BSM Physics from Kaon Decays

Lattice QCD at Fermilab: Celebrating the Career of Paul Mackenzie

November 7-8, 2019

N.H. Christ RBC/UKQCD Collaboration

Outline

- Thoughts about Paul
- Physics
 - $K_L \! \rightarrow \mu^+ \mu^-$
 - $K \rightarrow \pi \pi$ decay and ε'
- Conclusions

Thoughts about Paul

- Many places where Paul's work has had a large impact on me:
 - Tadpole improvement of lattice perturbation theory.
 - QCD machines: ACPMAPS
 - Fermilab heavy quark action
- Founding member and then spokesperson for USQCD.

• Common physics goal of searching for phenomena not predicted by the standard model.

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK) <u>Taku Izubuchi</u> Yong-Chull Jang <u>Chulwoo Jung</u> Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) <u>Amarjit Soni</u>

> <u>UC Boulder</u> Oliver Witzel

<u>CERN</u> Mattia Bruno

<u>Columbia University</u> <u>Ryan Abbot</u> <u>Norman Christ</u> Duo Guo <u>Christopher Kelly</u> <u>Bob Mawhinney</u> <u>Masaaki Tomii</u> Jigun Tu Bigeng Wang <u>Tianle Wang</u> Yidi Zhao

<u>University of Connecticut</u> <u>Tom Blum</u> <u>Dan Hoying</u> (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Luigi Del Debbio Felix Erben Vera Gülpers Tadeusz Janowski Julia Kettle Michael Marshall Fionn Ó hÓgáin Antonin Portelli Tobias Tsang Andrew Yong Azusa Yamaguchi <u>University of Liverpool</u> <u>Nicolas Garron</u>

> <u>MIT</u> David Murphy

<u>Peking University</u> Xu Feng

<u>University of Regensburg</u> <u>Christoph Lehner</u> (BNL)

University of Southampton

Nils Asmussen Jonathan Flynn Ryan Hill Andreas Jüttner James Richings <u>Chris Sachrajda</u>

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

Mackenziefest - 11/07/2019 (5)

Physics of $K_L \rightarrow \mu^+ \mu^-$

 A second order weak, ``strangeness changing neutral current''

(Cirigliano, et al., Rev. Mod. Phys., 84, 2012)

• $K_L \rightarrow \mu^+ \mu^-$ decay rate is known:

− BR($K_L \rightarrow \mu^+ \mu^-$) = (6.84 ± 0.11) x 10⁻⁹

- Large ``background'' from two-photon process:
 - Third-order electroweak amplitude
 - Optical theorem gives imaginary part.
 - $K_L \rightarrow \gamma \gamma$ decay rate is known

 μ^{-}

 K_L^0

Physics of $K_L \rightarrow \mu^+ \mu^-$ (con't)

• Define:
$$\frac{\Gamma(K_L \to \mu^+ \mu^-)}{\Gamma(K_L \to \gamma \gamma)} = 2\beta_{\mu} \left(\frac{\alpha}{\pi} \frac{m_{\mu}}{M_{\kappa}}\right)^2 \left(|F_{\text{imag}}|^2 + |F_{\text{real}}|^2\right)$$

Optical theorem + experiment determine:

 $|F_{\text{real}}| = |(F_{\text{real}})_{\text{E&M}} + (F_{\text{real}})_{\text{Weak}}| = 1.167 \pm 0.094$

- Standard model: $(F_{real})_{Weak} = -1.82 \pm 0.04$
- A 10% lattice calculation of $(F_{real})_{E\&M}$ would allow a test of $(F_{real})_{Weak}$ with 6 17% accuracy
- Lattice calculation more difficult than ΔM_{κ}
 - 5 vertices, 60 time orders
 - many states $|n\rangle$ with $E_n < M_K$
- First try simpler $\pi^0 \rightarrow e^+ e^-$

Consider simpler $\pi^0 \rightarrow e^+ e^-$

- Euclidean non-covariant P.T. difficult:
 - 12 time orders,

$$- E_{\gamma\gamma} < M_{\pi 0}$$

- Try something different:
 - Evaluate in Minkowski space
 - Wick rotate internal time integral:

$$\mathcal{A}_{\pi^0 \to \boldsymbol{e}^+ \boldsymbol{e}^-} \to \int d^4 \boldsymbol{w} \ \widetilde{L}(\boldsymbol{k}_-, \boldsymbol{k}_+, \boldsymbol{w})_{\mu\nu} \langle 0 | T \Big\{ J_{\mu}(\frac{\boldsymbol{w}}{2}) J_{\nu}(-\frac{\boldsymbol{w}}{2}) \Big\} | \pi^0(\vec{P}=0) \rangle$$

 γ_{μ}

 e^+

 $J_{\mu}(\vec{u}, u_0)$

 $J_{\mu}(\vec{v}, v_0)$

 π^0

Lattice Results

(Yidi Zhao)

 $\mathcal{A}_{\pi^0 o e^+ e^-} o \int d^4 w \ \widetilde{L}(k_-, k_+, w)_{\mu\nu} \langle 0 | T \Big\{ J_\mu(rac{w}{2}) J_
u(-rac{w}{2}) \Big\} | \pi^0(ec{P}=0) \rangle$

- Lattice result is literally complex:
 - Exponentially small FV corrections
 - Physical kinematics, $1/a \le 1.73$ GeV :
 - Im(A) = 35.94(1.01)(1.09) [Expt: 35.07(37)]
 - Re(A) = 20.39(72)(70). [Expt: 21.51(2.02)]

Mackenziefest - 11/07/2019 (4)

$K \rightarrow \pi \pi \, \text{decay}$ and ε'

Mackenziefest - 11/07/2019 (10)

Cabibbo-Kobayashi-Maskawa mixing

W[±] emission scrambles the quark flavors

$$\begin{split} \lambda &= 0.22535 \pm 0.00065 \,, \qquad A = 0.811^{+0.022}_{-0.012} \,, \\ \bar{\rho} &= 0.131^{+0.026}_{-0.013} \,, \qquad \bar{\eta} = 0.345^{+0.013}_{-0.014} \,. \end{split}$$

Mackenziefest - 11/07/2019 (11)

CP violation

• CP violating, experimental amplitudes:

$$\eta_{+-} \equiv \frac{\langle \pi^+ \pi^- | H_w | K_L \rangle}{\langle \pi^+ \pi^- | H_w | K_S \rangle} = \epsilon + \epsilon'$$

$$\eta_{00} \equiv \frac{\langle \pi^0 \pi^0 | H_w | K_L \rangle}{\langle \pi^0 \pi^0 | H_w | K_S \rangle} = \epsilon - 2\epsilon'$$

• Where:

Indirect: $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}$ Direct: $\operatorname{Re}(\varepsilon'/\varepsilon) = (1.66 \pm 0.23) \times 10^{-3}$

Mackenziefest - 11/07/2019 (12)

Direct CP violation in $K \rightarrow \pi \pi$

• Final $\pi\pi$ states can have I = 0 or 2.

$$\langle \pi \pi (I=2) | H_w | K^0 \rangle = A_2 e^{i\delta_2} \qquad \Delta I = 3/2 \langle \pi \pi (I=0) | H_w | K^0 \rangle = A_0 e^{i\delta_0} \qquad \Delta I = 1/2$$

- CP symmetry requires A_0 and A_2 be real.
- Direct CP violation in this decay is characterized by:

$$\epsilon' = \frac{i e^{\delta_2 - \delta_0}}{\sqrt{2}} \left| \frac{A_2}{A_0} \right| \left(\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0} \right) \quad \begin{array}{c} \text{Direct CP} \\ \text{violation} \end{array}$$

Low Energy Effective Theory

 Represent weak interactions by local four-quark Lagrangian

$$\mathcal{H}^{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left\{ \sum_{i=1}^{10} \left[z_i(\mu) + \tau y_i(\mu) \right] Q_i \right\}$$

•
$$\tau = -\frac{V_{td}V_{ts}^*}{V_{ud}V_{us}^*} = (1.543 + 0.635i) \times 10^{-3}$$

- $V_{qq'}$ CKM matrix elements
- z_i and y_i Wilson Coefficients
- Q_i four-quark operators

Mackenziefest - 11/07/2019 (14)

Lattice calculation of

$$<\pi\pi|H_W|K>$$

- The operator product $\overline{d}(x)s(x)$ easily creates a kaon.
- Use finite-volume energy quantization (Lellouch-Luscher) and adjust *L* so that n^{th} excited state obeys: $E_{\pi\pi}^{(n)} = M_K$

$$p = 2\pi/L$$

 $\langle \pi^+\pi^-|H_W|K^0\rangle \propto \langle \overline{d}u(t_{\pi_1})\overline{u}d(t_{\pi_2}) H_W(t_{\text{op}}) \overline{d}u(t_K) \rangle$

- Use boundary conditions on the quarks: $E_{\pi\pi}^{(\text{gnd})} = M_K$
- For $(\pi\pi)_{l=2}$ make *d* anti-periodic
- For $(\pi\pi)_{l=0}$ use G-parity boundary conditions: <u>arXiv:1908.08</u>

Calculation of A₂

Mackenziefest - 11/07/2019 (16)

$\Delta I = 3/2 - Continuum Results$ (M. Lightman, E. Goode, T. Janowski)

- Use two large ensembles to remove a² error (m_p=135 MeV, L=5.4 fm)
 - 48³ x 96, 1/a=1.73 GeV
 - 64³ x 128, 1/a=2.28 GeV
- Continuum results:
 - $\operatorname{Re}(A_2) = 1.50(0.04_{\text{stat}}) (0.14)_{\text{syst}} \times 10^{-8} \text{ GeV}$
 - $Im(A_2) = -6.99(0.20)_{stat} (0.84)_{syst} \times 10^{-13} \text{ GeV}$
- Experiment: $Re(A_2) = 1.479(4) \ 10^{-8} \text{ GeV}$
- $E_{\pi\pi} \rightarrow \delta_2 = -11.6(2.5)(1.2)^{\circ}$
- [Phys. Rev. **D91**, 074502 (2015)]

Calculation of A_0 and ε'

Mackenziefest - 11/07/2019 (18)

Overview of 2015 calculation (Chris Kelly and Daiqian Zhang)

- Use 32³ x 64 ensemble
 - 1/a = 1.3784(68) GeV, L = 4.53 fm.
 - G-parity boundary condition in 3 directions
 - 216 configurations separated by 4 time units
- Essentially physical kinematics:

$$-M_{\pi} = 143.1(2.0)$$

$$- M_{K} = 490.6(2.2) \text{ MeV}$$

$$- E_{\pi\pi} = 498(11) \text{ MeV}$$

2015 Results

[Phys. Rev. Lett. 115 (2015) 212001]

- $E_{\pi\pi}$ (499 MeV) determines δ_0 :
 - $I = 0 \ \pi\pi$ phase shift: $\delta_0 = 23.8(4.9)(2.2)^\circ$
 - Dispersion theory result: $\delta_0 = 34^{\circ}$ [G. Colangelo, *et al.*]
- $\operatorname{Re}(\varepsilon'/\varepsilon) = (1.38 \pm 5.15_{\text{stat}} \pm 4.59_{\text{sys}}) \times 10^{-4}$
 - Expt.: (16.6 ± 2.3) x 10⁻⁴
 - 2.1 σ difference
- Unanswered questions:
 - Is this 2.1 σ difference real? \rightarrow Reduce errors
 - Why is δ_0 so different from \rightarrow Introduce more $\pi\pi$ operators the dispersive result? \rightarrow to distinguish excited states

Extend and improve calculation (Chris Kelly and Tianle Wang)

- ✓ Increase statistics: 216 → 1438 configs.
 Reduce statistical errors
 - Allow deeper study of systematic errors
- Study operators neglected in our NPR implementation
- Use step-scaling to allow perturbative matching at a higher energy
- ✓- Use an expanded set of $\pi\pi$ operators
 - Use X-space NPR to cross charm threshold (Masaaki Tomii).

Adding more statistics

- Increasing statistics: $216 \rightarrow 1438$ configs.
 - $\pi\pi \pi\pi$ correlator well-described by a single $\pi\pi$ state
 - $\delta_0 = 23.8(4.9)(2.2)^\circ → 19.1(2.5)(1.2)^\circ$ χ^2 / DoF = 1.6

Adding more $\pi\pi$ operators

- Adding a second *σ*-like (*ūu+dd*) operator reveals a second state!
- If only one state, 2 x 2 correlator matrix will have determinant = 0. For $t_f t_i = 5$:
- $\det \begin{pmatrix} \langle \pi \pi(t_f) \pi \pi(t_i) \rangle & \langle \pi \pi(t_f) \sigma(t_i) \rangle \\ \langle \sigma(t_f) \pi \pi(t_i) \rangle & \langle \sigma(t_f) \sigma(t_i) \rangle \end{pmatrix} = 0.439(50)$
 - Add a third operator giving each pion a larger momentum: $p = \pm (3,1,1) \pi/L$
 - Label operators as $\pi\pi(111)$, σ , $\pi\pi(311)$
 - Only 741 configurations with new operators

$I = 0 \pi \pi$ scattering with three operators

- Third $\pi\pi(311)$ operator not important.
- $\delta_0 = 31.7(6)^\circ$ vs 34° prediction (5-15 fit, statistical errors only).

(24)

$K \rightarrow \pi\pi$ from 3-operator fits (case I)

• Fit using up to 3 operators and 3 states with energies and amplitudes from $\pi\pi$ scattering:

 $K \rightarrow \pi\pi$ from 3-operator fits (case II)

• Fit using up to 3 operators and 3 states with energies and amplitudes from $\pi\pi$ scattering:

$K \rightarrow \pi \pi$ matrix elements

Compare old and new results (case I)

741 samples [2019]

Mackenziefest - 11/07/2019 (27)

Two data analysis challenges

- Auto-correlations we must be careful that our errors are accurate
- We need estimates of goodness of fit (p-values)
 - Demonstrate that our fits describe the data.
 - Decide if alternative fits used to estimate systematic errors are plausible.
 - However, our lattice QCD *p*-values are traditionally unreasonably small!

Auto-correlations

- Our measurements are made every 4 MD time units and are mildly correlated.
- While we have N=741 configurations, the covariance matrix for three operators and t = 5-15 time slices is 66 x 66!
- Noise grows as we bin the data and have fewer samples to measure the fluctuations.
- Solved by the blocked jackknife method:
 - Identify *N*/*B* blocks of size *B*.
 - Sequentially remove each block and analyze the remaining N-B (not N/B-1) samples

I=0 $\pi\pi$ two-point function fit errors

Poor *p*-values

- We obtain *p*-values of 0.1– 0.2 for most "best fits"!
- This is often caused by ignoring fluctuations in the covariance matrix (Tanmoy Bhattacharya).
- Including covariance matrix fluctuations broadens the χ^2 distribution into the Hotelling T^2 distribution (related to F distrib.).

Hotelling *T*² is *insufficient*

- Hotelling assumes that the data (not their averages) are Gaussian and uncorrelated.
- Both are not true for our case.
- Use a bootstrap analysis to determine the correct generalized χ^2 distribution from the data. (C. Kelly)

q² distribution

- Define $q^{2} = \sum_{t,t'=t_{min}}^{t_{max}} [\bar{v}_{t} f(t, \vec{p})] [C^{-1}]_{tt'} [\bar{v}_{t'} f(t', \vec{p})]$ where $C_{tt'} = \frac{1}{N(N-1)} \sum_{i=1}^{N} [v_{i,t} \bar{v}_{t}] [v_{i,t'} \bar{v}_{t'}]$
- Find $P(q^2)$ where

 $\int_0^\infty P(q^2) dq^2 = 1 \quad \text{and} \quad p_{int}(q^2) = \int_{q^2}^\infty P(q^2) dq^2$

• Here $p_{int}(q^2)$ gives the ``p-value''

Find q² distribution from the data (Chris Kelly)

- Start with the original ensemble $\{v_{it}\}_{1 \le i \le N}$
- Draw *N* values from this set (allowing the same value to be drawn multiple times).
- Create N_{boot} such ensembles of N values: $\{b_{it}^{\alpha}\}_{1 \le i \le N}$ where $1 \le \alpha \le N_{\text{boot}}$
- Recenter these ensembles so $f(t, \vec{p})$ will fit the average over boot strap ensembles perfectly: $b_{i,t}^{\alpha} \rightarrow \tilde{b}_{i,t}^{\alpha} = b_{i,t}^{\alpha} - \bar{v}_t + f(t, \vec{p})$
- Here the parameters \vec{p} fit the average data \overline{v}_t

q² distribution

• $\vec{b}_{i,t}^{\alpha}$ has the fluctuation in the population but is fit perfectly by $f(t,\vec{p})$

$$\begin{split} b^{\alpha}_{i,t} &\rightarrow \tilde{b}^{\alpha}_{i,t} = b^{\alpha}_{i,t} - \bar{v}_t + f(t,\vec{p}) \end{split} \begin{array}{c} \text{Fit to} \\ \text{ensemble } \alpha \end{split} \\ \hline \textbf{Thus} \\ (q^2)^{\alpha} &= \sum_{t,t'=t_{min}}^{t_{max}} \left[\bar{\tilde{b}}^{\alpha}_t - f(t,\vec{p}^{\alpha}) \right] \left[(C^{\alpha})^{-1} \right]_{tt'} \left[\bar{\tilde{b}}^{\alpha}_{t'} - f(t',\vec{p}^{\alpha}) \right] \end{split}$$

will obey (and give) the correct q^2 distribution.

- $p(q^2) = N(q^2)/N_{boot}$ where $N(q^2)$ is the number of bootstrap ensembles with $(q^2)^{\alpha} > q^2$.
- Now *p*-values can be computed for any definition of *q*² including for uncorrelated fits!

$K \rightarrow \pi \pi$ calculation (2019)

- Calculation of $K \rightarrow \pi \pi$ decay substantially improved over 2015 result.
- 216 \rightarrow 741 configurations.
- Three $\pi\pi$ interpolating operators: discriminate between ground and excited states $\rightarrow \delta_0 (E=M_{\kappa}) = 31.7(6)^\circ$
- Errors reduced by using correlated fits.
- Bootstrap-determined q² distribution gives correct *p*-values. [*p*=0.261(BS) vs 0.037(χ²)] –
- Results available soon.

Thanks !

- Precision measurement + lattice QCD is a long-term direction of great promise.
 - Paul is a leading contributor
 - Important new results lie ahead.
- Importance of Paul's national leadership is hard to overstate:

- USQCD hardware has enabled frontier calculations
- Many careers advanced by USQCD projects.
- Collaborative good will and combined strengths of USQCD attract new talent and enhanced funding!