Estimating key operation parameters for SRF cavities in CW.

A. Bellandi^{*}, J. Branlard, Ç. Gümüş, A. Nawaz, M. Omet, S. Pfeiffer, C. Schmidt **DESY**, Hamburg, Germany

Future superconducting continuous wave (CW) linear accelerators for hard X-ray free electron lasers will need tight control on cavity parameters such as the detuning and RF bandwidth to achieve a cavity accelerating field regulation within the specifications. It is further requiread to minimize the RF power in order to reduce construction costs. For European XFEL a proposal to add a CW mode of operation requires to lower the cavity bandwidth to some tens of hertz, one order of magnitude smaller than the one currently used in pulsed operation with a required input RF power of some kilowatts per cavity. Therefore a high sensitivity of the cavity detuning to external microphonic excitations is expected as well as coupler heating related to drifts of the cavity bandwidth. In such a case the LLRF control system has to detect these disturbances and react accordingly by either automatically bringing the cavity parameters back to their nominal values or informing the operators about the system status. This paper proposes a way to continuously measure the detuning and RF bandwidth using a real time evaluation of inverted cavity equations. Preliminary test results of the implemented algorithms at the Cryo Module Test Bench (CMTB) and the European XFEL are presented.

European XFEL CW/LP upgrade

- Higher bunch repetition rate and current up to 0.025 mA
- Higher bunch spacing is beneficial for many FEL experiments
- Bunch repetition rate and spacing can be traded for beam energy for more flexible operations

After the upgrade European XFEL will be able to switch between SP and CW/LP mode of operation!

Double the cryogenic plant capacity to 5kW

- Replace injector cryomodules with higher Q ones (> 2.8 10¹⁰). These cryomodules will be able to operate in the range of $Q_1 \sim 10^6 - 10^8$
- Install Induction Output Tubes (IOT) with pulsed multi beam klystrons
- Modify the RF distribution system to allow selectable SP or CW/LP operations
- Add 12 modules to the main linac

ΙΟΤ

Mode	Bunch number	Bunch spacing	Energy
CW		Î	Ļ
LP			
SP	Ļ	Ļ	

European XFEL has a single, 5.2 m diameter, 1.5 km long tunnel for the accelerating section

For the upgrade the size of every component has to be optimized

Because of RF costs, size and the need to keep SP mode of operation, the Vector Sum drive scheme will be used for CW/LP and SP mode

Coupler Heating

Power in function of loaded Q

Unwanted coupler heating loop

- Because of the expected loaded quality factor during CW operations, between 10⁷ and 10⁸ every cavity is expected to need some kilowatts of RF power to reach the desired gradient of 16MV/m in the injector
- This produces a noticeable coupler heating. The Q₁ is changed due to the mechanical variation of the coupler Variation of loaded Q due to coupler heating

Cryo Module Test Bench (CMTB)

Module XM50.1

- European XFEL production module
- Equipped with eight TESLA cavities
- Q_{o} at 2 K and 15 MV/m ~ 1.8x10¹⁰
- The couplers were modified to operate in a range of **Q**. between $10^{6} - 10^{8}$
- At CMTB since the beginning of this year

LLRF crate 120 kW output

- coupling has to be preemptively readjusted to avoid an excessive RF power consumption
- In CW the decay measurement method cannot be used

Proposed Q_{evt} measurement method in CW

The method is insensitive to detuning

Cavity equivalent circuit

- It allows to maximize the beam delivery time
- Can be used to decide whether to change the coupling
- Because the changes in coupling might change the phase relationship between the RF signals, the reflected one has to be corrected applying a rotation $V_r \rightarrow V_r e^{i\theta}$

Equations

It is possible to demonstrate that

Measurements done changing the coupler insertion Q_{avt}-virtual probe vs **Q**₁-decay comparison

19" XFEL 16 ch piezo driver (external)

Detuning and quench detection

22.3 dB gain

54 %

efficiency

Proposed LLRF extension

Computed detuning

Time [s]

- IxQ cavity signals sampled by SIS 8300L2 ADCs are sent at 9 MHz rate to a DAMC-TCK7 card
- The signals are rotated to match the coupler produced rotation.
- The signals are downconverted by a factor 90 by a Cascaded Integrator–Comb decimator filter. In such a process the high frequency noise is removed
- The derivative of the probe is computed
- Cavity equations are used to compute the detuning and the bandwidth of the cavity

filling-flattop-decay pulse

transients

Measured in SP mode

- Significant deviations if not corrected
- Correcting the reflected phase produces a good agreement between the two methods

Loaded Q (decay) 1e7

Measured in LP mode (duty 50%)

- Significant deviations at higher Q
- Correcting the reflected signal didn't produce improvements
- The measurement has to be redone with pure thermal Q changes

1e-3

Time [s]

Conclusion

A blueprint of the parameter estimation scheme was done

1e-3

- For Q_{axt} estimation the measurements are promising. Further tests are required for CW operations
- For the detuning and quench detection some preliminary simulations on European XFEL data were done. The component has to be implemented in our LLRF controller and tested at CMTB.

Computed Q

- The parameters for the CIC decimator have to optimized. A possible droop compensator after the interpolator is under evaluation.
- The detuning estimation will be used in the piezo-based active noise cancellation of the microphonics

*andrea.bellandi@desy.de

HELMHOLTZ **RESEARCH FOR GRAND CHALLENGES**

September 29, 2019 - October 3, 2019 Swissotel Chicago, Illinois, USA

Partnership of Universität Hamburg and DESY

