LLRF Presentation, Chicago, 30 Sept, 2019

Overview of Gravitational Waves and the Technologies Used in LIGO

Richard Abbott Electronics Engineer LIGO Laboratory, California Institute of Technology For the LSC

Caltech

Image Credit: Aurore Simmonet/SSU

LIGO-G1901784-v1

LIGO

Outline

- The Story of September 14th, 2015
- Some Neutron Stars
- What are Gravitational Waves?
- How does LIGO Work?
- How does LIGO deal with Noise?

2:50 AM PST

Neutron Star Merger

Multi-messenger observations

 The *Fermi* Gamma-ray Burst Monitor independently detected a **gamma-ray burst** (GRB170817A) with a timedelay of ~1.7 s with respect to the merger time.
Confirmed by INTEGRAL

Binary neutron star (BNS) mergers are progenitors of (at least some) SGRBs

The Astrophysical Journal Letters, 848:L13(27pp), 2017 October 206

Gravity & Curved Space-time

Gravitational Waves

Gravitational Waves

1000 kg

Gravitational Waves

the evidence

LIGO

LIGO Laboratory is operated by Caltech and MIT

LIGO Laboratory: 190 staff located at Caltech, MIT, Hanford, Livingston

LIGO Scientific Collaboration: ~ 1100 scientists, ~80 institutions, 15 countries that do the science of LIGO

The LIGO VacuumSystem9000 m³ volume30000 m² surface area50000 m of spiral welds1/10000000000 AtmosphePressureAt each observatory!

Criteria for GW detection

- The same waveform must be seen at the Louisiana and Washington sites within ± 10 mSec
- The waveform at a site cannot be coincident with signals from the environmental monitors at the site
 - 3 axis seismometers
 - 3 axis accelerometers on the chambers
 - Tilt meters
 - Microphones
 - Magnetometers
 - RF monitors
 - Line voltage monitors
 - Wind speed monitors
- The waveform at a site cannot be coincident with auxiliary signals in the interferometer not directly associated with the gravitational wave output
 - Alignment control signals
 - Laser frequency and amplitude control signals
 - Approximately 10⁵ sensing signals within the instrument

Journey to 10⁻¹⁸ meters (Sensing)

- 10⁻⁶ m Wavelength of Light
 - $10^{-12} \text{ m} \text{Split into } 10^6 \text{ slices}$
 - 10⁻¹⁷ m Optical Resonance
 - 10⁻¹⁹ m Laser Power (~100W)

Strain Sensitivity During O2

Journey to 10⁻¹⁸ meters (Isolation)

- $10^{-6} \text{ m/}\sqrt{\text{Hz}}$ Ground Motion at ~0.15Hz
 - 10⁻⁹ m Ground Motion at 10Hz
 - 10⁻¹² m Active Seismic Isolation
 - 10⁻²⁰ m Quadruple Pendulum

Isolation Performance

Advanced LIGO Interferometer

Noise Sources

Tidal Forces on Earth's Crust*

Ocean Wave Microseism*

Unanticipated Random Noise

Earthquakes*

Freight Train *

Anthropogenic Sources*

Noise Sources (Avian)

Advanced LIGO Quadruple Suspension Credit Caltech/MIT/LIGO Lab

Inside a HAM Chamber

Opto-electronics Inside Vacuum Chamber

Thanks to LLRF Committee!

• gracedb.ligo.org/superevents/public/O3

Gravitational Wave Events 4+

LIGO/Virgo alerts from GCN Peter Kramer

***** 4.7, 11 Ratings

Free

Available at the App Store for iOS devices