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Asymptotic Safety

Weinberg proposed idea that gravity might be Asymptotically Safe in 1976
[Erice Subnucl. Phys. 1976:1]. This scenario would entail:

I Gravity is effectively renormalizable when formulated non-perturbatively.
Problem lies with perturbation theory, not general relativity.

I In a Euclidean lattice formulation the fixed point would show up as a
continuous phase transition point, the approach to which would define a
continuum limit.



Lattice gravity

I Euclidean dynamical triangulations (EDT) is a lattice formulation that
was introduced in the ’90’s. [Ambjorn, Carfora, and Marzuoli, The
geometry of dynamical triangulations, Springer, Berlin, 1997] Lattice
geometries are approximated by triangles with fixed edge lengths. The
dynamics is contained in the connectivity of the triangles, which can be
added or deleted.



Einstein Hilbert Action

Continuum Euclidean path-integral:

Z =
∫

Dg e−S[g], (1)

S[gµν ] =−k
2

∫
dd x

√
det g(R−2Λ), (2)

where k = 1/(8πGN).



Discrete action

Discrete Euclidean (Regge) action is

SE = k ∑2V2δ −λ ∑V4, (3)

where δ = 2π−∑θ is the deficit angle around a triangular face, Vi is the
volume of an i-simplex, and λ = kΛ. Can show that
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where Ni is the total number of i-simplices in the lattice. Conveniently written
as

SE =−κ2N2 + κ4N4. (5)



Measure term

Continuum calculations suggest a form for the measure

Z =
∫

Dg ∏
x

√
det g

β
e−S[g], (6)

Going to the discretized theory, we have

∏
x

√
det g

β
→

N2

∏
j=1

O(tj )
β , (7)

where O(tj ) is the order of triangle tj , i.e. the number of 4-simplices to which
a triangle belongs. Can incorporate this term in the action by taking
exponential of the log. β is a free parameter in simulations. Can interpret as
an ultra-local measure term, since it looks like a product over local 4-volumes.



New Idea

Revisiting the EDT approach because other formulations (renormalization
group and other lattice approaches) suggest that gravity is asymptotically
safe.

New(-ish) work done in collaboration with past students and postdoc: JL, S.
Bassler, D. Coumbe, Daping Du, J. Neelakanta, (arXiv:1604.02745).

I Key new idea that inspired this study is that a fine-tuning of bare
parameters in EDT is necessary to recover the correct continuum limit.
This is in analogy to using Wilson fermions in lattice gauge theory to
study quantum chromodynamics (QCD) with light or massless quarks.
Striking similarities are seen.

I Previous work did not implement this fine-tuning, leading to negative
results.



Main problems to overcome

I Must show recovery of semiclassical physics in 4 dimensions.

I Must show existence of continuum limit at continuous phase transition.



Simulations

Methods for doing these simulations were introduced in the 90’s. We wrote
new code from scratch.

I The Metropolis Algorithm is implemented using a set of local update
moves.



Phase diagram EDT vs. QCD with Wilson fermions
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Three volume distribution
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Three volume distribution
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Diffusion process and the spectral dimension

Spectral dimension is defined by a diffusion process

DS(σ) =−2
d log P(σ)

d log σ
, (8)

where σ is the diffusion time step on the lattice, and P(σ) is the return
probability, i.e. the probability of being back where you started in a random
walk after σ steps.



Spectral Dimension

χ2/dof=1.25, p-value=17%
DS(∞) = 3.090±0.041, DS(0) = 1.484±0.021
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Infinite volume, continuum extrapolation

χ2/dof=0.52, p-value=59%
DS(∞) = 3.94±0.16
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What does it mean?

Interesting results that suggest that the correct classical result might be
restored in the continuum, large-volume limit. Analogy with Wilson fermions
that inspired this study may tell us more.

We have to perform a fine-tuning, and long distance physics gets messed up
by discretization effects. These things happen when the regulator breaks a
symmetry of the quantum theory. In this case, natural to identify the
symmetry as continuum diffeomorphism invariance.



Relative lattice spacing
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Causal dynamical triangulations

Euclidean de Sitter space solution from arXiv:1604.02745 (Ambjorn et al.)



Semiclassical fluctuations

Looking at quantum fluctuations about de Sitter space allow one to fix
MPlanck. A simple minisuperspace model fits the CDT data well. Ambjorn et
al. (arXiv:1604.02745) look at the correlator

C(i, j) =
1
K ∑

k
(N(k)

3 (i)−N3(i))(N(k)
3 (j)−N3(j)), (9)

where one can show that C(i, j) ∝ GN .

The size of these quantum fluctuations compared to the width of the de Sitter
universe can be used to fix the lattice spacing.



Causal dynamical triangulations
Semiclassical fluctuations about de Sitter, arXiv:1604.02745 (Ambjorn et al.)



Semiclassical fluctuations from EDT
8k, β =−0.8
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Finite volume effects
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Relative lattice spacing
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Adding matter

We have looked at adding both scalar and fermion matter fields.

Adding scalars and U(1) gauge fields dynamically (unquenched) was done
already over twenty years ago.

For now we are revisiting things in the quenched approximation, where matter
loops are neglected, since this allows us to reuse existing lattice ensembles.



Scalar field

In the continuum we can add to the Einstein Hilbert action the action for the
scalar field:

S[g,φ ] =
∫

d4x
√

g

(
1
2

gµν
∂µ φ∂ν φ +

1
2

m2
0φ

2
)
, (10)

Lattice discretization is straightforward. Looking at scalar propagators on
quenched configurations. This is being done by Judah Unmuth-Yockey.



Scalar propagator

0 5 10 15 20 25 30 35 40

r

10-2

10-1

100

101

G
(r

)

4k, β=0, m0 =0.05

20 origins

5 origins

G(r) = (−�+ m2
0)−1

0r (11)



Correlator fit
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Functional form of the correlator is B′ exp(Ar)/rC .

We plot f (r) = A + (B + C log(r))/r .



Mass dependence
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The shift symmetry of the action ensures that mr → 0 as m0→ 0.



Binding energy

We follow the work of de Bakker and Smit, Nucl.Phys. B484 (1997) 476.
They looked at gravitational binding on EDT near the transition, at what was
effectively a single coarse lattice spacing. We revisit this work with our
current understanding and ensembles.

We are looking to calculate the binding energy:

Eb ≡ 2m−M =
1
4

G2m5. (12)

This is just the familiar energy of the hydrogen atom, α2mred/2 but with
α → Gm2 and mred→m/2. Presumably applies in the non-relativistic limit.

Also worth noting that we can calculate this for different dimensions. In three
dimensions, Eb ∝ m2.



Binding Energy
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Binding Energy (finer lattice)
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Power law mass dependence
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Eb = A(m−B)C + D (13)

Note that B and D should be zero in the continuum, infinite volume limit. This
appears to be the case. C should be 5, A is proportional to Newton’s
constant squared.



Power law mass dependence (finer lattice)
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Exponent result
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Sensitive dependence of α on d makes it difficult to extrapolate to d = 4,
α = 5.



Conclusions

Two different ways to compute the relative lattice spacing. One makes
contact with a minisuperspace model of cosmology and involves fluctuations
around de Sitter space. The other involves nonperturbative short distance
effects (from a diffusion process) that are not captured in the effective theory.
Evidence that non-perturbative, strongly coupled physics is incorporated in
lattice theory, not a lattice artifact.

Can compute matter interactions. Attractive force is found. Extrapolation to
the infinite volume, continuum limit expected to have large
finite-size/discretization effects. Bigger, finer lattices needed. Methodology
for studying Newton’s Law has been developed. Current result is between the
d = 3 and d = 4 world.

Unphysical behavior gets smaller as the continuum limit is approached for a
number of different types of observables (also true when we look at fermions
propagating on the same ensembles). Evidence for a continuum limit.
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Visualization of geometries

Coarser to finer, left to right, top to bottom.


