LLRF life cycle @ LBNL

Gang Huang on behalf of the team

LLRF 2019, Chicago

Life cycle

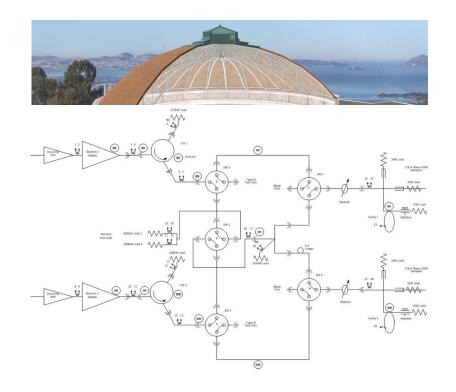
Office of

Science

Image Source: www.thinklink.com

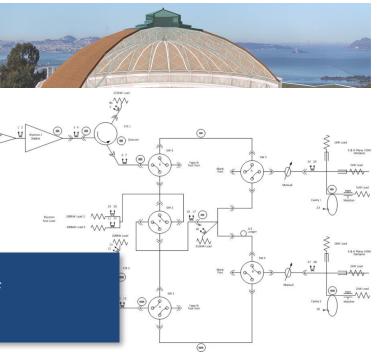
Advanced Light Source Digital LLRF

- ALS is the 3rd generation light source at LBNL which was in operation since 1993
- Few years ago, the decision was made to upgrade the LLRF system from analog to digital to improve flexibility and reliability
- Support configurable waveguide mode to drive two cavities
- Operational since March 2017
- Emphasis open source hardware, firmware and software design under BSD license



Advanced Light Source Digital LLRF

- ALS is the 3rd generation light source at LBNL which was in operation since 1993
- Few years ago, the decision was made to upgrade the LLRF system from analog to digital to improve flexibility and reliability
- Support configurable waveguide mode to drive two cavities
- Operational since March 2017
- Emphasis open source hardware, firmware and software design under BSD license



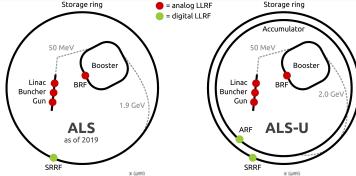
Advanced Light Source Digital LLRF

- ALS is the 3rd generation light source at LBNL which was in operation since 1993
- Few years ago, the decision was made to upgrade the LLRF system from analog to digital to improve flexibility and reliability
- Support configurable waveguide mode to drive two cavities
- Operational since March 2017
- Emphasis open source hardware, firmware and software design under BSD license

Tuesday 9:10-9:40 Digital LLRF system for Advanced Light Source Storage Ring RF Qiang Du LBNL



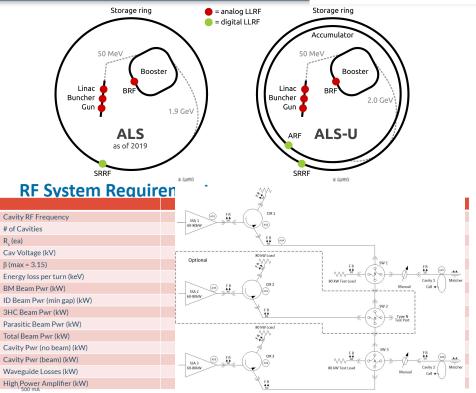
- Upgrade ALS to a diffraction limited storage ring based on the multibend achromat lattice
- Additional accumulator ring swapping beam
- LLRF
 - Current ALS LLRF system design is capable to meet the requirements
- Master Oscillator upgrade
 - Low phase noise
 - Frequency fine adjustable
 - Continuous phase



- Upgrade ALS to a diffraction limited storage ring based on the multibend achromat lattice
- Additional accumulator ring swapping beam
- LLRF
 - Current ALS LLRF system design is capable to meet the requirements
- Master Oscillator upgrade
 - Low phase noise
 - Frequency fine adjustable
 - Continuous phase

RF System Requirements

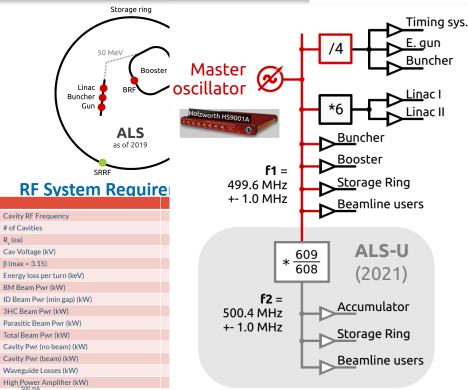
	ALS SR - 1.9 GeV	ALS-U AR - 2.0 GeV	ALS-U SR - 2.0 GeV
Cavity RF Frequency	499.645 MHz	500.405 MHz	500.405 MHz
# of Cavities	2	2	2
R _s (ea)	4.9 MΩ	4.9 MΩ	4.9 MΩ
Cav Voltage (kV)	649	649	300
β (max = 3.15)	2.93	1.13	10.07
Energy loss per turn (keV)	326.5	247	329
BM Beam Pwr (kW)	112.6	12.35	125
ID Beam Pwr (min gap) (kW)	44	0	35
3HC Beam Pwr (kW)	6.6	0	4.4
Parasitic Beam Pwr (kW)	2.5	0.25	2.5
Total Beam Pwr (kW)	165.7	12.54	166.9
Cavity Pwr (no beam) (kW)	43	43	9.2
Cavity Pwr (beam) (kW)	125.8	49.3	127.6
Waveguide Losses (kW)	3.5	1.4	2.6
High Power Amplifier (kW)	255.2	100	257.8


Office of

Science

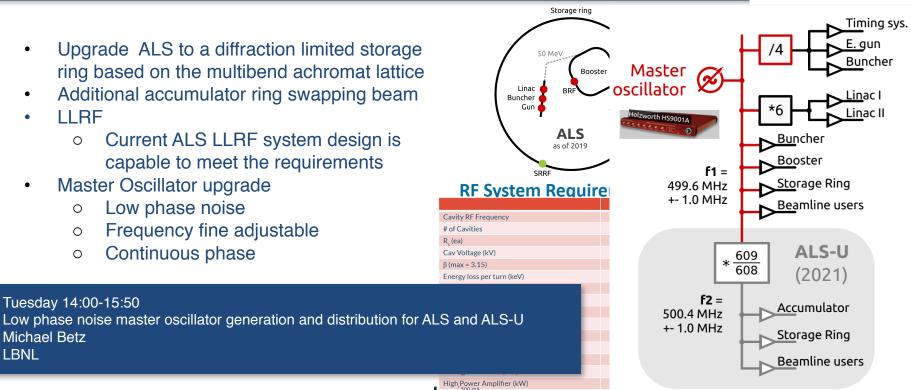
- Upgrade ALS to a diffraction limited storage ring based on the multibend achromat lattice
- Additional accumulator ring swapping beam
- LLRF
 - Current ALS LLRF system design is capable to meet the requirements
- Master Oscillator upgrade
 - Low phase noise
 - Frequency fine adjustable
 - Continuous phase

Office of


Science

R_. (ea)

- Upgrade ALS to a diffraction limited storage ring based on the multibend achromat lattice
- Additional accumulator ring swapping beam
- LLRF •
 - Current ALS LLRF system design is Ο capable to meet the requirements
- Master Oscillator upgrade •
 - Low phase noise Ο
 - Frequency fine adjustable Ο
 - Continuous phase Ο

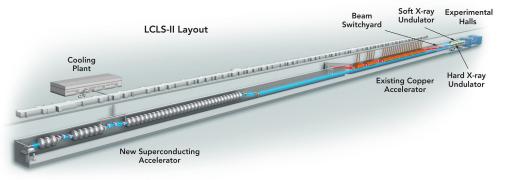

Office of

Science

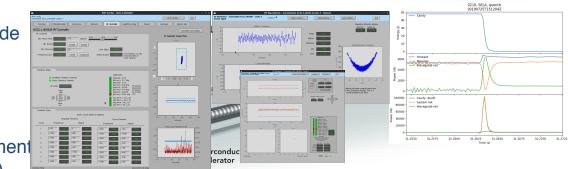
- Upgrade ALS to a diffraction limited storage ring based on the multibend achromat lattice
- Additional accumulator ring swapping beam
- LLRF •
 - Current ALS LLRF system design is Ο capable to meet the requirements
- Master Oscillator upgrade •
 - Low phase noise Ο
 - Frequency fine adjustable Ο
 - Continuous phase Ο

Tuesday 14:00-15:50

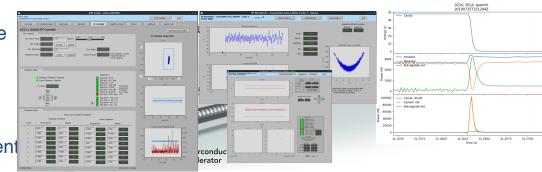
Michael Betz

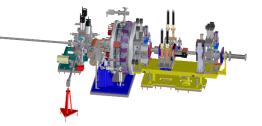

LBNL

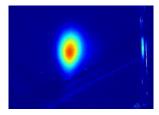
- SRF LLRF development and test @ JLab LERF (Low Energy Recirculator Facility)
 - Operational experience
 - screens, operating mode
 - RF / SRF calibration
 - o Interlocks
 - Waveform capture
 - Cavity quench events
 - Microphonics environment
- Early injector commissioning (EIC)
 - LLRF system successfully commissioned
 - Full power CW operation
 - Transfer to operation
 - First photo emission on May 29, 2019
 - Transition to operation on Sept. 17, 2019



- SRF LLRF development and test @ JLab LERF (Low Energy Recirculator Facility)
 - Operational experience
 - screens, operating mode
 - RF / SRF calibration
 - o Interlocks
 - Waveform capture
 - Cavity quench events
 - Microphonics environment
- Early injector commissioning (EIC)
 - LLRF system successfully commissioned
 - Full power CW operation
 - Transfer to operation
 - First photo emission on May 29, 2019
 - Transition to operation on Sept. 17, 2019



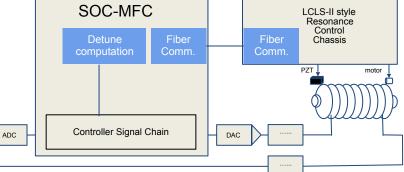




- SRF LLRF development and test @ JLab LERF (Low Energy Recirculator Facility)
 - Operational experience
 - screens, operating mode
 - RF / SRF calibration
 - o Interlocks
 - Waveform capture
 - Cavity quench events
 - Microphonics environment
- Early injector commissioning (EIC)
 - LLRF system successfully commission
 - Full power CW operation
 - Transfer to operation
 - First photo emission on May 29, 2019
 - Transition to operation on Sept. 17, 201

- SRF LLRF development and test @ JLab LERF (Low Energy Recirculator Facility)
 - Operational experience
 - screens, operating mode
 - RF / SRF calibration
 - o Interlocks
 - Waveform capture
 - Cavity quench events
 - Microphonics environment
- Early injector commissioning (EIC)
 - LLRF system successfully commission
 - Full power CW operation
 - Transfer to operation
 - First photo emission on May 29, 20 LBNL
 - Transition to operation on Sept. 17, 20

Tuesday 10:00-10:20 LCLS-II Gun/Buncher LLRF for the Early injector Commissioning Gang Huang

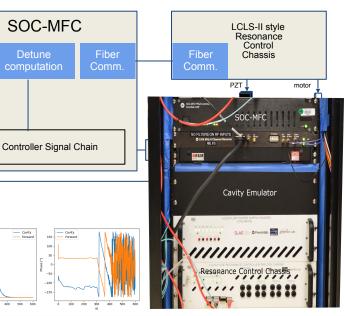

PIP-II LLRF collaboration

- Proton Improvement Plan II (PIP-II) project at FNAL will upgrade the accelerators to 800MeV SC linac with warm frontend.
- Altera-powered SOC Multi-cavity Field Controller (SOC-MFC)
 - \circ Detune calculation in firmware
 - Fiber based communication (chitchat) with LCLS-II style resonance control chassis over fiber
- Testing rack setup
 - FNAL chassis and Labview GUI
 - LCLS-II style cavity emulator
 - Chitchat tested between Altera and Xilinx FPGA
 - Detune calculation validating by offline waveform extraction

Wednesday 12:10-12:30 Resonance Control System for PIP-II 650 MHz STC at Fermilab Philip Varghese FNAL

PIP-II LLRF collaboration

ADC

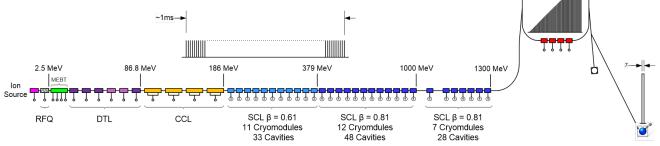

- Proton Improvement Plan II (PIP-II) project at FNAL will upgrade the accelerators to 800MeV SC linac with warm frontend.
- Altera-powered SOC Multi-cavity Field Controller (SOC-MFC)
 - \circ Detune calculation in firmware
 - Fiber based communication (chitchat) with LCLS-II style resonance control chassis over fiber
- Testing rack setup
 - FNAL chassis and Labview GUI
 - LCLS-II style cavity emulator
 - Chitchat tested between Altera and Xilinx FPGA
 - Detune calculation validating by offline waveform extraction

Wednesday 12:10-12:30 Resonance Control System for PIP-II 650 MHz STC at Fermilab Philip Varghese FNAL

ACCELERATOR TECHNOLOGY & ATAPU

Fermilab

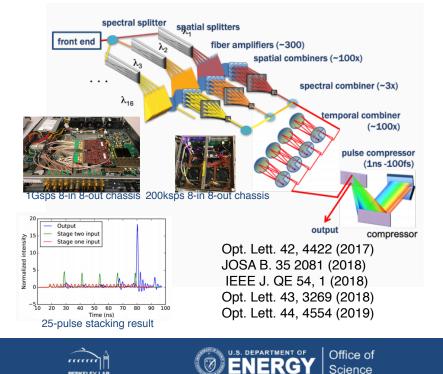
PPU@ORNL



- Proton Power Upgrade
 - 2.8 MW proton beam power
 - Install new LLRF systems to control 7
 - cryomodules, 28 new superconducting cavities

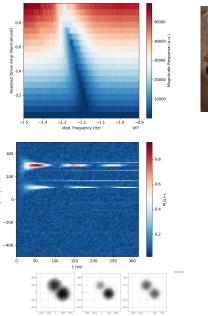
Monday 9:20-9:30 LLRF Status & Development Activities at the SNS Mark Crofford ORNL

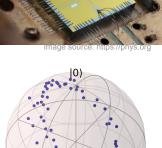
- LBNL role
 - Implemented FPGA controls firmware for PPU
 - \circ $\,$ To be tested on cold cavities over the next year

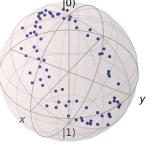


FPGA based RF control for other Applied Physics

Coherent laser combination

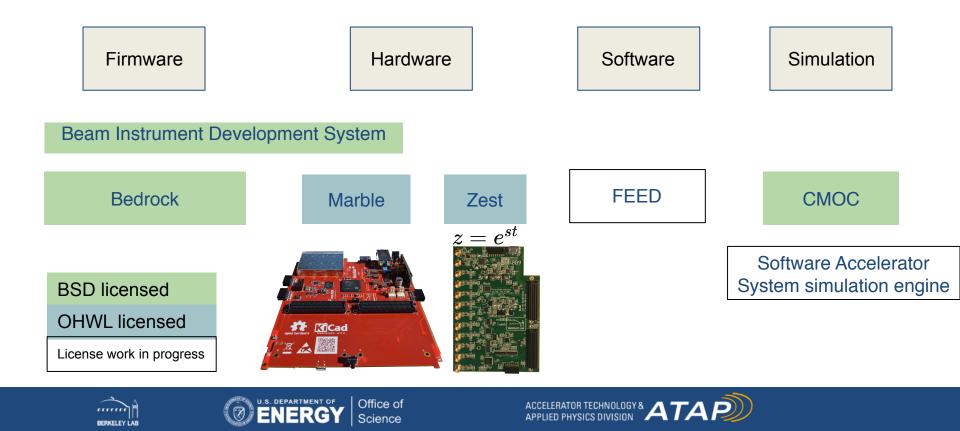



Science


.....

BERKELEY LAB

Quantum bit control



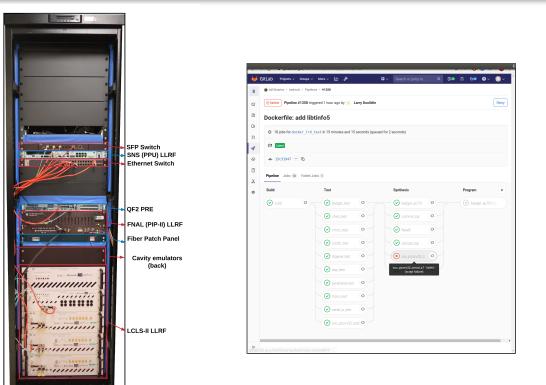
Full stack Open source

Full stack Open source

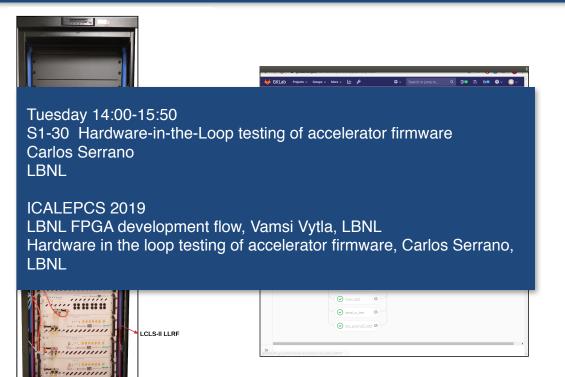
Science

BERKELEY LA

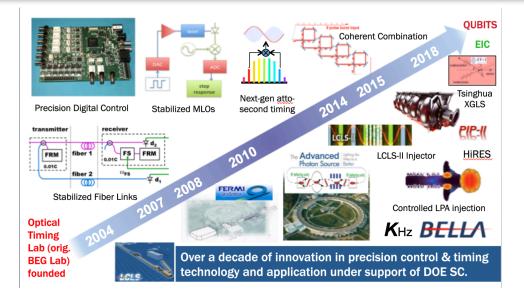
Full stack Open source

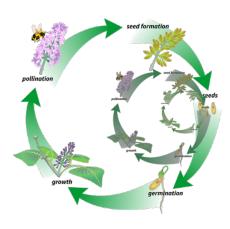

	Firmware, software and hardware base used in our projects is Open Source	
Firmware	 Bedrock FPGA DSP and communication code base https://github.com/BerkeleyLab/Bedrock BIDS Multiple repos for building blocks from firmware to hardware https://github.com/LBL-BIDS 	
Beam Instrument Development Sys	 Cryomodule-On-Chip FPGA simulation engine (CMOC) SRF plant model running live in FPGA 	
	 <u>https://github.com/BerkeleyLab/CMOC</u> 	ļ
Bedrock Ma		
Wednesday 14:00- Open Source LLRI Carlos Serrano		
BSD licensed LBNL		ine
OHWL licensed	 ADC, 2 DAC FINC mezzanine <u>https://github.com/BerkeleyLab/Zest</u> Used in 	
License work in progress	○ LCLS-II (SLAC), SNS/PPU (ORNL), PIP-II (FNAL), ALS/ALS-U (LBNL)	

Continuous integration



Continuous integration





Summary

• Open to collaboration

• Opening for postdoc and engineer positions

Summary

Oct. 1, 2019 Tuesday

09:10-09:40 Digital LLRF system for Advanced Light Source Storage Ring RF, Q.Du, LBNL, USA 10:00-10:20 LCLS-II Gun/Buncher LLRF for the Early Injector Commissioning, G. Huang, LBNL, USA Poster Session I

Low phase noise master oscillator generation and distribution for ALS and ALS-U, M. Betz, LBNL, USA Hardware-in-the-loop Testing of Accelerator Firmware

Oct. 2, 2019 Wednesday

14:00-14:30 Open Source LLRF stack, C. Serrano, LBNL, USA

Oct. 5, 2019 Saturday LBNL FPGA development flow, V. Vytla, LBNL, USA Oct. 8, 2019 Tuesday

Hardware In Loop testing of accelerator firmware, C. Serrano, LBNL, USA

