

Roger Kalt on behalf of the LLRF team :: Paul Scherrer Institut

Lab Talk: LLRF Status and Activities at PSI

LLRF Workshop 2019, Chicago

30.09.2019 - Presented at LLRF Workshop 2019 (LLRF2019, arXiv:1909.06754)

Table of Contents 4 Accelerator Facilities ☐ SwissFEL (Swiss Free Electron Laser) ☐ SLS (Swiss Light Source) HIPA (High Intensity Proton Accelerator) Proscan (Proton Cancer Therapy) Proscan 4 Mandates of the LLRF team Operation & Maintenance Planning DAII ☐HIPA injector Cyclotron RF upgrade ☐ Realization & Commissioning **□** Upgrade **□SwissFEL-Athos Beamline** □SLS 2.0 storage ring upgrade

RF systems in operation

Facility:	HIPA	SLS	Proscan	SwissFEL	
LLRF oper- ated since	1980's	2000	2005 (1980's)	2015	
System Type	Analog	Analog	Analog	Digital	
RF Op. Type	CW	Pulsed 3 Hz + CW	CW	Pulsed 100 Hz	
Hardware	Own design	External institute	Internal HIPA + Ext.company	COTS (Controls HW) + own RF	
Controls integration	Analog interface	Analog interface	Analog interface	Full remote access	

Table: LLRF systems in operation:

SwissFEL: 6 x 3 GHz ; 2 x 12 GHz; 28 x 5.7 GHz (2 types) \Rightarrow 36 RF Stations

(today with test facility and Athos)

HIPA: 8 x 50 MHz (3 types); 4 x 150 MHz (3 types); 1 x 500 MHz \Rightarrow 13 RF Stations

(today situation with test facility)

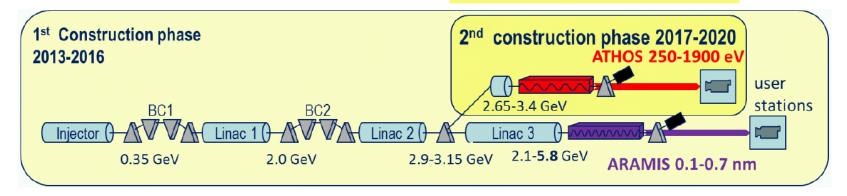
SLS: 7 x 500 MHz (3 types); 2x 3 GHz; 1x1.5 GHz SC passive \Rightarrow 10 RF Stations

(today with test facility)

Proscan: $1 \times 72.8 \text{ MHz}$ $\Rightarrow 1 \text{ RF Station}$

total **60 RF Stations**

Page 3


SwissFEL Project Summary & Outlook

Status (as of Sept. 2019)

1x X-band LLRF FE devel., modulator in-house devel.

1x C-band LLRF installed, modulator commissioning...

Poster
A.
Dietrich

All 34 RF systems are installed and in operation

Schedule

	2019	2020	2021
Aramis	User operation	replace X-band LLRF FE	
Athos			
- dual bunch operation	Establish permanent dual bunch		
- RF systems installation & commissioning	LLRF FE & mod. development	Commissioning	
- user operation			User operation

SwissFEL LLRF – Operation & Optimization

RF- and Beam-Stability Analysis

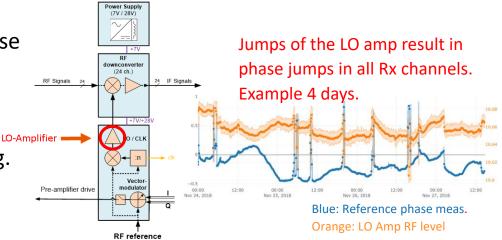
- ☐ LLRF system fulfills stability requirements
- ☐ Model-based prediction of RF vs. beam jitter
- ☐ Identify critical RF stations, then jitter contributing subsystems like:
 - ➤ HV modulator Different issues, e.g. loose conn.
 - ➤ Pre-amplifier Broken units repair program
 - ➤ Klystron multipactor Different for each klystron
 - ➤BOC multipactor A problem below 40 MW input power

LLRF Tuning for Dual Bunch Operation

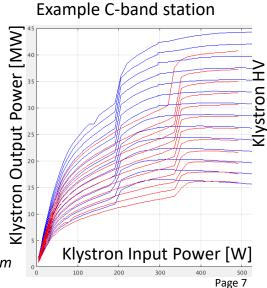
- ☐ Keep basic low-level RF functionalities on lower-layer as is
- ☐ High-level setup and automation tools for **independent** tuning of both bunches created.

Talk_ Wednesday

RF Systems Availability Analysis


☐ Implemented dedicated RF systems fault events database

SwissFEL LLRF – Problems and Mitigations


Low-Level RF Hardware

- ☐ Fuse broken, PS broken, cable loose
 - > Check & tighten all cables 1x / year
- □Commercial LO amplifiers have production problems: Results in sudden phase jumps up to 1.5 deg.
 - ➤ In-house development of low-noise narrow-band LO amplifier

Low Level RF Software / Algorithms

- □Sudden software crash or stall, ~10-20 events / year
 - > Reboot, have a proper configuration parameters restore mechanism.
- ☐Gun recovery from RF trip takes ~20min
 - > Instead of pickups implement virtual probe based on FOR/REF dir. coupler sig.
- ☐ Race conditions of LLRF trigger vs. RF phase reference
 - > FPGA based race detection and automatic correction
- ☐BOC detuning over LLRF phase measurement stuck
 - > Control room alarms on the ACC voltage: Expected vs. measurement
- ☐ Klystron output RF amplitude setting procedure is not robust enough for all use cases
 - Klystron LUT, forbidden multipactor areas, HV feedback, operation pt. det. algorithm

BOC: Barrel Open Cavity RF Pulse Compressor

HIPA Injector Cyclotron RF Upgrade Project

Old analog LLRF

Dig. LLRF (installation partly completed)

RF Upgrade Project General Scope

- ☐ Exchange of two 150 MHz resonators with 50 Mhz
- ☐ Complete renewal of RF systems of allresonators

Status LLRF Upgrade

- □Low-power tests with cavity + tuner plungers done
- ☐Fw/Sw implementation on-going
 - ➤ Generic re-usable code open-sourced on GitHub.com/psi fgpa all
- □RF frontend HW prototypes [filters, selectable attenuators] produced & characterized (pizza box style)
- ☐HW installations & cabling partly completed

RF Upgrade Project Roadmap

- ☐ Solve cavity tuner plungers and hot-spot problems at the 50 MHz RF test stand
- ☐ Amplifier chain RF-commissioning stand-alone
- ☐Amplifier chain connection to the already installed cavity

LLRF Upgrade Roadmap

- □ System integration & exception handling tests (e.g. startup)
- ☐ Handle > 90dB dynamic range for cavity tuning

SLS → SLS 2.0 upgrade preparatory phase

Goal: Upgrade storage ring to provide factor >30 improved brightness + harder X-rays

For all subsystems such as RF/LLRF: Upgrade to ensure other 20+ years operation, to optimize operation + maintenance cost, optimize perf. ...

→ Upgrade analog to digital 500 MHz LLRF / tuning system.

Schedule (simplified)

	2019	2020	2021	2022	2023	2024
SLS-2 preparatory phase						
financing period						
procurement/testing/pre-assembly						
maximum "dark" period						

Status

- 1. Decision for SSA's in Aug-2019, but some klystrons may stay
- 2. Internally with other groups next **processing platform options** evaluated: **CompactPCI-Serial** or **internal platform** developed for BPM's.
- 3. Upgrade of Linac RF stations (currently with feed-forward only) with the SwissFEL type digital LLRF (exact fit: pulsed 3 Hz @ S-band)

Poster

R. Kalt

SwissFEL

- ☐ LLRF System weak points known most of them are in software / algorithms.
 - > Replacement of the commercial LO amplifiers with in-house development.
 - Consolidation of the RF amplitude setting procedure
- \square Studies like RF vs. beam jitter to be continued \rightarrow Talk
 - > Identified weak RF stations and subcomponents
 - LLRF is not the limiting subcomponent for the critical RF stations such as injector S- and X-band.
- ☐ Operation:
 - > Establish dual bunch operation as default
 - > Beam-rate: Go up to 100 Hz
 - > Training of other colleagues for operation procedures and problem handling.

HIPA Injector Cyclotron Upgrade

☐ LLRF upgrade to new digital LLRF on-going, first RF station in operation 2020.

SLS 2.0 Upgrade

- ☐ Next processing platform selection process almost completed.
- ☐ Implementation of prototype 500 MHz prototype LLRF for RF test stand 2020

Wir schaffen Wissen – heute für morgen

My thanks go to

- All team members
- All colleagues for their contributions to the workshop

