Discussion on trigger requirements for nucleon decay

September 4, 2019

DAQ Physics Performance WG

- What selection criteria are used in the anticipated NDK and atmospheric analyses in terms of fiducial volume, reconstructed energy, and PID or other event-quality cuts? This will tell us how our definition of high efficiency maps onto your working group's.
- 2. How does reconstructed energy map to "visible energy" with existing reconstruction---the trigger will be unlikely to do online reconstruction of events and probably we would not want it to, because we'd like the trigger to be simple.
- 3. What events are lost entirely (if any) by PID and quality cuts, and are these events that are ultimately "useless", or do we need to trigger on them?
- 4. How well does the trigger efficiency curve for your events of interest need to be understood, in terms of its impact on physics uncertainties? Clearly this is not an easily-answerable question at this point, but just getting people thinking about this would be worthwhile.
- 5. How many secondaries are critical to keep (e.g., neutrons) and how far from the interaction or decay do they typically travel?

Nucleon decay

(Thoughts from Aaron...)

- p->nu K, K-> mu -> e
- At least 2 reconstructed tracks, identify kaon by dE/dx and muon by well-defined momentum (237 MeV/c)
- Total visible energy ~100 MeV
- Impossible events: low-energy kaons that can't be tracked
 - Our "optimistic" assumption was 2 cm which corresponds to ~20 MeV?
- So far we are assuming photon detectors give us t0 perfectly
- Also assuming no cosmogenic background
- Neutrons are not an issue
- Cosmogenic background: how far can a K0 travel into the detector to mimic signal and what is visible energy of these events?

Other physics

- N-nbar
 - vertex with several light hadrons with energy twice the nucleon mass and zero net momentum
 - Requirements on secondaries? (FSI induced neutrons)
- Atmospheric neutrinos
 - Requirements should be similar to beam neutrinos

