The History of Lattice QCD

Akira Ukawa

Professor Emeritus and Fellow
Center for Computational Sciences, University of Tsukuba
Director
Center for World Premier International Research Center
Initiative
JSPS

* The beginning
* Exploring the new frontier
\star Building the instrument
$\%$ Getting nimble with quarks
\star Putting them all together

The beginning

Wilson 1974

- Preprint CLNS-262 (February 1974)
- Gauge theory on a space-time lattice
- "Wilson loop" as order parameter
- Confinement for large values of coupling $g_{0}^{2} \gg 1$

Early reception

wpi

- The paper attracted much interest, but in fact, there was little progress in the first 5 years.....
- strong-coupling expansion of hadron masses (Kogut et al) did not lead to anywhere
- "theoretical ideas" like "duality", "monopole condensation" ('tHooft, Polyakov ...) attracted more interest

Creutz 1979

■ Preprint-79-0919(BNL)(September 1979)
■ Computer evaluation of Wilson loop (VAX 11/780!)
■ Non-zero string tension for smaller values of the coupling consistent with asymptotic freedom

Earlier for Z(2) :Creutz-Jacobs-Rebbi, PRL 42, 1390 (1979) Also for S(2):Wilson, Cargese Summer Institute (1979)

VOLUME 21, NUMBER 8
15 APR

Monte Carlo study of quantized SU(2) gauge theory

Michael Creutz

Department of Physics, Brookhaven National Laboratory, Upton, New York 11973
(Received 24 October 1979)
: Carlo techniques, we evaluate path integrals for pure $\operatorname{SU}(2)$ gauge fields. Wilson's procedure on a lattice of up to 10^{4} sites controls ultraviolet divergences. Our renormalization ased on confinement, is to hold fixed the string tension, the coefficient of the asymptotic I between sources in the fundamental representation of the gauge group. Upon reducing the erve a logarithmic decrease of the bare coupling constant in a manner consistent with the normalization-group prediction. This supports the coexistence of confinement and asymptotic antized non-Abelian gauge fields.

Hamber-Parisi, Weingarten 1981
 WPI

■ Computer evaluation of hadron masses (MeV) (VAX11/780) It was a feat totally unthinkable in traditional field theory

Numerical Estimates of Hadronic Masses in a Pure SU(3) Gauge Theory
H. Hamber

Department of Physics, Brookhaven National Laboratory, Upton, New York 11973

and

G. Parisi
stituto Nazionale di Fisica Nucleare, Frascati, Italy, and Istituto di Fisica della Facoltà di Ingegne
Rome, Italy
(Received 2 October 1981)

MONTE CARLO EVALUATION OF HADRON MASSES IN LATTICE GAUGE THEORIES WITH FERMIONS

Don WEINGARTEN
Physics Department, Indiana University, Bloomington, IN 47405, USA
Received 13 . October 1981

Exploring the new frontier

We can understand all those puzzles of strong interactions!

- Confinement
- Spectroscopy of hadrons
- Strong interactions at high-temperature
- Weak interactions of hadrons
- Heavy quark physics

wpi

Confinement for $\infty \geq g_{0}^{2} \geq 0$

- RG running of the coupling $g^{2}(q)$
- Monte Carlo studies following up on K. Wilson (1979)
- Refined into the step-scaling method in the 90's

R. Gupta et al PLB211, 132 (1988)

M. Luescher et al, NPB413, 481 (1994) - 9 -

Spectroscopy of hadrons

- Ground state hadron masses as a function of quark mass

- Experimentally unkown states, e.g.,
- H dibaryon
- Mackenzie-Thacker (no 1985)/Iwasaki et al (yes 1988) (still undecided today)
- Pure glue spectrum,

wpi

High temperatures

- Deconfinement in pure gluon system?
- Hagedorn's limiting temperature (1965) $\quad T<T_{c} \approx m_{\pi}$
- Theoretical prediction by Polyakov(1978)/Susskind(1979)
- First Monte Carlo in 1980 and rapid development in '80s

MacLerran-Svetitsky, PL98B, 195 (1981)
Kuti et al PL98B, 199(1981)

Gottlieb et al PRL55, 1958 (1985)

Weak interaction of hadrons

- Puzzles from the 60's such as
- $\Delta I=1 / 2$ rule of $K \rightarrow 2 \pi$ decays
- CP violation and $\varepsilon^{\prime} / \varepsilon$
- Possibilities of lattice elucidation pointed out in 1984

ME 55, NUMBER 25 PHYSICAL REVIEW LETTERS

WEAK INTERACTIONS ON THE LATTICE

N. CABIBBO

MBER 14
PHYSICAL REVIEW LETTERS Illinois 60439
i Fisica, II Università di Roma "Tor Vergata", INFN, Sezione ‘ G. MARTINELLI

INFN, Laboratori Nazionali di Frascati, Frascati, Italy
R. PETRONZIO ${ }^{1}$

CERN, Geneva, Switzerland
Received 5 December 1983
(Revised 16 April 1984)

Calculation of Weak Transitions in Lattice QCD

Richard C. Brower and Guillermo Maturana
Institute for Particle Physics, University of California, Santa Cruz, California 95064
and
M. Belén Gavela ${ }^{(a)}$

Department of Physics, Brandeis University, Waltham, Massachusetts 02254
and
Rajan Gupta
Department of Physics, Northeastern University, Boston, Massachusetts 02115
(Received 23 February 1984)

Heavy quarks and CKM

- Kobayashi-Maskawa 1973
- Experimental discoveries: $J / \psi 1974 \Upsilon 1977$
- Lattice studies began in the late 80 's

HEAVY QUARKS ON THE LATTICE
e. eichten Static approximation

Fermi National Accelerator Laboratory*. P.O. Box 500, Batavia, IL 60510
from Proceedings of Lattice 87 at Seillac

Abstract

ating heavy quarks is applied to lattice Q.C.D. for heavy Idition $m_{H} a>1$. Explicit applications to the measurement C neters are presented. Numerical results for B mesons are ol

EFFECTIVE LAGRANGIANS FOR SIMULATING OF HEAVY QUARK SYSTEMS
G.P. Lepage $\quad N R Q C D$

Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14853, U.S.A.; and D.A.M.T.P., University of Cambridge, Silver Street, Cambridge CB3 9EW, U.K.
B. A. Thacker

Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14853, U.S.A

How initial results looked in ‘89-'90 WPI

■ Heavy-light decay constant

- $K \rightarrow \pi \pi$ decay amplitude

From Eichten's review at Lattice 1990
From Sharpe's review at Lattice 1989

From S. Sharpe's review at Lattice 89

What?	Why?	Who? ${ }^{6}$	Level
Nucleon matrix elements			
$f_{\pi} / m_{N}, f_{K} / f_{\pi}$	check	MANY	2
Axial vector matrix elements: $\boldsymbol{g}_{\boldsymbol{A}}$.	check	Sömmer ${ }^{7}$	2
EM form factors: $G_{M}\left(q^{2}\right), \ldots$	sheck	Wilcox, Draper/Liu 8	2
Structure functions	check	Rossi ${ }^{9}$	1
Neutron Electric Dipole Moment	measure $\theta_{Q C D}$	Goksch 10	1
Heavy-light mesons			
$f_{D}, f_{B}, B_{D}, B_{B}$	$\bar{D} D$ and $\bar{B} B$ mixing	Eichten, Martinelli ${ }^{11}$	1-2
$D \rightarrow K e \nu,(B \rightarrow \pi e \nu), \ldots$	measure $V_{c s}, V_{u b}$	El Khadra, 12 Sachrajda 13	1-2
$D \rightarrow K \pi$	check	Sachrajda, Simone	1
K decay and mixing amplitudes			
B_{K}	extract δ from ϵ	Bernard, Kilcup, ${ }^{14}$ Martinelli	3
$K \rightarrow \pi \pi(\Delta I=1 / 2$ rule $)$	check	Bernard, Kilcup, Martinelli	2
ϵ^{\prime}	over-determine δ	Kilcup, Bernard	2

Table 1: Work done on weak matrix elements in the year preceding September 1989

- Level 1: exploratory, setting up methods, resolve problems of principle
- Level 2: larger scale calculation, reasonably small errors (10-20\%)
- Level 3: reliable quenched calculation with small errors

Building the instrument

Clearly people needed (much) more computing power.....

QCD and parallel computing

Space-time continuum

- QCD is a local field theory; only nearest neighbor interactions
- Computation on each CPU and communication between nearest neighbor CPUs, scalable to "infinite" lattice size
- An ideal case of massively parallel computation!

Microprocessors in the 70's

4 bit \$60/chip

- 1972 Intel $8008 \quad 8$ bit \$120
- 1974 Intel 80808 bit
- 1974 Motorola 68008 bit \$360
- 1978 Intel 808616 bit \$320
- 1979 Motorola 6800032 bit

In the 70's, the key element for a parallel system became affordable for a reasonable price even for academics!

Parallel QCD machines in the 80's

CPU

Columbia	1984	Christ-Terrano	PDP11	TRW 16MPY	
Columbia-16	1985	Christ et al	Intel 80286	TRW	$0.25 G F$
APE1	1987	Cabibbo-Parisi	$3081 / \mathrm{E}$	Weitek	1 GF
Columbia-64	1987	Christ et al	Intel 80286	Weitek	1 GF
Columbia-256	1988	Christ et al	M68020	Weitek 3332	16GF
ACPMAPS	1991	Mackenzie et al	micro VAX	Weitek 8032	5 GF
QCDPAX	1989	Iwasaki-Hoshino	M68020	LSI-logic 64133	14GF
GF11	1992	Weingarten	PC/AT	Weitek 1032/33	11GF

- Parallel array of (commodity CPU + custom made FPU)
- More or less hand-made by academics

■ Overtook vector supercomputers in speed in the late 80's

Order of the deconfining phase transition

wpi

- Columbia Group (N. Christ et al 1988): physical quantities has a jump, so first-order
F. R. Brown et al, PRL61, 2058 (1988)
- APE Group (G. Parisi et al 1988): correlation length increases with system size, so second order P. Bacilieri et al, PRL61, 1545 (1988)

Which one is right?

- First-order making full use of finite-size scaling theory:
- Susceptibility peak grows linearly with spatial volume
- Correlation length, though large, stays finite

Fukugita et al, PRL63, 1768 (1989)

Susceptibility peak scaling

Correlation length

WPI

Fundamental constants of QCD

- QCD coupling

El-Kahdra et al, PRL69, 729 (1992)
Energy scale from charmonium spectrum in quenched lattice QCD

- Quark masses

RPP 1996

$$
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}+\right)
$$

Mass $m=2$ to $8 \mathrm{MeV}^{[a]}$
$m_{u} / m_{d}=0.25$ to 0.70
Charge $=\frac{2}{3}$ e $\quad I_{z}=+\frac{1}{2}$

d.	$I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}{ }^{+}\right)$
Mass $m=5$ to $15 \mathrm{MeV}[\mathrm{d}]$	Charge $=-\frac{1}{3}$ e $\quad I_{z}=-\frac{1}{2}$
$m_{s} / m_{d}=17$ to 25	

$s \quad 1\left(J^{P}\right)=0\left(\frac{1}{2}^{+}\right)$
Mass $m=100$ to $300 \mathrm{MeV}[\mathrm{a}] \quad$ Charge $=-\frac{1}{3}$ e Strangeness $=-1$ $\left(m_{s}-\left(m_{u}+m_{d}\right) / 2\right) /\left(m_{d}-m_{u}\right)=34$ to 51

$$
\begin{aligned}
& \bar{m}_{u d}(2 \mathrm{GeV})^{N_{f}=0}=3.6(6) \mathrm{MeV} \\
& \bar{m}_{s}(2 \mathrm{GeV})^{N_{f}=0}=95(16) \mathrm{MeV}
\end{aligned}
$$

Gough et al, PRL79, 1622 (1997)
Both simulations done on ACPMAPS

"Lattice QCD on Parallel Computers"

vvット
10-15 March 1997, CCP, Tsukuba, Japan

QCD machines in the 90 's and later

wpi

			CPU	vendor	peak
CP-PACS	1996	Iwasaki et al	PA-RISC	Hitachi	$0.6 T F$
QCDSP	1998	Christ et al	TI DSP	--	$0.6 T F$
APEmille	2000	APE Collab.	custom	--	$0.8 T F$
QCDOC	2005	Christ et al	PPC-based	IBM(BG/L)	10TF
PACS-CS	2006	Ukawa et al	Xeon	Hitachi	14TF
QCDCQ	2011	Christ et al	PPC-based	IBM(BG/Q)	$0.5 P F$
QPACE	2012	Wettig et al	PowerXCell	--	0.2 PF

■ Big success continued, with increasing involvement of big vendors (Hitachi, IBM) to secure necessary technology

- Gradual loss of control of physicists as the HPC vendors embraced the parallel paradigm

Lattice QCD machines and

JPN project machinesNWT
CP-PACS
Earth Simulator
K
Vector machines

- CRAY/CDC
- Hitachi/Fuiitsu/NEC

Vector parallel machines

- Fujitsu
- NEC
- rRAY

Parallel machines

- CRAY
- IBM
\diamond Intel
\triangle TMC
- other
- Fujitsu
- Hitschi
- NEC

QCD machines
D Columbia
田 Tsukuba

- APE
Δ GF11(IBM)

Advances in the 90's

wpi

- Quenched hadron spectrum (1997)
- Determination with a few \% error revealed a definite discrepancy with experiment
- Signaled the end of "quenched" era
- Big shift to full QCD
(late 90's to early 00's)
- MILC (staggered)
- CP-PACS (Wilson-clover)
- RBRC (domain-wall)

■

An interlude

Building the community (I)

- Lattice conference (LATTICE XX) : the meeting place
- Started in 1984 and being held every year
- A few dozen of review talks + hundreds of parallel talks (everyone talks!) style quickly established
- Rotates among USA-Europe-Asia
- LatticeNews mailing list: the communication tool
- latticejobs started in 1994
- latticeannounce started in 2001/renamed as LatticeNews in 2004
- Created and maintained by S. Gottlieb
- Current registrations: latticejobs 636 LatticeNews 839
- arXiv (hep-lat)
- Started in 1992
wpil

Lattice XX participants and talks

Building the

\#submissions to LatticeNews/year

- Lattice conference (LATTIC
- Started in 1984 and being hel 10
- A few dozen of review talks + talks!) style quickly establisheı
- Rotates among USA-Europe-ヶ

- LatticeNews mailing list: the communication tool
- latticejobs started in 1994
- latticeannounce started in 2001/renamed as LatticeNews in 2004
- Created and maintained by S. Gottlieb
- Current registrations: latticejobs 636 LatticeNews 839
- arXiv (hep-lat)
- Started in 1992

Lattice XX and hep-lat

Building the community (II)

- International Lattice Data Grid (ILDG):sharing the resources
- Started in 2002
- Federation of regional configuration repositories
- NERSC(USA)/LGT(Europe)/JLDG(Japan)
- FLAG (Flavor Lattice Averaging Group):outreaching the results
- Critical review and summary of lattice QCD results relevant for experiments
- Started in 2007 in Europe, now a global effort across Europe, America, Asia
■ Publication every few years: 2011, 2014, 2017, 2019; well cited: 363, 570, 528, 94 (inspire Nov. 2019)

Kenneth G. Wilson Award

for Excellence in Lattice Field Theory

2011 Xu Feng, Marcus Petschlies, Karl Jansen, Dru B. Renner
2012 T. Blum, P.A. Boyle, N.H. Christ, N. Garron, E. Goode, T. Izubuchi, C. Jung, C. Kelly, C. Lehner, M. Lightman, Q. Liu, A.T. Lytle, R.D. Mawhinney, C.T. Sachrajda, A. Soni, C. Sturm

2013 André Walker-Loud
2014 Gergely Endrödi
2015 Stefan Meinel
2016 Antonin Portelli
2017 Raul Briceno
2018 Zohreh Davoudi
2019 Luchang Jin

A time of crisis

■ Eastern Japan Great Earth Quake 2011.3.11

- The earthquake

14:46 JST on 11 March

- The tsunamis
- The Nuclear Power Plant

15:00-16:00 on 11 March

- No serious damage to supercomputers for lattice, but they were likely to be down for a half year or more due to power shortage, stopping research in serious ways

wpi A case of international support

- Generous offer of international support
- 3 April mail from Paul Mackenzie for USQCD
- 4 April mail from Nick Samios for RBRC
- May 2011 to March 20126 projects in Japan benefited from the
- March 2012
- end of the projects and report to USQCD and RBRC

Date: Sun, 3 Apr 2011 17:36:23-0500
From: paul mackenzie mackenzie@fnal.gov
To: Akira Ukawa ukawa@ccs.tsukuba.ac.jp Subject: lattice supercomputing in Japan in the

Dear Akira,
Members of the USQCD Executive Commit we would like to find a way to be of help to you electricity has been restored, but facilities which are still off, and will remain so for some time. If of our cluster resources would be heldful for Jan

Date: Thu, 7 Apr 2011 10:36:01-0400
From: "Samios, Nicholas P" samios@bnl.gov
To: ukawa@ccs.tsukuba.ac.jp
Cc: "Taku Izubuchi" izubuchi@quark.phy.bnl.gov
"Norman Christ" nhc@phys.columbia.edu
Subject: computing

Dear Akira,

If useful RBRC is setting aside 4 racks of the Q' comblex for use bv anv interested Jananese nhvsicis

Getting nimble with quarks

wpi

Quarks posed many headaches!

- Light quarks $\quad q(x) \rightarrow e^{i \theta r_{s}} q(x)$
- Chiral symmetry, while playing a fundamental role in the strong interactions, is incompatible with lattice under rather general conditions (Nielsen-Ninomiya 1981)
- Heavy quarks $\quad m_{h} a>1$
- Large quarks masses of charm and bottom leads to serious distortions if simulated on lattices with coarse lattice spacings
- Computation $\int \prod_{n} d \bar{q}_{n} d q_{n} e^{-\sum \bar{q}_{n} D_{n m}\left(U q_{m}\right.}=\operatorname{det} D(U)=\int \prod_{n} d \bar{\phi}_{n} d \phi_{n} e^{-\sum \bar{\phi}_{n}\left(\frac{1}{n, m}(U)\right)_{m m} \phi_{m}}$
- Sea quark effects requires computation of the determinant or inverse of lattice Dirac operator, whose cost blows up for light quarks

$$
\text { computational } \operatorname{cost}\left(D^{-1}\right) \propto \frac{1}{m_{q} a} \times\left(\frac{L}{a}\right)^{4}
$$

Chiral symmetry

- Condition for exact (but modified) chiral symmetry

$$
\gamma_{5} D+D \gamma_{5}=a D \gamma_{5} D \quad \text { Ginsparg-Wilson ‘82 }
$$

- It took a full decade before the explicit formalisms were found:
- Domain-wall formalism
- Overlap formalism
- Perfect action

Kaplan 1992
Narayanan-Neuberger 1995
Hasenfratz-Niedermeyer 1998

- Simulations started in late '90s and early '00s
- Christ et al, RBC collaboration
- KEK group, JLQCD collaboration
domain-wall
overlap
- Fine-tuning of conventional fermions

Wilson formalism (Wilson 1975) / Staggered formalism (Susskind 1977)

- Add terms reducing $\mathrm{O}\left(\mathrm{a}^{\mathrm{n}}\right)$ effects (Wilson ‘79, Symanzik ‘83)
- Smearing of gauge links (APE ‘85, HYP ‘99, STOUT ‘02)
- Complicated but highly improved actions e.g., HISQ '07 used today

Heavy quarks

- Static approximation
- Systematic expansion in $1 / m_{h} a$
- NRQCD
- Non-relativistic reformulation of QCD by integrating out all momenta higher than the heavy quark mass M
- Systematic expansion in powers of heavy quark velocity

$$
L_{\text {NRCCD }}=\psi^{\dagger}\left(i D_{t}-\frac{D^{2}}{2 M}\right) \psi+c_{1} \frac{g}{2 M} \psi^{\dagger} \vec{\sigma} \cdot \vec{B} \psi+\cdots
$$

El-Kahdra et al, PRD55, 3933 (1997) also,
■ Relativistic heavy quark formalism Aoki et al, PTP 109, 383 (2003)
Christ et al, PRD 76, 074505 (2007)

- Systematic reformulation of action so as to reduce effects of $m_{h} a>1$

$$
S=\sum_{n, n} \bar{q}_{n} D_{\text {Wison }}(U)_{n, m} q_{m}+\frac{i}{2} c_{B} \kappa_{s} \sum_{n} \bar{q}_{n} \varepsilon_{i j k} \sigma_{i j} B_{n, k} q_{n}+i c_{E} \kappa_{s} \sum_{n} \bar{q}_{n} \sigma_{0 i} E_{n, i} q_{n}+\cdots
$$

Cost of dynamical quark simulations

- Panel discussion at Lattice 2001 Berlin
- Panelists: C. Bernard, N. Christ, S. Gottlieb, K. Jansen, R.Kenway(chair), T. Lippert, M. Luescher, P. Mackenzie, F. Niedermeyer, S. Sharpe, F.

Tripicione, A. Ukawa, H. Wittig

Computational cost blows up toward the physical point:

$$
\operatorname{cost} \propto \frac{L^{5}}{m_{q}^{3} a^{8}}
$$

$$
\text { CP-PACS/JLQCD } 2001
$$

wpi

Removing the critical slowing down

- Cost of dynamical full QCD calculation

$$
\operatorname{cost} \propto N_{\text {inv }} \times \frac{1}{\delta \tau} \times\left(\frac{L}{a}\right)^{4} \times \tau_{\text {aut }}
$$

- With HMC

$$
\operatorname{cost} \propto \frac{1}{m_{q} a} \times \frac{L / a}{m_{q} a} \times\left(\frac{L}{a}\right)^{4} \times \frac{1}{m_{q} a}=\frac{L^{5}}{m_{q}^{3} a^{8}}
$$

Duane et al, PLB195, 216 (1987)

Sexton-Weingarten, NPB380, 665 (1992)

- With UV/IR separation

$$
\operatorname{cost} \propto \frac{1}{m_{q} a} \times \frac{L}{a} \times\left(\frac{L}{a}\right)^{4} \times 1=\frac{L^{5}}{m_{q} a^{6}}
$$

Hasenbusch, PLB519, 177 (2001)

Luescher, CPC165, 199 (2005)

- With deflation/multi-grid

$$
\operatorname{cost} \propto 1 \times \frac{L}{a} \times\left(\frac{L}{a}\right)^{4} \times 1=\frac{L^{5}}{a^{5}}
$$

Babich et al, PRL 105, 201602 (2010)
Frommer et al, SIAM J 36, A1581 (2014)
Note: topology has to be still treated, e.g., by open boundary condition

Putting them all together

Begininng of maturity

"High Precision Lattice QCD Confronts Experiment" HOQCD/UKQCD/MILC/Fermilab Lattice Collaborations PRL 92, 022001 (2004)

"Lattice QCD Simulations via International Research Network"

Lattice calculations after 2000s

wpi

- Lattice size
to control finite size effects
- Lattice spacings to control continuum extrapolation $a \rightarrow 0$
- Sea quark effects fully incorporated for $\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c} \quad N_{f}=2+1+1$ with their physical masses
- Heavy quarks treated by effective theory or directly simulated for small enough a
- Use of non-perturbative renormalization factors
- Multiple set of parameter points, each with O(1000) independent configurations
- Sophisticated fitting and error estimation to extract physical results

Light hadron spectrum

BMW Collaboration, Durr et al, Science 322, 1224 (2008)

Isospin breaking in hadron masses

- important for understanding Nature
e.g., neutron-proton mass difference is crucial for Big Bang nucleosynthesis / stability of nuclei
- History
- Duncan-Eichten-Thacker, PRL76, 3894(1996)
- RBC/UKQCD, Blum et al, PRD82, 094508 (2010)
- BMW, Borsanyi et al, Science 347, 1452 (2015)

$$
\begin{aligned}
m_{n}-m_{p}= & +1.51(28) \mathrm{MeV} \\
& =+2.52(30)_{Q C D}-1.00(16)_{\text {QED }} \mathrm{MeV} \\
& c f .
\end{aligned}
$$

QCD coupling constant

Quark masses

wpi

N_{f}	$m_{u}^{M S}(2 \mathrm{GeV})$	$m_{d}^{M S}(2 \mathrm{GeV})$	$m_{s}^{M S}(2 \mathrm{GeV})$	$m_{c}^{M S}\left(m_{c}\right)$	$m_{b}^{M S}\left(m_{b}\right)$
$2+1$	$2.27(9) \mathrm{MeV}$	$4.67(9) \mathrm{MeV}$	$92.03(88) \mathrm{MeV}$	$1.275(5) \mathrm{GeV}$	$4.164(23) \mathrm{GeV}$
$2+1+1$	$2.50(17) \mathrm{MeV}$	$4.88(20) \mathrm{MeV}$	$93.44(68) \mathrm{MeV}$	$1.280(13) \mathrm{GeV}$	$4.198(12) \mathrm{GeV}$

CKM matrix elements

wpi

$$
V_{u s}, V_{u d}
$$

Tension with nuclear beta decay?

$$
V_{u b}, V_{c b}
$$

Tension between exclusive and inclusive determinations?

High temperatures

- Phase diagram

Physical point is a crossover.
Aoki et al, Nature 443, 675 (2006)

- Equation of state

HotQCD Bazavov et al, PRD90, 094503 (2014)
WB Borsanyi et al, PLB730, 99 (2014)

$$
a_{\mu}^{\exp }-a_{\mu}^{S M}=27.9(6.3)^{\exp }(3.6)^{S M} \times 10^{-10}
$$

- Huge ongoing effort by lattice community to calculate hadronic contributions Fermilab/HPQCD/MILC, RBC/UKQCD, BMW, ETMC, Mainz, PACS-CS, ...
- Sub \% accuracy in the near future?

Lattice QCD today

wpi
■ 45 years since Wilson's seminal paper (February 1974)

- Amazing progress in physics, algorithms, machines
- Has matured as particle theory
- Direct calculation at the physical quark masses on large lattices ($L \sim 4-5 f m$) and small lattice spacings ($a \sim 0.05 f m$ or less) with physical sea quarks
- Many important hadron properties now calculated (masses, decay constants, form factors etc), verifying the validity of QCD at \% level or better, and providing valuable constraints on the CKM matrix and the Standard Model.

What now?

What will be the next chapter

of the History of Lattice QCD,
and who will be the
Maker(s) of it?

Appendix

WPI Program

(World Premier International Research Center Initiative)

Shaping the future science in Japan beyond borders and barriers

13 centers as of 2019 (Planned up to 20 centers)

Four basic features:

1. Critical mass of outstanding PIs
2. International environment
3. Long term financial support
4. Robust follow up

Four missions:

1. Top-notch Science
2. Fusion Research
3. Internationalization
4. System reform
