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Ponderomotive Instability of RF Cavities with Vector Sum, and 
Cure By Difference Control

Generator Driven (GD) presented here

Most GD results have SE analogs. Any GD result that relies 
on a “symmetry argument” carries over to SE case.

Self Excited (SE) Loop: see references

Shane Koscielniak, TRIUMF
2019 October 03

All results have been derived analytically (Routh-Hurwitz analysis in Mathematica)
Many results presented here are numerical examples – to avoid writing equations.

Paper LLRF2019/ 207
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Reproduced 
from T. Schilcher

Generator Driven (GD)

External tuning control, and 
internal detuning from Lorentz 
Force and microphonics
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Reproduced 
from T. Schilcher

Self-Excited (SE) Loop

External tuning control, and 
internal detuning from Lorentz 
Force and microphonics
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Static Lorentz Force Detuning
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Qualitative Lorentz pressure for 
TM010 mode in a pillbox cavity.
Diagram from 
M. Parise 2018 JINST 13 T05010

Calculation adapted from Y. Yamazaki, 
Proc. Frontiers of Accelerator 
Technology, World Scientific, 1996

If the electric & magnetic field amplitudes 
(E &H) are time varying, then the Lorentz 
force detuning is time dependent; 
and includes dynamics of cavity inertia 
and elasticity.

• Cavity responds to forces by changing 
shape, resulting in volume changes ΔV.

• Slater’s Theorem gives the change in 
resonance frequency Ω.

Internal radiation pressure:
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Cavity Mechanical and Electrical Response

Cavity Electromagnetic (EM) Response
• Cavity EM mode modelled by parallel resonance LCR circuit. 
• Pure sinusoidal oscillations Exp[+jωt]
• Drive current source I 
• Response is voltage V = Z×I
• Impedance Z=R Cos[ψ]Exp[+jψ]
• Detuning angle (ψ) quantifies the difference between  drive 

frequency ω and resonance frequency ωc of the cavity.

ω drive> ω resω drive <  ω res

Ψ > 0
Voltage leads current
(inductive reactance 
dominates)

Ψ < 0
Voltage lags current
(capacitive reactance 
dominates)

Sinψ

Normalized 
amplitude, Cosψ

Tan[Ψ]=(ωc
2-ω2)/(2αω)  and  α=ωc /(2Qc)

V0 = Vg Cos[Ψ]                     and τc = 1/α

Cavity Mechanical Response
• Coupling coefficients between frequency shift and cavity 

voltage are defined at DC.
• Δωc = -kDC V0

2 where kDC = Σm km is sum of mechanical modes
• Mode m response to (DC) voltage modulations (ac):
• δωc = -2kmV0

2av

• Let – δωcτc ≡ Kmav and KL = Σm Km be normalized values
• Mechanical resonator response (slide #9) extends  dynamical 

behavior to AC. Phase ψ/(π/2) 

ω drive
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“Static Lorentz Force Detuning” instability (a.k.a montonic instability)
Have enough information to find a fundamental GD 
stability condition: Ψ < 0  → ω drive> ω res

Excitation pulls resonance curve to 
lower frequency, which increases 
amplitude of response
⇒ Positive feedback within the 

cavity
⇒ Instability

Excitation pulls resonance curve 
to lower frequency, which 
reduces amplitude of response
⇒ Negative feedback within 

the cavity
⇒ stability

Changes of frequency and voltage depend on local 
derivative of the resonance curve
MM Resonator Response: (∂ω/∂aV) ≈ -2KLCos[ψ]
EM Resonator Response:   (∂aV/∂ω) ≈ -Sin[ψ]
At threshold, product of amplification factors is unity.
(∂ω/∂aV)MM(∂aV/∂ω)EM ≈ 2KLCos[ψ]Sin[ψ] =1
Hence threshold for monotonic instability 
KL< 1/(2Cosψ Sinψ) = 1/Sin[2ψ]
KL ∝ V0

2 so eventually the instability is always reached.

Ψ>0 Ψ<0

Ψ>0

Ψ<0 Instability is near DC, because this is the only frequency 
at which mechanical modes can all cooperate

threshold
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Coordinate ω versus coordinate Ψ

• For mathematical analysis, the natural and simplest variable is angle Ψ.
• But in the real world we deal with angular frequency ω
• Therefore we are interested how the threshold varies with ω

∂K/∂ω = (∂K/∂Ψ) (∂Ψ/∂ω) ≈ (∂K/∂Ψ).(-2Qc/ωc) Cos2Ψ

• To get a real feeling for how very sensitive is the threshold with respect to errors
in cavity tuning, consider the following:

• In the range Ψ =[0, π/4]  which maps to the tuning range Δω = [0, ½ bandwidth ], 
the threshold varies from infinite to KL=1.

• The range Δω = one bandwidth corresponds to Ψ = 1.1 radian.
• FYI, π/4 ≈ 0.785

Hence the sensitivity is greater for small cavity bandwidth ωc/Qc
(i.e. high Qc).

A “microphonic” is an excitation of a mechanical mode. A subset of the modes couple to the EM 
resonance frequency. Such modes will eat into the stable detuning region and stability margin.
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Oscillatory instability
• EM resonator pumps the mechanical mode (MM) displacement amplitude 
• MM pumps the voltage modulation index av = δV/V0 – but not V0.

MM oscillates at (or near) its resonance frequency Ωm. 
Response is boosted by MM quality factor Qm.
Hence δωc τc ≈ -2QmKm av

During mechanical oscillation, the cavity EM resonance moves up and down in frequency
The effect is to drive the cavity at upper and lower sidebands (ω ± Ωm) with FM depth δωc, leading to 
changes in the amplitude response.
Differencing of sidebands leads to a net excitation ∝ Cos(ψ+δψ) -Cos(ψ-δψ) with δψ≈Ωmτc , leading to
av ≈ 2 SinΨCosΨ (δωcτc)(Ωmτc)

At threshold, the net amplification factor is unity

Hence threshold Km ≈ -(1+ρ2)/[2ρQmKm Sin(2Ψ)] where ρ= Ωmτc.
[expression is valid for ρ≈ 1]
Oscillatory instability occurs above resonance (i.e. Ψ<0)

τc = EM filling time 
= 2/(cavity EM bandwidth)

[δωc/ av]MM[av/δωc]EM ≈ -4QmKm(Ωmτc)SinΨCosΨ = 1
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Monotonic threshold is insensitive to dynamics

Oscillatory threshold 
• Depends on dynamics
• parameter ρ = τc Ωm = (EM time constant)×(MM frequency)
• ρ answers question: is Ωm inside or outside cavity EM bandwidth?
• ρ has large dynamic range:

• ρ >> 1 light loading of cavity Qc (see references); typically very stable
• ρ ≈ 1 heavy loaded Qc regime (example here); typically prone to instability

Mechanical Mode (MM) dynamics:

Instability Classification
 Complex frequency s = σ + iω
 Monotonic instability: σ ≥0 and ω=0

 threshold depends on KL & ψ
 Oscillatory instability: σ ≥0 and ω ≠ 0

 threshold depends on Km, Qm, ρ & ψ

Instability Analysis
• Find steady state solution of nonlinear dynamical equation for 

RF cavity coupled to linear mechanical resonator
• Make small perturbations & discard products of small quantities
• Laplace transform (convert ODE to algebraic equation)
• Obtain characteristic equation
• Apply Rough-Hurwitz criteria, or find roots numerically. Note Bene: these ponderomotive 

instabilities have some similarity to the 
Robinson instability in rings.
MM takes role of charged particle beam.
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Single Cavity – no loops
• monotonic threshold: KL <1/Sin[2ψ]

• oscillatory threshold ∝ ρ/Qm which may be less than Km

Single Cavity – with only fast* tuning control
• monotonic threshold KL < 1/2 (Kt Cot[ψ]+Tan[ψ])
• oscillatory threshold Km ∝ Kt/Qm when ρ ≈ 1 ; 
• need minimum of Kt > √Qm when ρ ≈ 1 

monotonic

oscillatory

monotonicoscillatory

Other microphonics rattle the 
frequency/tuning origin 

Characteristic polynomial:

* If tuner time constant  > τc then get additional instability
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Single Cavity – all loops

• proportional control gains Ka, Kp, Kt (amplitude, phase, tuning)
• monotonic threshold boosted by Ka, Kt (not Kp): KL <  1/2 Ka (Kt Cot[ψ] + Tan[ψ])
• oscillatory threshold also raised: when ρ≈1 need gain Ka×Kp×Kt > Qm

monotonic
oscillatory

Matrix determinant ≡ 
characteristic polynomial:

tuning angle
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Cavity strings
• We attempt to build cavities with identical EM 

modes.
• So the mechanical modes will also be very similar. 
• Leads to equations that are equal/symmetrical in 

MM[s]

Two cavities in vector sum (see slide #13)
From control view point, behaves exactly like two virtual cavities:

a) Cavity with all loops present

b) Cavity with no loops except tuner

Virtual cavity “b” goes unstable before cavity “a”.
Follows from symmetry; therefore also true for SEL.

Vector sum control
• Sum cavity voltages together and apply to the input of 

a single AM/PM feedback loop to the shared RF source
Motivation: Shared RF source
• High power RF sources are expensive
• More cost effective to drive several cavities from one 

source

Consequence: no matter how hard we push the gains Ka, Kp there is no improvement of ponderomotive 
stability - because virtual cavity “b” is the problem.

Characteristic polynomials 
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Notation
Case A: Two cavities in vector sum with 

simple tuning control of each cavity
Cavity and control is treated symmetrically 

Characteristic equation factors into 2 polynomials;
see previous slide.
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Step 1) Adopt difference variable control for the tuners:
Step 2) Add derivative control to tuning loop

1. Vector sum control ineffective for the V1 - V2 state variable
2. → Lowered threshold for ponderomotive Instability 

Introduce vector sum and difference* variables 
Vsum = (V1+V2)/2 and Vdiff =(V1-V2).
And likewise for all other variables in the state vector

Find that system equations divide into 2 separate sets.
Vsum is governed by virtual cavity “a” (all loops present)
Vdiff is governed by virtual cavity “b” (tuning loop only)
=> The difference mode will be the first to go unstable. 

1) Restoring control over individual V_i, implies:
• Introducing control that is different between the cavities
• Only place to do this is at the (fast) cavity tuners
2) Raising or removing ponderomotive threshold implies:
• Targeted DC-coupled feedback for the monotonic instability
• Targeted AC-coupled feedback for the oscillatory instability

Recall damped harmonic 
oscillator: x”+kx’+Ω2

For damping, need a 
quadrature term like kx’. 
So take:
δω1 = +Kt s Δφ
δω2 = -Kt s Δφ
Δφ = (φ1 – φ2)

Vsum = {a1+a2, φ1+ φ2}
Vdiff = {a1-a2, φ1- φ2}
Likewise for δωc, etc

* Introduced March 2019, see references.
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Case B: Two cavities
Retain sum-variable control for amplitude and phase loops
Introduce difference-variable control for tuning loops

Case C: Two cavities
Retain controls as for case B
Add derivative control to tuning loops

Case A: vector sum control Case B: vector sum & diff control Case C: sum & diff control
Plus derivative control 

Ψ>0, monotonic threshold

Ψ<0, oscillatory threshold

both thresholds raised

threshold raised

threshold eliminated
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N-cavity Vector Sum (& Difference) Control

N cavities with shared single RF source and vector sum control 
• Characteristic equation factors into N polynomials
• Behaves exactly as:

• 1 virtual cavity with all loops present
• N-1 virtual cavities with no control loops except a tuner for each
• This means we can employ the stability criteria for single cavities
• All the ponderomotive difference modes have lower threshold than the sum mode

• In short pulse operation, the instability is no concern. 
• The initial values are periodically reset before the instability has time to take off.

• For long pulse, near c.w. or c.w. operation the instabilities can become manifest.

Hence we need to add Difference Control

[Note, the sum and difference variables do not change when extra microphonic modes are added, because the 
variables are a property of the vector sum configuration.]
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Why Use Vector Sum-and-Difference Control?

• Above threshold, simple tuning control cannot straighten the vector sum*
• Without changing the cavity Qc or access to the individual ai,pi

• Sum & diff is the only way to raise the threshold/damp the ponderomotive difference modes
• System matrix becomes simpler, fewer coupling elements
• Simpler matrix is easier to comprehend: reveals underlying structure/causation/nature of system
• System matrix takes block-diagonal form

• Hence coordinates are orthogonal between virtual cavities
• Can add feedback that does not cause un-intended couplings

• Additional feedbacks based on differences does not compromise the pre-existing 
dominant/defining feedback based on the sum

*However, sum & diff will not make the maximum length vector (for which you need all the individual ai,pi) 
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Vector Sum-and-difference control: change of basis

• From linear algebra theory, we know the characteristic equation is independent of basis vector
• But the appearance of the system matrix P depends on the choice of basis vector
• So, underlying symmetry can be made manifest by suitable choice of basis
• Any linear superposition of the old bases, is also a basis
• The transform to vector sum and difference co-ordinates is generated by a matrix T
• [If T can be inverted (T-1 exists) then old and new basis vectors are independent]
• Old basis vector v; new basis vector v’=Tv
• New system matrix P’=T P T-1.

N-Cavity System
• We have to generalize the concept of “sum” and “difference” to N variables. 
• The differences are formed pairwise and cyclically permuted. 
• The 3 cavity system will demonstrate the principle.

• For brevity, we omit the microphonic mode coupling – but it is easy to restore.
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= 0

≡

Old system matrix, P Old base vector, v

New base 
vector, v’ Transformation 

matrix T
[Moving ag,pg from 
bottom to top has the 
effect of diagonalizing 
the matrix; it is nice but 
not essential]

Subscript = real cavity indexSubscript = virtual cavity index
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= 0

Virtual cavity with all loops

Virtual cavity with tuner only

Virtual cavity with tuner only

New system matrix, P’ New base vector, v’

= 0
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Opposite Cavity Detuning

Take a hint from alternating gradient focusing.

Cav#2 Ψ>0, 
monotonic 
instability is 
reduced by Cav#1

Cav#1: Ψ<0, 
oscillatory  
instability is 
reduced by Cav#2

Vector sum 
control

System equations same as slide #13, except one cavity has +ψ → -ψ

• Opposite detunings => characteristic does not factor => octic equation
• Polynomial coefficients contain only powers of (Tanψ)2 ; so characteristic has identical roots at ±ψ
• 1 virtual cavity that behaves the same at ±ψ. 
• Equal monotonic thresholds at ±ψ; and equal oscillatory thresholds at ±ψ
• Both thresholds are higher than for single cavity with tuning loop alone
• Both thresholds are lower than for single cavity with all loops present
• Hence “opposite detuning” wins because its more stable than virtual cavity with tuning loop alone.
• E.g. compare the monotonic thresholds:

Tuner only

All loops

Opposite 
detuning
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Equal versus Opposite Cavity Detuning

Equal Detuning Opposite Detuning

1st monotonic
(tuner only) 1st monotonic

2nd monotonic
(all loops)

1st oscillatory

1st oscillatory
(tuner only)

1st oscillatory

2nd oscillatory
(all loops)

Threshold increased by ≈√Ka
Here Ka = 5, so threshold is 
doubled

Ψ>0

Ψ<0

σ=Re[root]

LFD coupling 
strength Km ,KL
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Other Tuning Controls
Opposite Phase Derivative of Amplitude Difference  

Although this can be “made to 
work”, it is finicky w.r.t. the derivative 
gain parameter T. Moreover, not 
possible to increase the threshold at 
both signs of the detuning angle.
The idea is best avoided!

Thresholds are reduced, by unintended coupling

Regular tuning control – slide # 13 “Opposite Phase” tuner control

Oscillatory

Monotonic



24

CONCLUSIONS
ρ = τc Ωm is important parameter for oscillatory instability
Heavy loaded regime ρ≈ 1 is prone to instability

Multiple cavities driven in vector sum have an instability threshold equal that of a single cavity with 
only a tuning loop. Does not matter how large are made the amplitude and phase loop gains.

Introducing sum-and-difference control at the individual cavity tuners allows to straighten the vector 
sum; And to raise the monotonic threshold; And to eliminate the oscillatory instability.

Generalizing the concept of sum-and-difference, enables the technique to be applied to N cavities 
driven from one source. Opens the way for use of vector-sum in c.w. and near-c.w. applications.

Depends only on “symmetry arguments”; so applies equally well to SE loop.

We note “counter detuning” of alternating cavities as a means to raise thresholds without applying 
additional feedback.

CAVEAT
All preceding slides assume that each cavity has the same microphonic mode.
If one cavity is missing the mechanical mode, the situation becomes both more complicated and often more 
stable than the limits described here. We have performed analysis for such a case with two-cavities; 
but not reported here.
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Case A (Slide #13)
Vector sum incl piezo

Case Z (Slide #13 with Kt=0)
Vector sum; NO piezo

Ψ>0, monotonic threshold

Ψ<0, oscillatory threshold

Ψ>0, monotonic threshold

Ψ<0, oscillatory threshold
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