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Outline
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● Overview on artificial intelligence and Deep learning
● Artificial neural networks code developments
● Applications of this code:

– Supervised and unsupervised learning
– Classifier
– Regression

● Conclusion



Machine learning examples

kNN: k nearest neighbors
k=1

NO explicit instructions; NO need math/physics model; needs data

k-means clustering (unsupervised)
k=4



Neural network: forward and backward propagation

Input layer Output layer

forward

Backward
Chain rule

Cost function
(MSE, MAE, CE)

Z A Z(n) = W*A(n-1) + b
A(n) = F(Z(n))

dZ dA
dA(n) = W*dZ(n+1)

dZ(n) = dA(n)*F’(Z(n))
dW, db from dZ(n) & A(n-1)



Neural network as arbitrary function approximator

Activations

Rectified linear unit 
ReLu: A = max(0,X)
SoftPlus: A = log(1+exp(X))

Only one layer

2 ReLu: x^2 (top); 50 ReLu: Radial-basis functions (bottom)



Multiple layers: function composition g(f(x))

One layer (top); two layers (bottom)

Z = cos(X^2*0.1 +sin(Y^3*0.1)+0.5)



Python codes in development for neural network
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● Motivation: to understand the algorithms and apply to our work
● Why Python

– ‘default’ choice of deep learning: computation speed, user community, existing 
algorithms (TensorFlow, Keras, Caffe, PyTorch...)

● What has been done:
– Initialization (0, random, random normalised) 
– Forward and backward propagation (activations, gradients)
– Cost functions (MSE, MAE, CE)
– Optimization algorithms (SGD, Rprop, momentum, ImpliMom, AdaGrad, 

RMSprop, adam)
– Variational auto encoder, generative adversarial networks

● To be developed: 
– More activation and cost functions
– regularization algorithms (dropout...), CNN, RNN...



Application: rose function etc.

Training data: red-blue dots from rose function
Prediction: contour plot
Animation on iterations

Training data: sklearn.datasets.make_moons
Prediction: contour plot
Animation on iterations

Higher than 90% ‘accuracy’



Application: Hand writing, 10-class [1]

Training/val data: 60k images (28 by 28 pixels)
Test data: 10k images
Accuracy: 99% (training data), ~98% (test/val)

[1] MNIST database, http://yann.lecun.com/exdb/mnist/

Predictions (selected blocks with wrong labels)



Generative models: variational auto encoder

2D latent (hidden) space, Z 2D latent space, Y^

Training with MNIST database, http://yann.lecun.com/exdb/mnist/



Generative models: variational auto encoder

Generated numbers

Generated synthetic cat images

Generated cats animation

* Cat data, https://ajolicoeur.wordpress.com/cats/

Training 
data



GAN: Generative Adversarial Networks

Training: discriminator and generator GAN Generated synthetic images
This code (left); Keras/TF (right)



Application: R matrix for accelerator elements*
5-class: sbend, quad, drift, skew quad, bendEdge

(Accuracy: Training 99.8%  validation 99.6%  test 99.1%)

*Yipeng Sun, NAPAC19



Benchmark on optimization algorithms*

‘adam’ seems to be most robust
example with R matrix classifications, showing average accuracy

*Yipeng Sun, NAPAC19



Application: 2nd order map*

ANN predictionsANN training

Training data input Training data output

ANN particle tracking

*Yipeng Sun, NAPAC19



Top up injection efficiency v.s. loss monitors etc.
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Input: APS operation data: 01-22-2019 to 06-28-2019

Training / Cost 2%

Predictions on injection efficiency (output)



Lifetime

Depends on:
● Beam current
● No. of bunches
● Coupling
● Chromaticity
● Bunch length

● RF voltage
● Mom. compaction

● ID energy loss
● Physical apertures

● ID4 orbit

Results in:
● Beam loss monitors

Predictions on lifetime (bottom). Training data (top)

Training data: APS operation 01-2019 to 06-2019



Lifetime

Predictions on lifetime Analyzing trained NN model
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