BSM Physics from Kaon Decays

Lattice QCD at Fermilab:
 Celebrating the Career of
 Paul Mackenzie

November 7-8, 2019
N.H. Christ

RBC/UKQCD Collaboration

Outline

- Thoughts about Paul
- Physics
$-K_{L} \rightarrow \mu^{+} \mu^{-}$
- $K \rightarrow \pi \pi$ decay and ε^{\prime}
- Conclusions

Thoughts about Paul

- Many places where Paul's work has had a large impact on me:
- Tadpole improvement of lattice perturbation theory.
- QCD machines: ACPMAPS
- Fermilab heavy quark action
- Founding member and then spokesperson for USQCD.

- Common physics goal of searching for phenomena not predicted by the standard model.

The RBC \& UKQCD collaborations

Yasumichi Aoki (KEK)
Chulwoo Jung
Meifeng Lin
Aaron Meyer
Hiroshi Ohki
Shigemi Ohta (KEK)
Amariit Soni
UC Boulder
Oliver Witzel
CERN
Mattia Bruno
Columbia University
Ryan Abbot Norman Christ
Bob Mawhinney
Masaaki Tomii
Jiqun Tu

Bigeng Wang Tianle Wang Yidi Zhao
University of Connecticut
$\frac{\text { Tom Blum }}{\text { Dan Hoying (BNL) }}$
Luchang Jin (RBRC)
Cheng Tu
Edinburgh University
Peter Boyle
Luigi Del Debbio
Felix Erben
Vera Gülpers
Tadeusz Janowski
Julia Kettle
Michael Marshall
Fionn Ó hÓgáin
Antonin Portelli
Tobias Tsang
Andrew Yong
Azusa Yamaguchi

Bigeng Wang
Tlanle Wang
Yidi Zhao
University of Connecticut
Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC)

Cheng Tu
Edinburgh University
Luigi Del Debbio
Felix Erben
Vera Gülpers
Tadeusz Janowski
Michael Marshall
Fionn Ó hÓgáin
Antonin Portelli
Tobias Tsang
Andrew Yong
Azusa Yamaguchi

University of Liverpool
Nicolas Garron
MIT
David Murphy
$\frac{\text { Peking University }}{\text { Xu Feng }}$
University of Regensburg
Christoph Lehner (BNL)
University of Southampton
Nils Asmussen
Jonathan Flynn
Ryan Hill Andreas Jütner James Richings Chris Sachrajda

Stony Brook University
Jun-Sik Yoo
Sergey Syritsyn (RBRC)

$K \rightarrow \mu^{+} \mu^{-}$

Physics of $K_{L} \rightarrow \mu^{+} \mu^{-}$

- A second order weak, ``strangeness changing neutral current"

(Cirigliano, et al. , Rev. Mod. Phys., 84, 2012)
- $K_{L} \rightarrow \mu^{+} \mu^{-}$decay rate is known:
$-\operatorname{BR}\left(K_{L} \rightarrow \mu^{+} \mu^{-}\right)=(6.84 \pm 0.11) \times 10^{-9}$
- Large "background" from two-photon process:
- Third-order electroweak amplitude
- Optical theorem gives imaginary part.
- $K_{L} \rightarrow \gamma \gamma$ decay rate is known

Physics of $K_{L} \rightarrow \mu^{+} \mu^{-}$(con't)

- Define: $\frac{\Gamma\left(K_{L} \rightarrow \mu^{+} \mu^{-}\right)}{\Gamma\left(K_{L} \rightarrow \gamma \gamma\right)}=2 \beta_{\mu}\left(\frac{\alpha}{\pi} \frac{m_{\mu}}{M_{K}}\right)^{2}\left(\left|F_{\text {imag }}\right|^{2}+\left|F_{\text {real }}\right|^{2}\right)$
- Optical theorem + experiment determine:

$$
\left|F_{\text {real }}\right|=\left|\left(F_{\text {real }}\right)_{E \& M}+\left(F_{\text {real }}\right)_{\text {Weak }}\right|=1.167 \pm 0.094
$$

- Standard model: $\left(F_{\text {real }}\right)_{\text {Weak }}=-1.82 \pm 0.04$
- A 10% lattice calculation of $\left(F_{\text {real }}\right)_{E \& M}$ would allow a test of $\left(F_{\text {real }}\right)_{\text {Weak }}$ with $6-17 \%$ accuracy
- Lattice calculation more difficult than ΔM_{K}
- 5 vertices, 60 time orders
- many states $\mid \mathrm{n}>$ with $E_{\mathrm{n}}<M_{K}$
- First try simpler $\pi^{0} \rightarrow e^{+} e^{-}$

Consider simpler $\pi^{0} \rightarrow e^{+} e^{-}$

- Euclidean non-covariant P.T. difficult:
- 12 time orders,
- $E_{\gamma \gamma}<M_{\pi 0}$
- Try something different:
- Evaluate in Minkowski space
- Wick rotate internal time integral:
$\mathcal{A}_{\pi^{0} \rightarrow e^{+} e^{-}} \rightarrow \int d^{4} W \widetilde{L}\left(k_{-}, k_{+}, W\right){ }_{\mu \nu}\langle 0| T\left\{J_{\mu}\left(\frac{W}{2}\right) J_{\nu}\left(-\frac{W}{2}\right)\right\}\left|\pi^{0}(\vec{P}=0)\right\rangle$

Lattice Results

(Yidi Zhao)

$$
\mathcal{A}_{\pi^{0} \rightarrow e^{+} e^{-}} \rightarrow \int d^{4} w \widetilde{L}\left(k_{-}, k_{+}, w\right)_{\mu \nu}\langle 0| T\left\{J_{\mu}\left(\frac{W}{2}\right) J_{\nu}\left(-\frac{W}{2}\right)\right\}\left|\pi^{0}(\vec{P}=0)\right\rangle
$$

- Lattice result is literally complex:
- Exponentially small FV corrections
- Physical kinematics, $1 / a \leq 1.73 \mathrm{GeV}$:
- $\operatorname{Im}(A)=35.94(1.01)(1.09) \quad[E x p t: 35.07(37)]$
- $\operatorname{Re}(A)=20.39(72)(70) . \quad$ [Expt: 21.51(2.02)]

$K \rightarrow \pi \pi$ decay and ε^{\prime}

Cabibbo-Kobayashi-Maskawa mixing

- $W^{ \pm}$emission scrambles the quark flavors

$$
\begin{gathered}
\left(\begin{array}{c}
u \\
c \\
t
\end{array}\right) \stackrel{W}{\longleftrightarrow}\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right) \\
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\bar{\rho}-i \bar{\eta}) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\bar{\rho}-i \bar{\eta}) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right) \\
\lambda=0.22535 \pm 0.00065, \\
\bar{\rho}=0.131_{-0.013}^{+0.026},
\end{gathered} \quad \begin{gathered}
\text { CP } \\
\lambda=0.811_{-0.012}^{+0.022}
\end{gathered}
$$

CP violation

- CP violating, experimental amplitudes:

$$
\begin{aligned}
\eta_{+-} & \equiv \frac{\left\langle\pi^{+} \pi^{-}\right| H_{w}\left|K_{L}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| H_{w}\left|K_{S}\right\rangle}=\epsilon+\epsilon^{\prime} \\
\eta_{00} & \equiv \frac{\left\langle\pi^{0} \pi^{0}\right| H_{w}\left|K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| H_{w}\left|K_{S}\right\rangle}=\epsilon-2 \epsilon^{\prime}
\end{aligned}
$$

- Where:

Indirect: $|\varepsilon|=(2.228 \pm 0.011) \times 10^{-3}$
Direct: $\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=(1.66 \pm 0.23) \times 10^{-3}$

Direct CP violation in $K \rightarrow \pi \pi$

- Final $\pi \pi$ states can have $/=0$ or 2 .

$$
\begin{aligned}
\langle\pi \pi(I=2)| H_{w}\left|K^{0}\right\rangle & =A_{2} e^{i \delta_{2}} & \Delta I=3 / 2 \\
\langle\pi \pi(I=0)| H_{w}\left|K^{0}\right\rangle & =A_{0} e^{i \delta_{0}} & \Delta I=1 / 2
\end{aligned}
$$

- CP symmetry requires A_{0} and A_{2} be real.
- Direct CP violation in this decay is characterized by:

$$
\epsilon^{\prime}=\frac{i e^{\delta_{2}-\delta_{0}}}{\sqrt{2}}\left|\frac{A_{2}}{A_{0}}\right|\left(\frac{\operatorname{Im} \boldsymbol{A}_{2}}{\operatorname{Re} \boldsymbol{A}_{2}}-\frac{\operatorname{Im} \boldsymbol{A}_{0}}{\operatorname{Re} \boldsymbol{A}_{0}}\right) \quad \begin{array}{|c|}
\begin{array}{c}
\text { Direct CP } \\
\text { violation }
\end{array} \\
\hline
\end{array}
$$

Low Energy Effective Theory

- Represent weak interactions by local four-quark Lagrangian $\mathcal{H}^{\Delta S=1}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left\{\sum_{i=1}^{10}\left[z_{i}(\mu)+\tau y_{i}(\mu)\right] Q_{i}\right\}$
- $\tau=-\frac{V_{t d} V_{t s}^{*}}{V_{u d} V_{u s}^{*}}=(1.543+0.635 i) \times 10^{-3}$
- $V_{q q^{\prime}}$ CKM matrix elements
- z_{i} and y_{i}-Wilson Coefficients
- Q_{i} - four-quark operators

Lattice calculation of $\langle\pi \pi| H_{W}|K\rangle$

- The operator product $\bar{d}(x) s(x)$ easily creates a kaon.
- Use finite-volume energy quantization (Lellouch-Luscher) and adjust L so that $n^{\text {th }}$ excited state obeys: $E_{\pi \pi}^{(n)}=M_{K}$

$p=2 \pi / L$

$$
\left\langle\pi^{+} \pi^{-}\right| H_{W}\left|K^{0}\right\rangle \quad \propto \quad\left\langle\bar{d} u\left(t_{\pi_{1}}\right) \bar{u} d\left(t_{\pi_{2}}\right) H_{W}\left(t_{\mathrm{op}}\right) \bar{d} u\left(t_{K}\right)\right\rangle
$$

- Use boundary conditions on the quarks: $E_{\pi \pi}{ }^{\text {(gnd) }}=M_{K}$
- For $(\pi \pi)_{l=2}$ make d anti-periodic
- For $(\pi \pi)_{l=0}$ use G-parity boundary conditions: $\underline{\text { arXiv:1908.08 }}$

Calculation

 of A_{2}
$\Delta I=3 / 2$ - Continuum Results

(M. Lightman, E. Goode, T. Janowski)

- Use two large ensembles to remove a^{2} error ($m_{p}=135 \mathrm{MeV}$, $\mathrm{L}=5.4 \mathrm{fm}$)
- $48^{3} \times 96,1 / a=1.73 \mathrm{GeV}$
- $64^{3} \times 128,1 / a=2.28 \mathrm{GeV}$

- Continuum results:
- $\operatorname{Re}\left(A_{2}\right)=1.50\left(0.04_{\text {stat }}\right)(0.14)_{\text {syst }} \times 10^{-8} \mathrm{GeV}$
- $\operatorname{Im}\left(A_{2}\right)=-6.99(0.20)_{\text {stat }}(0.84)_{\text {syst }} \times 10^{-13} \mathrm{GeV}$
- Experiment: $\operatorname{Re}\left(A_{2}\right)=1.479(4) 10^{-8} \mathrm{GeV}$
- $E_{\pi \pi} \rightarrow \delta_{2}=-11.6(2.5)(1.2)^{\circ}$
- [Phys. Rev. D91, 074502 (2015)]

Calculation of A_{0} and ε^{\prime}

Overview of 2015 calculation (Chris Kelly and Daiqian Zhang)

- Use $32^{3} \times 64$ ensemble
$-1 / a=1.3784(68) \mathrm{GeV}, L=4.53 \mathrm{fm}$.
- G-parity boundary condition in 3 directions
- 216 configurations separated by 4 time units
- Essentially physical kinematics:
- $M_{\pi}=143.1(2.0)$
- $M_{K}=490.6(2.2) \mathrm{MeV}$
- $E_{\pi \pi}=498(11) \mathrm{MeV}$

2015 Results

[Phys. Rev. Lett. 115 (2015) 212001]

- $E_{\pi \pi}(499 \mathrm{MeV})$ determines δ_{0} :
- $I=0 \pi \pi$ phase shift: $\quad \delta_{0}=23.8(4.9)(2.2)^{\circ}$
- Dispersion theory result: $\delta_{0}=34^{\circ}$ [G. Colangelo, et al.]
- $\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=\left(1.38 \pm 5.15_{\text {stat }} \pm 4.59_{\text {sys }}\right) \times 10^{-4}$
- Expt.: (16.6 ± 2.3) x 10^{-4}
- 2.1σ difference
- Unanswered questions:
- Is this 2.1σ difference real? \rightarrow Reduce errors
- Why is δ_{0} so different from \rightarrow Introduce more $\pi \pi$ operators the dispersive result? to distinguish excited states

Extend and improve calculation

 (Chris Kelly and Tianle Wang)$\sqrt{ }-$ Increase statistics: $216 \rightarrow 1438$ configs.

- Reduce statistical errors
- Allow deeper study of systematic errors
\checkmark - Study operators neglected in our NPR implementation
\checkmark Use step-scaling to allow perturbative matching at a higher energy
\checkmark Use an expanded set of $\pi \pi$ operators
- Use X-space NPR to cross charm threshold (Masaaki Tomii).

Adding more statistics

- Increasing statistics: $216 \rightarrow 1438$ configs.
- $\pi \pi-\pi \pi$ correlator well-described by a single $\pi \pi$ state

$$
\begin{aligned}
- & \delta_{0}=23.8(4.9)(2.2)^{\circ} \rightarrow 19.1(2.5)(1.2)^{\circ} \\
& \chi^{2} / \operatorname{DoF}=1.6
\end{aligned}
$$

Mackenziefest - 11/07/2019

Adding more $\pi \pi$ operators

- Adding a second σ-like ($\bar{u} u+\overline{d d}$) operator reveals a second state!
- If only one state, 2×2 correlator matrix will have determinant $=0$. For $t_{f}-t_{i}=5$:
$\operatorname{det}\left(\begin{array}{cc}\left\langle\pi \pi\left(t_{f}\right) \pi \pi\left(t_{i}\right)\right\rangle & \left\langle\pi \pi\left(t_{f}\right) \sigma\left(t_{i}\right)\right\rangle \\ \left\langle\sigma\left(t_{f}\right) \pi \pi\left(t_{i}\right)\right\rangle & \left\langle\sigma\left(t_{f}\right) \sigma\left(t_{i}\right)\right\rangle\end{array}\right)=0.439(50)$
- Add a third operator giving each pion a larger momentum: $p= \pm(3,1,1) \pi / L$
- Label operators as $\pi \pi(111), \sigma, \pi \pi(311)$
- Only 741 configurations with new operators

$I=0 \pi \pi$ scattering with three operators

- Third $\pi \pi(311)$ operator not important.
- $\delta_{0}=31.7(6)^{\circ}$ vs 34° prediction (5-15 fit, statistical errors only).

$\mathrm{K} \rightarrow \pi \pi$ from 3-operator fits (case I)

- Fit using up to 3 operators and 3 states with energies and amplitudes from $\pi \pi$ scattering:

$\mathrm{K} \rightarrow \pi \pi$ from 3-operator fits (case II)

- Fit using up to 3 operators and 3 states with energies and amplitudes from $\pi \pi$ scattering:

$K \rightarrow \pi \pi$ matrix elements

- Compare old and new results (case I)

215 samples [2015]

741 samples [2019]

Two data analysis challenges

- Auto-correlations - we must be careful that our errors are accurate
- We need estimates of goodness of fit (p-values)
- Demonstrate that our fits describe the data.
- Decide if alternative fits used to estimate systematic errors are plausible.
- However, our lattice QCD p-values are traditionally unreasonably small!

Auto-correlations

- Our measurements are made every 4 MD time units and are mildly correlated.
- While we have $\mathrm{N}=741$ configurations, the covariance matrix for three operators and $t=5-15$ time slices is 66×66 !
- Noise grows as we bin the data and have fewer samples to measure the fluctuations.
- Solved by the blocked jackknife method:
- Identify N / B blocks of size B.
- Sequentially remove each block and analyze the remaining N -B (not N/B-1) samples

I=0 $\pi \pi$ two-point function fit errors

Binned data errors

Binned scrambled data errors

Poor p-values

- We obtain p-values of $0.1-0.2$ for most "best fits"!
- This is often caused by ignoring fluctuations in the covariance matrix (Tanmoy Bhattacharya).
- Including covariance matrix fluctuations broadens the χ^{2} distribution into the Hotelling T^{2} distribution (related to F distrib.).

Hotelling T^{2} is insufficient

- Hotelling assumes that the data (not their averages) are Gaussian and uncorrelated.
- Both are not true for our case.
- Use a bootstrap analysis to determine the correct generalized χ^{2} distribution from the data. (C. Kelly)

q^{2} distribution

- Define $q^{2}=\sum_{t, t=t_{\min }}^{t_{\text {max }}}\left[\bar{v}_{t}-f(t, \vec{p})\right]\left[C^{-1}\right]_{t^{\prime}}\left[\overline{\bar{t}}_{t^{\prime}}-f\left(t^{\prime}, \vec{p}\right)\right]$
where $\quad \mathrm{C}_{\mathrm{tt}}{ }^{\prime}=\frac{1}{\mathrm{~N}(\mathrm{~N}-1)} \sum_{\mathrm{i}=1}^{\mathrm{N}}\left[\mathrm{v}_{\mathrm{i}, \mathrm{t}}-\overline{\mathrm{v}}_{\mathrm{t}}\right]\left[\mathrm{v}_{\mathrm{i}, \mathrm{t}^{\prime}}-\overline{\mathrm{v}}_{\mathrm{t}^{\prime}}\right]$
- Find $P\left(q^{2}\right)$ where

$$
\int_{0}^{\infty} \mathrm{P}\left(\mathrm{q}^{2}\right) \mathrm{dq}^{2}=1 \quad \text { and } \quad \mathrm{p}_{\text {int }}\left(\mathrm{q}^{2}\right)=\int_{\mathrm{q}^{2}}^{\infty} \mathrm{P}\left(\mathrm{q}^{2}\right) \mathrm{dq} \mathrm{q}^{2}
$$

- Here $p_{\text {int }}\left(q^{2}\right)$ gives the " p-value"

Find q^{2} distribution from the data

 (Chris Kelly)- Start with the original ensemble $\left\{v_{i t}\right\}_{1 \leq i \leq N}$
- Draw N values from this set (allowing the same value to be drawn multiple times).
- Create $N_{\text {boot }}$ such ensembles of N values: $\left\{b_{i t}{ }^{\alpha}\right\}_{1 \leq i \leq N}$ where $1 \leq \alpha \leq N_{\text {boot }}$
- Recenter these ensembles so $f(t, \vec{p})$ will fit the average over boot strap ensembles perfectly:

$$
b_{i, t}^{\alpha} \rightarrow \tilde{b}_{i, t}^{\alpha}=b_{i, t}^{\alpha}-\bar{v}_{t}+\mathrm{f}(\mathrm{t}, \overrightarrow{\mathrm{p}})
$$

- Here the parameters \vec{p} fit the average data \bar{v}_{t}

q^{2} distribution

- $\tilde{\mathrm{b}}_{i, \mathrm{t}}^{\alpha}$ has the fluctuation in the population but is fit perfectly by $f(t, \vec{p})$

$$
\mathrm{b}_{\mathrm{i}, \mathrm{t}}^{\alpha} \rightarrow \tilde{\mathrm{b}}_{\mathrm{i}, \mathrm{t}}^{\alpha}=\mathrm{b}_{\mathrm{i}, \mathrm{t}}^{\alpha}-\overline{\mathrm{v}}_{\mathrm{t}}+\mathrm{f}(\mathrm{t}, \overrightarrow{\mathrm{p}}) \quad \begin{gathered}
\text { Fit to } \\
\text { ensemble } \alpha
\end{gathered}
$$

$$
\begin{aligned}
& \text { Thus } \\
& \left.\left.\left(\mathrm{q}^{2}\right)^{\alpha}=\sum_{\mathrm{t}, \mathrm{t}=\mathrm{t}_{\text {min }}}^{\mathrm{t}_{\text {max }}}\left[\tilde{\overline{\mathrm{b}}}_{\mathrm{t}}^{\alpha}-\mathrm{f}\left(\mathrm{t}, \overrightarrow{\mathrm{P}}^{\alpha}\right)\right]^{2}\right]\left(\mathrm{C}^{\alpha}\right)^{-1}\right]_{\mathrm{tt}^{\prime}}\left[\tilde{\overline{\mathrm{b}}}_{\mathrm{t}^{\prime}}-\mathrm{f}\left(\mathrm{t}^{\prime}, \overrightarrow{\mathrm{p}}^{\alpha}\right)\right]
\end{aligned}
$$

will obey (and give) the correct q^{2} distribution.

- $p\left(q^{2}\right)=N\left(q^{2}\right) / N_{\text {boot }}$ where $N\left(q^{2}\right)$ is the number of bootstrap ensembles with $\left(q^{2}\right)^{\alpha}>q^{2}$.
- Now p-values can be computed for any definition of q^{2} including for uncorrelated fits!

$K \rightarrow \pi \pi$ calculation (2019)

- Calculation of $K \rightarrow \pi \pi$ decay substantially improved over 2015 result.
- $216 \rightarrow 741$ configurations.
- Three $\pi \pi$ interpolating operators: discriminate between ground and excited states $\rightarrow \delta_{0}\left(E=M_{k}\right)=31.7(6)^{\circ}$
- Errors reduced by using correlated fits.
- Bootstrap-determined q^{2} distribution gives correct p-values. [$p=0.261$ (BS) vs $\left.0.037\left(\chi^{2}\right)\right]$
- Results available soon.

Thanks!

- Precision measurement + lattice QCD is a long-term direction of great promise.
- Paul is a leading contributor
- Important new results lie ahead.
- Importance of Paul's national leadership is hard to overstate:

$>$ USQCD hardware has enabled frontier calculations
> Many careers advanced by USQCD projects.
$>$ Collaborative good will and combined strengths of USQCD attract new talent and enhanced funding!

