrapper<Step> StepWrapper;

};

• Provides standardized typenames to be used by SD class:
template <class Traits> class CaloSteppingActionT : …,
public Observer<const typename Traits::Step *>

{
public:
void update(const Step * step) override {

update(StepWrapper(step)); }
private:
// subordinate functions with unified interfaces
void update(const StepWrapper& step);

};

Traits

24

Organization
CaloG4

CaloSteppingAction (.h, .cc)

Old

Calo
CaloSteppingActionT (.h, .icc)

Wrappers (.h)

CaloG4
CaloSteppingAction (.h, .cc)
G4 Wrappers (.h), Traits (.h)

CaloGV
CaloSteppingAction (.h, .icc)
GV Wrappers (.h), Traits (.h)

New

• SD interface & implementation in Calo (.icc file), w/ unimplemented
wrapper interfaces

• G4/GV wrapper specializations in CaloG4/GV, w/ specific instances of
templated SD class → isolate dependencies

25

• Two approaches to scoring in CMSSW:

1. Inherit from G4VSensitiveDetector (Geant4 class)
→ automatically initialized for geometry volumes marked as sensitive

2. Inherit from SimWatcher (CMSSW standalone class)
→ need to specify names of watched geometry volumes

• CaloSteppingAction is a demonstrator class w/ approach 2

o Simplified version of ECAL and HCAL scoring

o Less dependent on Geant4 interfaces

• “Real” SD code uses approach 1

 More work to extract Geant4 dependencies will be necessary

o Some SD class methods directly from Geant4 (via inheritance)

o Need to mock up Geant4-esque interfaces w/ dummy classes for GeantV

Scoring Approaches

26

	Status of GeantV Integration�in CMSSW
	GeantV Integration in CMSSW
	Geant4 vs. GeantV Scoring
	GeantV Data Aggregation
	Testing GeantV in CMSSW
	Physics Validation
	1. Energy Deposits for 100 GeV e- (B=0)
	1. Hit Time for 100 GeV e- (B=0)
	2. Energy Deposits for 100 GeV e- (B=3.8)
	2. Hit Time for 100 GeV e- (B=3.8)
	3. Energy Deposit with B = 0
	3. Energy Deposit with B = 3.8
	4. Energy Deposit with B = 0, MT
	4. Hit Times with B = 0, MT
	5. Energy Deposit with B = 3.8, MT
	5. Hit Times with B = 3.8, MT
	Performance Tests
	Time Performance
	CPU Performance
	Memory Performance
	Outlook
	Backup
	Template Wrappers
	Traits
	Organization
	Scoring Approaches

