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The data are produced by simulation or gathered from
test facilities. It is the analyzed by plotting features vs
other features to see how data are distributed in the
parametric space. Different metrics can be implemented
to test the data. The data size is also filtered to reduce
noise and error, complexity, and the large quantity of
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—==c. model LLRF and beam-based feedback systems for Linac-driven FELs. The software
\ ™" includes models of cavities (with electromagnetic eigen-modes), of RF stations (RF
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mechanical modes) and of Linac sections (cryomodules + bunch compressor). It
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measuring of beam performance parameters.

the multi objective GA to find the optimal parameters to
be used in the control system of the LLRF. A Gaussian
process network is trained to give an estimate of the
energy with a confidence interval for the given error,
whereas a deep learning (DL) structure finds the optimal
parameters with that given confidence interval, so that if
the uncertainty is too big in the energy estimation, we
select another set of optimal parameters.
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- Conclusions and Future Work

Detuning: Afc = 10 - sin(2m100t) Hz, with feed-forward h In this research, an advanced control technique is being developed based on ML algorithms to improve the performance of
— e 004 R . existing Pl controllers for LLRF systems. Our goal is to design a ML algorithm capable of select the optimal proportional
’ and integral gains with a more satisfactory performance.
The application of Al in general and ML techniques in particular to improve control systems that require high
Brmns S0000000000000000000000000000000000000000000000000000000C I o performance is a relatively new approach that benefits of the superior performance in data driven estimation of some ML
0.00{ eeseeseesessserssansracsansassensensesnssansrnasrasenssenssssnet’ technigues due to their high complexity and efficient modern training criteria and algorithms. In particular we aim to use DL
B — 8 9 o 11 12 13 14 15 16 and GP to help reduce the effect of noise in the control system with a short computational time with respect to other
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traditional approaches.
Signal Error Future work will integrate the Al framework with the simulation data and real data gather during test of cryomodules.
Mieasurement Roise: 149 dBcfMz 10l  Nominal Configuration Additionally, these techniques will be applied to other challenging problems like microphonics, where current control
" ~— Nominal HoBiCaT approaches show limited performance.
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support.
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Designing the structure of the
deep learning optimally
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