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Recommended development pattern making things thread-safe

 Start with a module that people use (e.g. EMShower)

Make all data members ‘const’. This guarantees that, without const-casting:

— Objects with fundamental types cannot be changed.
— Only ‘const’-qualified member functions may be called for user-defined types.

All data members must be initialized in the initialization list of the constructor.
— i.e. no ‘reconfigure’ calls

 Make sure that all functions that are called are thread-safe.
— https://indico.fnal.gov/event/20453/session/8/contribution/10/material/slides/0.pdf
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https://indico.fnal.gov/event/20453/session/8/contribution/10/material/slides/0.pdf

Lessons learned from EMShower

« The EMShower module itself was not difficult to make “all const”.

+ It’s all of the function calls under the covers, where things are tricky.
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Lessons learned from EMShower

« The EMShower module itself was not difficult to make “all const”.

It’s all of the function calls under the covers, where things are tricky.

Requires services
— Geometry
— DetectorPropertiesService

Requires algorithms

— EMShowerAlg, which depends on
« ShowerEnergyAlg
» CalorimetryAlg

* ProjectionMatchingAlg
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Lessons learned from EMShower

« The EMShower module itself was not difficult to make “all const”.

It’s all of the function calls under the covers, where things are tricky.

Requires services
— Geometry (thread-safe within a run)
— DetectorPropertiesService (probably thread-safe within an event)

Requires algorithms

— EMShowerAlg, which depends on
« ShowerEnergyAlg (thread-safe within a run)
» CalorimetryAlg (thread-safe within a run, unless exp. + C lifetime correction is chosen)

» ProjectionMatchingAlg (thread-unsafe)
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Lessons learned from EMShower

The EMShower module itself was not difficult to make “all const”.

It’s all of the function calls under the covers, where things are tricky.

- ™
You cannot be assured of thread-safety if you interact with the

- G object only through the (abstract) base class.

By
®
O

Avoid hierarchies:
. Req| * Interact with concrete types

_ gl * InLArSoft, most services/providers need not be polymorphic
- J
« ShowerEnergyAlg (thread-safe within a run)

» CalorimetryAlg (thread-safe within a run, unless exp. + C lifetime correction is chosen)
» ProjectionMatchingAlg (thread-unsafe)
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Upgrade example: Projection Matching Algorithm

« Located in larreco/RecoAlg/PMAlg

« Several global, mutable variables that must be removed for PMAIg to used in a
multi-threaded environment

* Much of it appears to not be used, but it’s difficult to know!
* |n one week’s time, | removed one function-local, static, mutable variable.
* Why does it take so long?

— The code has not been maintained (according to the git history)

— Mutable global variables make behavior hard to predict
— There is not a rigorous test suite (only have “product sizes” to go off)

* | would like to address the other static variables this week or next.
 Also working on DetectorPropertiesService.

Will give more updates as I go.
3£ Fermilab

7 6/18/19 LArSoft coordination meeting



Related issues

« These are issues I've encountered while upgrading EMShower to be thread-safe
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A bug in EMShowerAlg

// Look at each shower
std::vector<int>
shower: :EMShowerAlg: :CheckShowerPlanes(...) {

for (auto it = initialShowers.cbegin(); it != initialShowers.cend(); ++it) {

if (std::distance(initialShowers.chegin(), it) > 0)
continue;

Only first element is ever looked at. Oops.
Original author acknowledges this is a bug.
| have not yet removed it because | am not certain what the effect will be.

Will remove conditional if others think it’s okay.
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art: :Ptrs again

» LArSoft uses many containers of art: :Ptr<T> objects.
« Usual danger is dereferencing the art: :Ptr an unnecessary number of times.

10

art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);
for (art::Ptr<recob::Hit> const& hitPtr : hitPtrs) {
auto const view = hitPtr->View(); // Expensive
auto const peak = hitPtr->PeakTime(); // Expensive
auto const integral = hitPtr->Integral(); // Expensive
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art: :Ptrs again

» LArSoft uses many containers of art: :Ptr<T> objects.
« Usual danger is dereferencing the art: :Ptr an unnecessary number of times.

art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);
for (art::Ptr<recob::Hit> const& hitPtr : hitPtrs) {
recob::H1t const& hit = *hitPtr; // Expensive
auto const view = hit.View();
auto const peak = hit.PeakTime();
auto const integral = hit.Integral();
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art: :Ptrs again

» LArSoft uses many containers of art: :Ptr<T> objects.

« Usual danger is dereferencing the art: :Ptr an unnecessary number of times.

art::PtrVector<recob::Hit> const hitPtrs = get_hits(...)
for (art::Ptr<recob::Hit> const& hitPtr : hitPtrs) {
recob::H1t const& hit = *hitPtr; // Expensive
auto const view = hit.View();
auto const peak = hit.PeakTime();
auto const integral = hit.Integral();

b

» This requires explicit dereferencing by the user.

» A better solution is to present an already dereferenced art: :Ptr to the user.
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lar::to_element

#include "lardata/ArtDataHelpers/ToElement.h"
#include "range/v3/view.hpp"

using namespace ranges::view;
using lar::to_element;

art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);

for (recob::Hit const& hit : hitPtrs | transform(to_element)) {
auto const view = hit.View();
auto const peak = hit.PeakTime();
auto const integral = hit.Integral();

\ e

» A better solution is to present an already dereferenced art: :Ptr to the user.
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lar::to_element

#include "lardata/ArtDataHelpers/ToElement.h"
#include "range/v3/view.hpp"

using namespace ranges::view;
using lar::to_element;

art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);

for (recob::Hit const& hit : hitPtrs | transform(to_element)) {
auto const view = hit.View(); N _
auto const peak = hit.PeakTime(); Expgn&vedenﬁemwmels
auto const integral = hit.Integral(); localized and hidden

\ e

» A better solution is to present an already dereferenced art: :Ptr to the user.
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This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)
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This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

double sum = 0.;
art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);
for (art::Ptr<recob::Hit> const& hitPtr : hitPtrs) {
if (hitPtr->View() == geo::kU) {
sum += hitPtr->Integral();
}

}
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This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

using namespace ranges::view;

double sum = 0.;
art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);
for (recob::Hit const& hit : hitPtrs | transform(to_element)) {
if (hit.View() == geo::kU) {
sum += hitPtr.Integral();
}
s
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This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

using namespace ranges::view;
auto hits_on_u_plane = [](auto const& hit) { return hit.View() == geo::kU; };

double sum = 0.;
art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);
for (recob::Hit const& hit : hitPtrs |
transform(to_element) |
filter(hits_on_u_plane)) {
sum += hit.Integral();

}
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This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

using namespace ranges::view;
auto hits_on_u_plane = []J(auto const& hit) { return hit.View() == geo::kU; };
auto to_integral = []J(auto const& hit) { return hit.Integral(); };

double sum = 0.;
art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);
for (double const integral : hitPtrs |
transform(to_element) |
filter(hits_on_u_plane) |
transform(to_integral)) {
sum += integral;

}
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This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

using namespace ranges::view;
auto hits_on_u_plane = [](auto const& hit) { return hit.View() == geo::kU; };
auto to_integral = []J(auto const& hit) { return hit.Integral(); };

art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);
double sum = accumulate(hitPtrs |
transform(to_element) |
filter(hits_on_u_plane) |
transform(to_integral),
0.);
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This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

using namespace ranges::view;
auto hits_on_u_plane = [](auto const& hit) { return hit.View() == geo::kU; };
auto to_integral = []J(auto const& hit) { return hit.Integral(); };

double sum = accumulate(get_hits(...) |
transform(to_element) |
filter(hits_on_u_plane) |
transform(to_integral),
0.);
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This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

using namespace ranges::view;
auto hits_on_u_plane = []J(auto const& hit) { return hit.View() == geo::kU; };
auto to_integral = [](auto const& hit) { return hit.Integral(); };

double const sum = accumulate(get_hits(...) |
transform(to_element) |
filter(hits_on_u_plane) |
transform(to_integral),
0.);
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This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

using namespace ranges::view;
auto hits_on_u_plane = []J(auto const& hit) { return hit.View() == geo::kU; };
auto to_integral = [](auto const& hit) { return hit.Integral(); };

double const sum = accumulate(get_hits(...) |
transform(to_element) |
filter(hits_on_u_plane) |
transform(to_integral),
0.);

lar::to_element is available on the lardata:feature/team_for_mt branch
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util: :CreateAssn almost unnecessary

24

The util: :CreateAssn overloads encapsulate Assns-creation idioms, which
would otherwise be more verbose.

— There are many overloads—hard to understand
— Due to older interface, there is a lot of coupling to the framework

The overloads are almost unnecessary with the art: :PtrMaker template.
— They do provide one-to-many Assns support, which is not supported by Assns directly.

art 3.04 will support Assns: :addMany

Proposal: once LArSoft has upgraded to art 3.04, util: :CreateAssn should be
first deprecated, then removed.
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Services for art 3.04 (ish)

« Experiments have requested the ability to remove unused services from their
configuration.

— |t has been difficult for the framework to know how to do this.

« The art project has been granted permission to implement a system that allows for
service-configuration pruning.

* |n addition, the system will:
— Enable ‘art --print-description’ to tell you what services are required for a given plugin
— Restrict where service handles can be created.

« Stay tuned.
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