Office of

#Fermilab @})EDNEPAERTﬁEFY Science

Making EMShower thread-safe and related issues

Kyle J. Knoepfel
10 September 2019
LArSoft coordination meeting

Recommended development pattern making things thread-safe

 Start with a module that people use (e.g. EMShower)

Make all data members ‘const’. This guarantees that, without const-casting:

— Objects with fundamental types cannot be changed.
— Only ‘const’-qualified member functions may be called for user-defined types.

All data members must be initialized in the initialization list of the constructor.
— i.e. no ‘reconfigure’ calls

 Make sure that all functions that are called are thread-safe.
— https://indico.fnal.gov/event/20453/session/8/contribution/10/material/slides/0.pdf

2% Fermilab

2 6/18/19 LArSoft coordination meeting

https://indico.fnal.gov/event/20453/session/8/contribution/10/material/slides/0.pdf

Lessons learned from EMShower

« The EMShower module itself was not difficult to make “all const”.

+ It’s all of the function calls under the covers, where things are tricky.

3 6/18/19 LArSoft coordination meeting

2% Fermilab

Lessons learned from EMShower

« The EMShower module itself was not difficult to make “all const”.

It’s all of the function calls under the covers, where things are tricky.

Requires services
— Geometry
— DetectorPropertiesService

Requires algorithms

— EMShowerAlg, which depends on
« ShowerEnergyAlg
» CalorimetryAlg

* ProjectionMatchingAlg
2 Fermilab

4 6/18/19 LArSoft coordination meeting

Lessons learned from EMShower

« The EMShower module itself was not difficult to make “all const”.

It’s all of the function calls under the covers, where things are tricky.

Requires services
— Geometry (thread-safe within a run)
— DetectorPropertiesService (probably thread-safe within an event)

Requires algorithms

— EMShowerAlg, which depends on
« ShowerEnergyAlg (thread-safe within a run)
» CalorimetryAlg (thread-safe within a run, unless exp. + C lifetime correction is chosen)

» ProjectionMatchingAlg (thread-unsafe)
2& Fermilab

5 6/18/19 LArSoft coordination meeting

Lessons learned from EMShower

The EMShower module itself was not difficult to make “all const”.

It’s all of the function calls under the covers, where things are tricky.

- ™
You cannot be assured of thread-safety if you interact with the

- G object only through the (abstract) base class.

By
®
O

Avoid hierarchies:
. Req| * Interact with concrete types

_ gl * InLArSoft, most services/providers need not be polymorphic
- J
« ShowerEnergyAlg (thread-safe within a run)

» CalorimetryAlg (thread-safe within a run, unless exp. + C lifetime correction is chosen)
» ProjectionMatchingAlg (thread-unsafe)

2% Fermilab

6 6/18/19 LArSoft coordination meeting

Upgrade example: Projection Matching Algorithm

« Located in larreco/RecoAlg/PMAlg

« Several global, mutable variables that must be removed for PMAIg to used in a
multi-threaded environment

* Much of it appears to not be used, but it’s difficult to know!
* |n one week’s time, | removed one function-local, static, mutable variable.
* Why does it take so long?

— The code has not been maintained (according to the git history)

— Mutable global variables make behavior hard to predict
— There is not a rigorous test suite (only have “product sizes” to go off)

* | would like to address the other static variables this week or next.
 Also working on DetectorPropertiesService.

Will give more updates as I go.
3£ Fermilab

7 6/18/19 LArSoft coordination meeting

Related issues

« These are issues I've encountered while upgrading EMShower to be thread-safe

2% Fermilab

8 6/18/19 LArSoft coordination meeting

A bug in EMShowerAlg

// Look at each shower
std::vector<int>
shower: :EMShowerAlg: :CheckShowerPlanes(...) {

for (auto it = initialShowers.cbegin(); it != initialShowers.cend(); ++it) {

if (std::distance(initialShowers.chegin(), it) > 0)
continue;

Only first element is ever looked at. Oops.
Original author acknowledges this is a bug.
| have not yet removed it because | am not certain what the effect will be.

Will remove conditional if others think it’s okay.

2% Fermilab

9 6/18/19 LArSoft coordination meeting

art: :Ptrs again

» LArSoft uses many containers of art: :Ptr<T> objects.
« Usual danger is dereferencing the art: :Ptr an unnecessary number of times.

10

art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);
for (art::Ptr<recob::Hit> const& hitPtr : hitPtrs) {
auto const view = hitPtr->View(); // Expensive
auto const peak = hitPtr->PeakTime(); // Expensive
auto const integral = hitPtr->Integral(); // Expensive

6/18/19 LArSoft coordination meeting

2% Fermilab

art: :Ptrs again

» LArSoft uses many containers of art: :Ptr<T> objects.
« Usual danger is dereferencing the art: :Ptr an unnecessary number of times.

art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);
for (art::Ptr<recob::Hit> const& hitPtr : hitPtrs) {
recob::H1t const& hit = *hitPtr; // Expensive
auto const view = hit.View();
auto const peak = hit.PeakTime();
auto const integral = hit.Integral();

2% Fermilab

11 6/18/19 LArSoft coordination meeting

art: :Ptrs again

» LArSoft uses many containers of art: :Ptr<T> objects.

« Usual danger is dereferencing the art: :Ptr an unnecessary number of times.

art::PtrVector<recob::Hit> const hitPtrs = get_hits(...)
for (art::Ptr<recob::Hit> const& hitPtr : hitPtrs) {
recob::H1t const& hit = *hitPtr; // Expensive
auto const view = hit.View();
auto const peak = hit.PeakTime();
auto const integral = hit.Integral();

b

» This requires explicit dereferencing by the user.

» A better solution is to present an already dereferenced art: :Ptr to the user.

12 6/18/19 LArSoft coordination meeting

2% Fermilab

lar::to_element

#include "lardata/ArtDataHelpers/ToElement.h"
#include "range/v3/view.hpp"

using namespace ranges::view;
using lar::to_element;

art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);

for (recob::Hit const& hit : hitPtrs | transform(to_element)) {
auto const view = hit.View();
auto const peak = hit.PeakTime();
auto const integral = hit.Integral();

\ e

» A better solution is to present an already dereferenced art: :Ptr to the user.
2& Fermilab

13 6/18/19 LArSoft coordination meeting

lar::to_element

#include "lardata/ArtDataHelpers/ToElement.h"
#include "range/v3/view.hpp"

using namespace ranges::view;
using lar::to_element;

art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);

for (recob::Hit const& hit : hitPtrs | transform(to_element)) {
auto const view = hit.View(); N _
auto const peak = hit.PeakTime(); Expgn&vedenﬁemwmels
auto const integral = hit.Integral(); localized and hidden

\ e

» A better solution is to present an already dereferenced art: :Ptr to the user.
2& Fermilab

14 6/18/19 LArSoft coordination meeting

This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

2% Fermilab

15 6/18/19 LArSoft coordination meeting

This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

double sum = 0.;
art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);
for (art::Ptr<recob::Hit> const& hitPtr : hitPtrs) {
if (hitPtr->View() == geo::kU) {
sum += hitPtr->Integral();
}

}

2% Fermilab

16 6/18/19 LArSoft coordination meeting

This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

using namespace ranges::view;

double sum = 0.;
art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);
for (recob::Hit const& hit : hitPtrs | transform(to_element)) {
if (hit.View() == geo::kU) {
sum += hitPtr.Integral();
}
s

2% Fermilab

17 6/18/19 LArSoft coordination meeting

This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

using namespace ranges::view;
auto hits_on_u_plane = [](auto const& hit) { return hit.View() == geo::kU; };

double sum = 0.;
art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);
for (recob::Hit const& hit : hitPtrs |
transform(to_element) |
filter(hits_on_u_plane)) {
sum += hit.Integral();

}

2% Fermilab

18 6/18/19 LArSoft coordination meeting

This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

using namespace ranges::view;
auto hits_on_u_plane = []J(auto const& hit) { return hit.View() == geo::kU; };
auto to_integral = []J(auto const& hit) { return hit.Integral(); };

double sum = 0.;
art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);
for (double const integral : hitPtrs |
transform(to_element) |
filter(hits_on_u_plane) |
transform(to_integral)) {
sum += integral;

}

2% Fermilab

19 6/18/19 LArSoft coordination meeting

This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

using namespace ranges::view;
auto hits_on_u_plane = [](auto const& hit) { return hit.View() == geo::kU; };
auto to_integral = []J(auto const& hit) { return hit.Integral(); };

art::PtrVector<recob::Hit> const hitPtrs = get_hits(...);
double sum = accumulate(hitPtrs |
transform(to_element) |
filter(hits_on_u_plane) |
transform(to_integral),
0.);

2% Fermilab

20 6/18/19 LArSoft coordination meeting

This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

using namespace ranges::view;
auto hits_on_u_plane = [](auto const& hit) { return hit.View() == geo::kU; };
auto to_integral = []J(auto const& hit) { return hit.Integral(); };

double sum = accumulate(get_hits(...) |
transform(to_element) |
filter(hits_on_u_plane) |
transform(to_integral),
0.);

2% Fermilab

21 6/18/19 LArSoft coordination meeting

This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

using namespace ranges::view;
auto hits_on_u_plane = []J(auto const& hit) { return hit.View() == geo::kU; };
auto to_integral = [](auto const& hit) { return hit.Integral(); };

double const sum = accumulate(get_hits(...) |
transform(to_element) |
filter(hits_on_u_plane) |
transform(to_integral),
0.);

2% Fermilab

22 6/18/19 LArSoft coordination meeting

This is a range-based approached to algorithms

« We often write procedural code (the “how”) instead of declarative code (the “what”)

using namespace ranges::view;
auto hits_on_u_plane = []J(auto const& hit) { return hit.View() == geo::kU; };
auto to_integral = [](auto const& hit) { return hit.Integral(); };

double const sum = accumulate(get_hits(...) |
transform(to_element) |
filter(hits_on_u_plane) |
transform(to_integral),
0.);

lar::to_element is available on the lardata:feature/team_for_mt branch

2% Fermilab

23 6/18/19 LArSoft coordination meeting

util: :CreateAssn almost unnecessary

24

The util: :CreateAssn overloads encapsulate Assns-creation idioms, which
would otherwise be more verbose.

— There are many overloads—hard to understand
— Due to older interface, there is a lot of coupling to the framework

The overloads are almost unnecessary with the art: :PtrMaker template.
— They do provide one-to-many Assns support, which is not supported by Assns directly.

art 3.04 will support Assns: :addMany

Proposal: once LArSoft has upgraded to art 3.04, util: :CreateAssn should be
first deprecated, then removed.

2% Fermilab

6/18/19 LArSoft coordination meeting

Services for art 3.04 (ish)

« Experiments have requested the ability to remove unused services from their
configuration.

— |t has been difficult for the framework to know how to do this.

« The art project has been granted permission to implement a system that allows for
service-configuration pruning.

* |n addition, the system will:
— Enable ‘art --print-description’ to tell you what services are required for a given plugin
— Restrict where service handles can be created.

« Stay tuned.

2% Fermilab

25 6/18/19 LArSoft coordination meeting

