MILO VERMEULEN — 12/09/2019 OVERLAPPING П⁰ SHOWERS

BACKGROUND

- π^0 are produced in hadronic interactions, decay $\pi^0 \rightarrow \gamma\gamma$
- Potential to look like electron shower if:
 - Only one γ shower is reconstructed
 - The shower occurs close to the π⁰ vertex
- How good is Pandora at distinguishing the two γ showers?

OPENING ANGLE

• Opening angle: the angle between π^0 photons θ

OPENING ANGLE — PARAMETERS

OPENING ANGLE — PARAMETERS

• Opening angle
$$\cos \theta = 1 - \frac{2m_{\pi^0}^2}{E_{\pi^0}^2(1 - \alpha^2)}$$

Data: 30,000 single 2 GeV п⁺ in ProtoDUNE, standard beam position (~20,000 п⁰)

OPENING ANGLE — PARAMETERS

• Very few double showers reconstructed at $E_{\pi} > 1$ GeV?

6

RECONSTRUCTION EFFICIENCY

- Number of showers reconstructed per π⁰
- Drop at $\theta < 0.5$ for 2 showers suggests overlap

RECONSTRUCTION EFFICIENCY

- Number of showers reconstructed per π⁰
- Drop at $\theta < 0.5$ for 2 showers suggests overlap

RECONSTRUCTION EFFICIENCY — LARGE ANGLE, LOW ENERGY

- Photon energy is lower for larger opening angles
- Shower reconstruction efficiency drops off at low energy

RECONSTRUCTION EFFICIENCY — LARGE ANGLE, LOW ENERGY

- Photon energy is lower for larger opening angles
- Shower reconstruction efficiency drops off at low energy

RECONSTRUCTION EFFICIENCY — SMALL ANGLE, HIGH ENERGY

High energy π⁰ cause overlapping high energy photons

DOUBLE SHOWER FEATURES

- Different dE/dx (first 5 cm) for overlapping showers?
- Not really

Number of shower hits > 400

DOUBLE SHOWER FEATURES

Different number of initial hits for overlapping showers?

Charge / cm in the first 5 cm

SUMMARY

- π^0 showers seem to be overlapping at $E_{\pi} > 1$ GeV
- So far no luck untangling these

- Effects other than overlap?
- Should gather more statistics in small angle region
 → more energetic п⁰s

BACKUP — MC-RECO MATCHING

- Photons can be considered reconstructed if they are the primary energy contributor to a shower object
- Energy contributions to hits accessed via backtracker
- Tools in ProtoDUNETruthUtils

BACKUP — ASYMMETRY

•
$$\alpha = \frac{E_+ - E_-}{E_+ + E_-}$$

$$\alpha = \beta \cos \theta^* = \frac{E_\pi^2 - m_\pi^2 c^4}{E_\pi^2} \cos \theta^*$$
$$\cdot \cos \theta = 1 - \frac{2m_\pi^2}{E_\pi^2(1 - \alpha^2)}$$

Shown here: MC points for $E_{\pi} > 0.5$

BACKUP — П^o SAMPLE

~ 20,000 п⁰s in 30,000 2 GeV п⁺ events

BACKUP — PHOTON RECONSTRUCTION EFFICIENCIES

- Graphs look to be in close agreement with TDR, if a little lower
- Might be caused by close proximity to other showers

BACKUP — DE/DX

- The dE/dx of each hit is determined in a cylinder at the start of a shower
- The median of this distribution gives an indication for the shower's dE/dx

