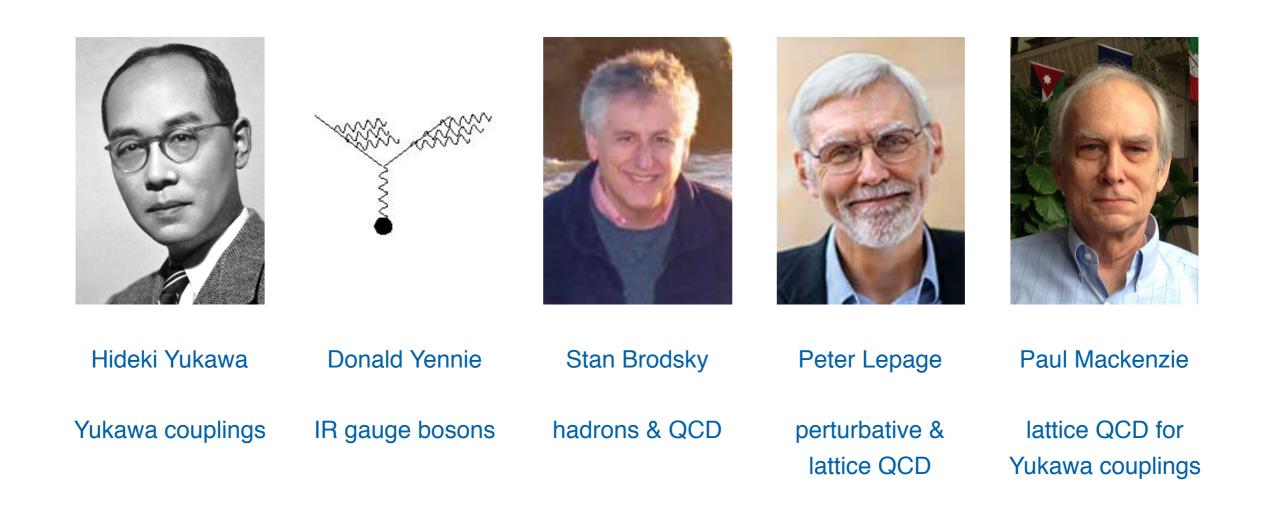
Fermilab **ENERGY** Office of Science



Lattice QCD at Fermilab: Celebrating the Career of Paul Mackenzie

Joseph Lykken Deputy Director, Fermilab 7 November 2019

Welcome!

• Paul Mackenzie's academic family tree:

Highlights: Paul Mackenzie

- Perturbative QCD:
 - properties of quarkonia
 - scale setting in the perturbative series
- Lattice QCD:
 - early calculations of hadronic couplings
 - early calculation of the mass of the H dibaryon
- Computing:
 - ACPMAPS computer and its Canopy software
 - clusters of PCs with fast interconnects = lattice QCD supercomputers
- Service:
 - charter member of the USQCD Executive Committee (Chair & spokesman, 2009–2018)
 - principal investigator of the Exascale Computing Project "LatticeQCD" (2016–2018)

Highlights: Lattice QCD at Fermilab – A History of Leadership

- New theoretical tools and insights
 - lattice HQET
 - renormalized lattice perturbation theory
 - improved lattice QCD actions
 - lattice Gauge Theory with C-periodic boundary conditions
 - relativistic heavy quarks, aka the "Fermilab action"
 - improved relativistic heavy quark action (Oktay-Kronfeld)
 - minimal renormalon subtracted mass scheme
- New numerical methods
 - Fourier acceleration
 - lattice QCD + QED (Duncan, Eichten, Thacker)
 - Bayesian statistics for lattice data

Highlights: Lattice QCD at Fermilab – A History of Leadership

- Numerical results
 - H Dibaryon
 - glueball spectra
 - first phenomenologically relevant determination of α_s
 - $B \rightarrow D^{\ast}$ form factor at zero recoil
 - HQET parameters ($\bar{\Lambda}, \lambda_1$)
 - Predictions:
 - B_c masses (confirmed by CDF)
 - D, D_s -meson decay constants (confirmed by BaBar, CLEO-c)
 - semileptonic D-meson form factors (confirmed by CLEO-c)
 - Quarkonium splittings
 - First LQCD results with commensurate to experiment precision
 - Semileptonic $B \to \pi$ form factors $\blacksquare |V_{ub}|$
 - Semileptonic $B \to D^*$ form factors $\blacksquare |V_{cb}|$
 - Semileptonic $K \to \pi$ form factor $\blacksquare |V_{us}|$
 - Definitive lattice-QCD results:
 - *B*, *D*-meson decay constants and heavy-quark masses with sub-percent precision

Future: Lattice QCD at Fermilab — meeting new challenges

- Ongoing programs:
 - hadronic corrections for the muon g-2 with ~0.5% level precision
 - semileptonic B, D-meson form factors $(B \to \pi \ell \nu, B_s \to K \ell \nu, B \to K(\pi) \ell \ell, B \to D \ell \nu)$ with percent-level precision
 - nucleon matrix elements
- New programs: towards multi-hadron systems and non-local operators
 - two-pion contributions to hadronic vacuum polarization correction
 - hadron-tensor of the pion
- Possible future directions: resonances, two-nucleon systems
- Lattice field theory and quantum information
 - optimizing simulations on NISQ hardware
 - understanding error propagation
 - interfaces between classical and quantum computation

