
Migration of LArSoft
repos to GitHub

Patrick Gartung

LArSoft Coordination Meeting

10 Sept 2019

Motivation

• Move repos to Github for easier collaboration

• Move to the Github development model (see next slide)

• Take advantage of the resources of Github

• Use Github’s web based tools: code reviews, etc.

Github development model
• User creates primary repos on Github under your user account or

organization.

• Anyone can fork your primary repos and make changes in their forked
repo.

• Changes are proposed through pull requests from the fork to the primary.

• Primary repo can be configured to trigger CI, etc., on pull request
creation

• Pull request can be reviewed, revised, approved, merged, etc through
the web interface.

• Pull request can be merged by users with the appropriate permissions.

Migration plan
• Investigate the CMS system of pull request testing, approval and

integration.

• Re-use as much of the CMS scripts as possible to achieve this for
LArSoft repos.

• Cleanup LArSoft repos’ history in a reproducible manner.

• Create an organization of Github for the LArSoft repos.

• Migrate the LArSoft repos to Github.

• Make Redmine repos read only.

• Start using Github repos for source checkout.

Re-using CMS functionality
• CMS made the migration from CVS directly to git and Github over 5 years ago and uses Github messaging to

manage pull requests with a suite of scripts.

• Scripts are tailored to how CMSSW is built: one monolithic code repo vs many code repos

• Python scripts using py-github to post messages to a pull request “Conversation” with the results of pull
request CI tests and labels to indicate the status of a pull request.

• Defines two lists of “managers”:

• “Level 2” managers can trigger pull request tests and must sign off on the pull request

• “Level 1” managers can merge the pull request to the default branch

• Per policy, pull requests must be approved by managers before they are merged.

• A small subset of these scripts were reusable, with modifications, for use with LArSoft repos.

• The commands users can use in messages is described on this web page

• http://cms-sw.github.io/cms-bot-cmssw-cmds.html

• The pull request messaging sequence implemented by these scripts is shown on the next slide.

http://cms-sw.github.io/cms-bot-cmssw-cmds.html

Pull request messaging sequence

• Github notifies anyone mentioned with @username in a comment by email when comments are added to the “Conversation”
POST = send a message with data to jenkins

Infrastructure
• Requested a publicly accessible website to host the CGI script to accept POST messages from Github and

trigger a Jenkins job if the signature passes verification and the author is a manager. https://scd-
ci.fnal.gov/cgi-bin/github_webhook

• Set up a Jenkins job, dispatch-github-webhook, to act on data from Github by triggering other Jenkins
jobs.

• Requested that FNAL Jenkins server allow connections from Github. This was granted and built-in Jenkins
Github plugin can be used. However, they do not reproduce the signature features of the CMS scripts.

• Created a LArSoft organization on Github.

• Created Core group in LArSoft organization which is assigned admin privileges for all repos.

• Set up Github web hooks for all repos so messages would be sent when pull requests are created. This is
the equivalent of a git post commit script.

• Created a Github account FNALbuild and generated access tokens. Jenkins jobs can post messages to a
pull request “Conversation” as this account using the access tokens.

• Created a mailing list scd-github-fnalbuild@listserv.fnal.gov and set this as email for the FNALbuild account.
Email is sent to the list when a new PR is created for any repo the account is “Watching”.

https://scd-ci.fnal.gov/cgi-bin/github_webhook
https://scd-ci.fnal.gov/cgi-bin/github_webhook
https://github.com/LArSoft
https://github.com/orgs/LArSoft/teams/core
https://github.com/FNALbuild
mailto:scd-github-fnalbuild@listserv.fnal.gov

Repo cleanup needed
• Github restricts the size of any file in a commit to less

than 100MB.

• All of the original LArSoft repos have an initial commit
with a ~105MB xml file in the initial commit. The xml file is
highly compressible but Github looks at the
uncompressed size.

• Truncating the git history at the svn to git transition
removes the large file from the commit history. Removing
large root and log files from the LArSim repo completes
the cleanup.

Repo Size Reduction
repo before after before after

size size commits commits
larana 18M 17M 6521 1266
larcore 27M 27M 6032 777

larcorealg 29M 18M 903 732
larcoreobj 2.3M 2.2M 163 163
lardata 19M 18M 6893 1638

lardataalg 99M 99M 416 416
lardataobj 1.3M 1.2M 545 543

lareventdisplay 17M 16M 6246 990
larevt 17M 16M 5930 674

larexamples 16M 15M 5786 530
larg4 0.4M 0.4M 151 150

larpandora 19M 18M 6177 919
lareco 31M 30M 11899 6629
larsim 2000M 86M 7027 1770
larsoft 19M 18M 6521 1263

larsoftobj 0.6M 0.5M 297 297
larwirecell 0.8M 0.7M 364 363

Source checkout with
Github repos

• Development checkout needs

• Determine a users GitHub account, get an access token and save
both for use at another time.

• Fork a primary LArSoft repo to a users GitHub account and set their
fork as the origin with the primary as upstream.

• CMS solved this with git extensions, git-cms-checkout, etc.

• Found a utility, called hub, that performs these functions.

• Proposed change to MRB gitCheckout script to add support to checkout
LArSoft sources from GitHub using the hub utility to manage the forking
of the LArSoft primary repos

https://hub.github.com

Conclusions
• Can reproduce the pull request messaging used by CMS to trigger CI tests

when pull requests are created

• The infrastructure on Github has been created.

• The repo cleanup needed before migrating the LArSoft repos to Github is
understood and reproducible.

• A utility to handle interaction with GitHub from the command line has been
identified.

• Many technical issues with coordinating pull requests from multiple repos
still need to be resolved.

• This is an ongoing effort. A detail deployment plan and documentation is in
the works.

