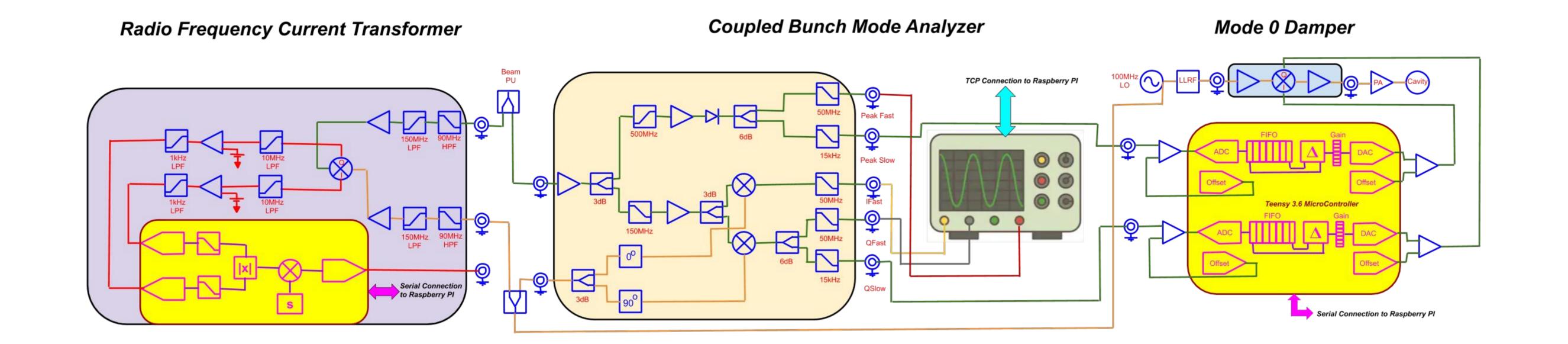


Beam Stabilization and Instrumentation Systems based on **Internet of Things Technology**

David McGinnis <u>david.mcginnis@maxiv.lu.se</u> - MaxIV Lund, Sweden

Statement of the Problem

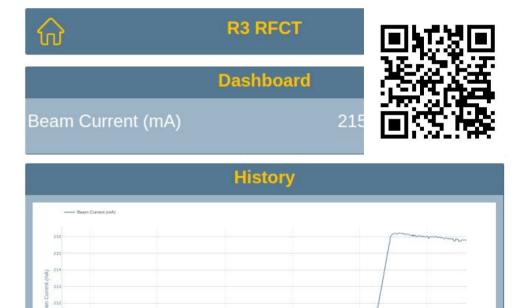

- MaxIV is a 3 GeV synchrotron light source operating at an RF frequency of 100 MHz with enough installed power for over 250 mA of beam current.
- MaxIV is designed to operate in the long bunch mode (bunch lengths > 500 ps rms) using passive third harmonic Landau cavities.
- As of **April 2018**, it was not possible to operate in long bunch mode because of longitudinal instabilities.
 - MaxIV does possess a longitudinal bunch-by-bunch feedback system but the system was not effective in the long bunch mode.
 - It was surmised that the longitudinal instability was a dipole mode 0 coupled bunch mode instability but there were no diagnostics to definitively prove this assertion.

Constraints

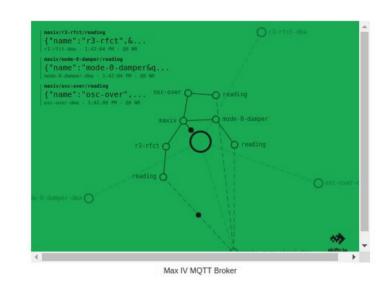
- MaxIV is a small lab (< 200 people) with limited human and financial resources.
- Delay in beamline construction has absorbed the most of the control system resources. There are limited software and IT resources available.
- Limited technical resources. Engineers design and build their own electronics boards.
- Limited financial resources.

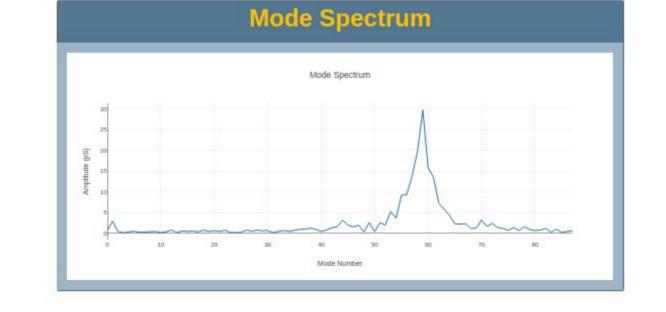
Steps to Solution

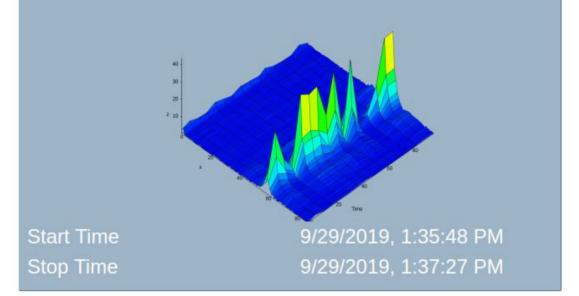
- Build a coupled bunch mode analyzer diagnostic to determine which coupled bunch mode instabilities are present and the growth rate of these modes.
- Build narrow band but high gain coupled bunch feedback systems to damp offending modes.
- Use Blinky-Lite, an open source IOT control platform for controls and data acquisition.
- In **June 2018**, coupled bunch mode analyzer commissioned and Mode 0 instability identified.
- In September 2018, Mode 0 damper commissioned
- In October 2018, long bunch operation at MaxIV was operational

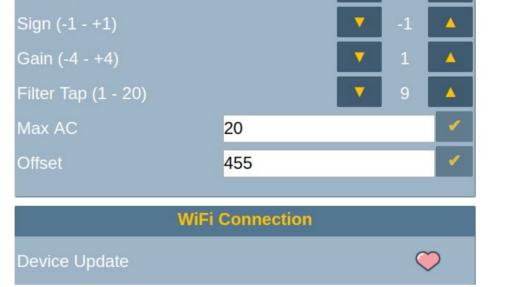


	OO Display	
	Summary	
Beam current (m	nA)	193.54
RMS Phase (pS)	48.17
Max Mode		59
Mode Amp (pS)		29.72
Avg Phase (pS)		2.09
Phase Shifter (m	ιV)	-11.4

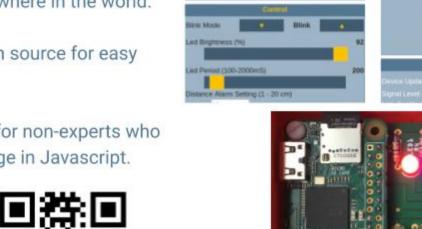

$\widehat{\mathbf{\omega}}$	OO Spectrogram	
	Summary	
Beam current (mA))	
RMS Phase (pS)		65.46
Max Mode		59
Mode Amp (pS)		42.49
Avg Phase (pS)		3.66
Phase Shifter (mV))	6.5
	Mode Spectrum	


ŵ	Mode 0 Damper	
	Dipole	
On (0 - 1)		i i a se
Sign (-1 - +1)		
Gain (-4 - +4)		2
Filter Tap (1 - 20)		18
Max AC	50	× .
Offset	555	. ×
	Quadrupole	
On (0 - 1)		▼ 0 ▲



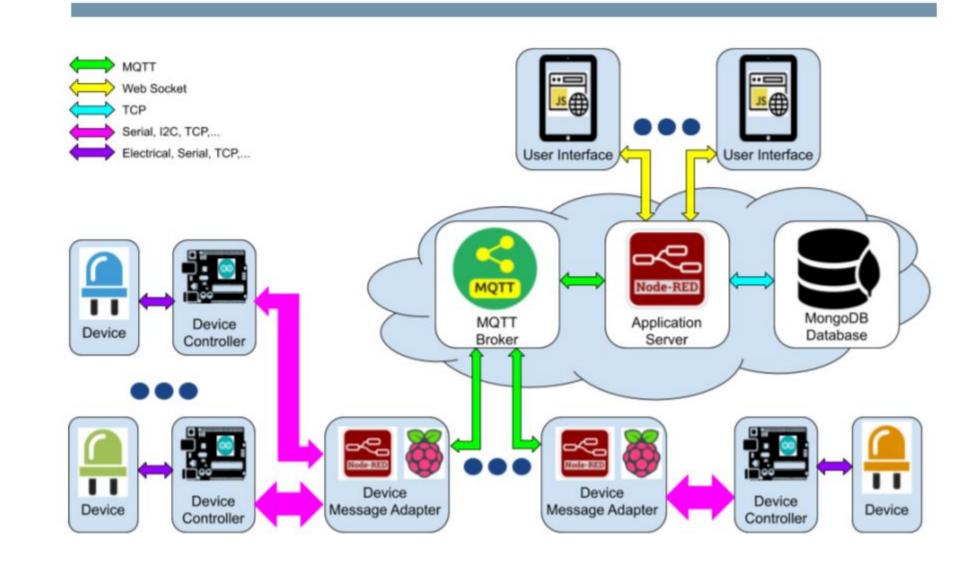

Blinky-Lite Core


R3 RFCT



Blinky-Lite Controls for humans

An open source IoT Control Platform


- Extremely reliable and robust control
 - Blinky-Lite is based on high performance but inexpensive IoT computing placed close to the devices to control.
- Web Accessibility
 - Blinky-Lite applications are web-based giving control from anywhere in the world.
- Flexibility
 - Blinky-Lite is 100% open source for easy customization
- Easy to implement
 - Blinky-Lite is designed for non-experts who have beginner knowledge in Javascript.

15 20 25 20 25

Blinky -Lite Architecture

Blinky Lite Components

- Device
 - Plethora of IoT sensors and actuators
- Device Controller
 - Interfaces directly with device sensor and/or actuator through ADC, PWM, Digital I/O or DAC pins
 - Communicates (serially, I2C,...) to the Device Message Adapter (DMA)
 - Usually programmed using the Arduino IDE
- Device Message Adapter

(DMA)

- Communicates with a number of Device Controllers
- Concentrates and scales device data
- Translates data to and from the MQTT broker
- Programmed in Node.js with the Node-RED programming environment

Teensy LC Device Controller

Raspberry Pi Zero DMA

Blinky Lite Components

Blinky Lite Features

Blinky Lite Features

MQTT Broker

- Can be cloud based
- Receives and transmits messages to DMA's
- Receives and transmits messages from to the WAS

Web Application Server (WAS)

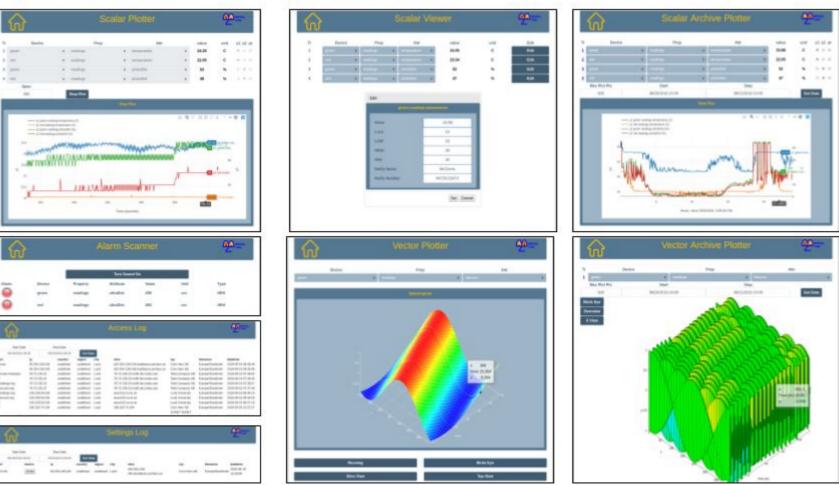
- Can be cloud based
- Collects and transmits data to DMAs and user applications

https://github.com/Blinky-Lite

- Archives data to MongoDB database
- Serves user applications
- Handles authentication


MongoDB database

- Can be cloud based
- Archives data
- Records are JSON documents
 - matches well with Node.js and Node-RED
 - Non-relational easy to extend
- User Application
 - Web based for easy deployment
 - mobile first but not mobile only
 - Written in Javascript ٠
 - Communicates to the Web Application server via web-sockets



Cloud capable - Cloud deployments give enhanced:

- Accessibility and deployment capability,
- Along with enhanced reliability and security (https:// and wss://),
- Layered authentication
 - JSON Web Tokens for client-server transactions
 - Authenticated MQTT broker for server-device transactions
- JSON Device configuration
 - Flexible data types (scalar, vector, text, images, blobs,...)
 - Human readable and configurable
- MQTT and Websocket communication
 - Publish-subscribe instead of polling protocols
- SMS Alarm notification
- Graphical Node-Red code environment .
 - Re-usable code
 - Self documentation

Eight web-based core applications

