
Artificial Intelligence Framework

CMOC
The CryoModule-On-Chip (CMOC) is a simulation engine developed at LBNL to

model LLRF and beam-based feedback systems for Linac-driven FELs. The software

includes models of cavities (with electromagnetic eigen-modes), of RF stations (RF

source + Cavity + FPGA Controller), of cryomodules (Piezo tuners + RF Stations +

mechanical modes) and of Linac sections (cryomodules + bunch compressor). It

considers beam instrumentation, loop delays and sources of noise. Also allows for

measuring of beam performance parameters.

Motivation
Traditional techniques to deal with microphonics

involve characterization of the resonant modes of the

structure and identification of sources of microphonics,

to then be able to isolate and damp by mechanical

modifications. Active Resonance Control (ARC) has

shown promising results in compensation of

microphonics with piezo tuners. In this research we

explore Machine Learning techniques to improve

actual control techniques for LLRF systems.

The artificial intelligence

procedure in the LLRF consists

of an optimization phase and a

machine learning (ML) phase.

They together define the optimal

parameters for the control

system. In the optimization

phase, the RMS error of voltage

amplitude and phase is

minimized through a multi

objective genetic algorithm (GA)

to optimize the proportional and

integral gains of the PI controller.

The inputs to the optimization

algorithm are the signal of the

cavity and the signal change

rate, which are fed to the control

systems. After the optimization,

the PI is used to produce

measurements of the settling

time, RMS steady state error,

and energy to be used in the ML

algorithm.
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In this research, an advanced control technique is being developed based on ML algorithms to improve the performance of

existing PI controllers for LLRF systems. Our goal is to design a ML algorithm capable of select the optimal proportional

and integral gains with a more satisfactory performance.

The application of AI in general and ML techniques in particular to improve control systems that require high

performance is a relatively new approach that benefits of the superior performance in data driven estimation of some ML

techniques due to their high complexity and efficient modern training criteria and algorithms. In particular we aim to use DL

and GP to help reduce the effect of noise in the control system with a short computational time with respect to other

traditional approaches.

Future work will integrate the AI framework with the simulation data and real data gather during test of cryomodules.

Additionally, these techniques will be applied to other challenging problems like microphonics, where current control

approaches show limited performance.
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The ML algorithms are trained with the data produced by

the multi objective GA to find the optimal parameters to

be used in the control system of the LLRF. A Gaussian

process network is trained to give an estimate of the

energy with a confidence interval for the given error,

whereas a deep learning (DL) structure finds the optimal

parameters with that given confidence interval, so that if

the uncertainty is too big in the energy estimation, we

select another set of optimal parameters.

Beam current is active between 15 and 17.5 seconds. Froward, reverse and cavity signals are perturbed and

can go beyond the limits. Feed forward control keeps the cavity signal between limits. Error in the cavity signal

is simulated under values of beam current, gain configurations and with and without feed forward control.

Similar simulations are performed for microphonic detuning and measurement noise

The data are produced by simulation or gathered from

test facilities. It is the analyzed by plotting features vs

other features to see how data are distributed in the

parametric space. Different metrics can be implemented

to test the data. The data size is also filtered to reduce

noise and error, complexity, and the large quantity of

data. After each elimination of data, the data are

analyzed again to evaluate quality.

The deep learning is

implemented on the Argonne

National Laboratory high

performance computer. It is

implemented by TensorFlow,

which can efficiently

implement the learning in

presence of high amounts of

training data and high

structural complexity. The

structure of the deep learning

is designed with optimization

algorithms. The loss function

of this optimization is chosen

to be the mean absolute

percentage error (MAPE).


