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Coupled-bunch Instabilities and Beam Loading

» Looking at heavy beam loading in electron/positron storage rings;
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Coupled-bunch Instabilities and Beam Loading

» Looking at heavy beam loading in electron/positron storage rings;

» Two important effects in storage rings:
» Coupled-bunch instabilities in the longitudinal plane;
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Coupled-bunch Instabilities and Beam Loading

» Looking at heavy beam loading in electron/positron storage rings;

» Two important effects in storage rings:

» Coupled-bunch instabilities in the longitudinal plane;
» Transient beam loading due to non-uniform fill patterns.
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Coupled-bunch Instabilities and Beam Loading

» Looking at heavy beam loading in electron/positron storage rings;

» Two important effects in storage rings:
» Coupled-bunch instabilities in the longitudinal plane;
» Transient beam loading due to non-uniform fill patterns.
» In heavily loaded rings both of these will be driven by the fundamental
impedance of the RF cavities:
» Instabilities: beam interacts with the impedances at synchrotron
sidebands of revolution harmonics;
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Coupled-bunch Instabilities and Beam Loading

» Looking at heavy beam loading in electron/positron storage rings;

» Two important effects in storage rings:
» Coupled-bunch instabilities in the longitudinal plane;
» Transient beam loading due to non-uniform fill patterns.
» In heavily loaded rings both of these will be driven by the fundamental
impedance of the RF cavities:
» Instabilities: beam interacts with the impedances at synchrotron
sidebands of revolution harmonics;

» Transient beam loading: driven by the impedance at revolution harmonics.
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Coupled-bunch Instabilities
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Bunch passing through a resonant
structure excites a wakefield which is
sampled by the following bunches — a
coupling mechanism;
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Bunch passing through a resonant
structure excites a wakefield which is
sampled by the following bunches — a
coupling mechanism;

In practice the wakefields have much
longer damping times than illustrated
here;
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Bunch passing through a resonant
structure excites a wakefield which is
sampled by the following bunches — a
coupling mechanism;

In practice the wakefields have much
longer damping times than illustrated
here;

Longitudinal bunch oscillation — phase
modulation of the wakefield — slope of
the wake voltage sampled by the
following bunches determines the
coupling.
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Coupled-bunch Instabilities

Vacuum chamber

n+2

®o—

bunch n

Resonant structure

bunch n+/

>

Bunch passing through a resonant
structure excites a wakefield which is
sampled by the following bunches — a
coupling mechanism;

In practice the wakefields have much
longer damping times than illustrated
here;

Longitudinal bunch oscillation — phase
modulation of the wakefield — slope of
the wake voltage sampled by the
following bunches determines the
coupling.

For certain combinations of wakefield
amplitudes and frequencies the overall
system becomes unstable.
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Coupled-bunch Instabilities: Eigenmodes and Eigenvalues

» A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;
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Coupled-bunch Instabilities: Eigenmodes and Eigenvalues

» A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;

» From symmetry considerations we find that the eigenmodes correspond
to Fourier vectors;
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» A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;

» From symmetry considerations we find that the eigenmodes correspond
to Fourier vectors;

» Mode number m describes the number of oscillation periods over one
turn;
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Coupled-bunch Instabilities: Eigenmodes and Eigenvalues
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A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;

From symmetry considerations we find that the eigenmodes correspond
to Fourier vectors;

Mode number m describes the number of oscillation periods over one
turn;

Motion of bunch k oscillating in mode m is given by: A,,e>™<m/Nghnt

» A, — modal amplitude;
» An — complex modal eigenvalue.
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Coupled-bunch Instabilities: Eigenmodes and Eigenvalues

v
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A system of N bunches (coupled harmonic oscillators) has N
eigenmodes;
From symmetry considerations we find that the eigenmodes correspond
to Fourier vectors;
Mode number m describes the number of oscillation periods over one
turn;
Motion of bunch k oscillating in mode m is given by: A,,e>™<m/Nghnt

» A, — modal amplitude;

» An — complex modal eigenvalue.
Wakefields affect the modal eigenvalues in both real (growth rate)
and imaginary (oscillation frequency) parts;
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Modal Oscillation With Damping

Mode 1

Mode 7

» Same modes with damping.

Beam loading and
instabilities

Introduction
The focus of this tutorial
Coupled-bunch Instabilities

Beam Loading
Effects

Beam Loading in Storage
Rings

Ring Circumference and
Fundamental Impedance

Transient Loading

How Not To Fix Transient
Loading

Realistic Mitigation

Fundamental
Impedance and
Instabilities
Bunch-by-bunch Feedback
Impedance Control Loops.

Summary




Coupled-bunch Instabilities: Eigenvalues and Impedances

» Beam interacts with wakefields (impedances in frequency domain) at
synchrotron sidebands of revolution harmonics;
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Coupled-bunch Instabilities: Eigenvalues and Impedances

» Beam interacts with wakefields (impedances in frequency domain) at
synchrotron sidebands of revolution harmonics;

» Impedance functions are aliased, since they are sampled by the beam;
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Coupled-bunch Instabilities: Eigenvalues and Impedances
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Beam interacts with wakefields (impedances in frequency domain) at

synchrotron sidebands of revolution harmonics;

Impedance functions are aliased, since they are sampled by the beam;
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Coupled-bunch Instabilities: Eigenvalues and Impedances

Beam interacts with wakefields (impedances in frequency domain) at
synchrotron sidebands of revolution harmonics;

Impedance functions are aliased, since they are sampled by the beam;
7raef Io

Am = (= Moy + iws) + gt Z1M(mug + ws);

rad
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Wrf

Effective impedance: Zl*f(w) =

Normally, instabilities in the longitudinal plane are driven by higher order

modes in RF cavities and other resonances;
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Coupled-bunch Instabilities: Eigenvalues and Impedances

Beam interacts with wakefields (impedances in frequency domain) at
synchrotron sidebands of revolution harmonics;

Impedance functions are aliased, since they are sampled by the beam;
7raef Io

Am = (= Moy + iws) + gt Z1M(mug + ws);

rad
Z;o:_oo pwitw || (Puwrs + w)

Wrf

Effective impedance: Zl*f(w) =

Normally, instabilities in the longitudinal plane are driven by higher order

modes in RF cavities and other resonances;

In case of heavy beam loading in machines with large circumference,
situation is anything, but normal.
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Beam/Cavity Interaction
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» RLC model of the accelerating cavity
with two input currents: generator
and beam;

» Cavity voltage V, is defined by the
sum current;
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Beam/Cavity Interaction

RF feedback Longitudinal
loops dynamics
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Generator [ Beam
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» RLC model of the accelerating cavity
with two input currents: generator
and beam;

» Cavity voltage V, is defined by the
sum current;

» Low loading (TB < TG) — cavity
voltage is mostly defined by the
generator current;
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Beam/Cavity Interaction

RF feedback Longitudinal
loops dynamics
f(; fB
Generator [ Beam
% L

Vo

|

Lo
L]

RLC model of the accelerating cavity
with two input currents: generator
and beam;

Cavity voltage V is defined by the
sum current;

Low loading (TB < TG) — cavity
voltage is mostly defined by the
generator current;

High loading — cavity voltage is
strongly affected by beam current;
“Feedback loop” from cavity voltage
to beam current and back to cavity
voltage.
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Phasor Diagram

» Phasors at RF frequency, cavity
voltage on X axis;
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Phasor Diagram

» Phasors at RF frequency, cavity
voltage on X axis;

» Synchronous phase ¢ is determined
by RF voltage, energy loss per turn;
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Phasor Diagram
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» Phasors at RF frequency, cavity
voltage on X axis;

» Synchronous phase ¢ is determined
by RF voltage, energy loss per turn;

» For minimum generator power keep
loading angle ¢, = 0;
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Phasor Diagram

.
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i\‘\‘ I:ot = fG + fB

Phasors at RF frequency, cavity
voltage on X axis;

Synchronous phase ¢g is determined
by RF voltage, energy loss per turn;
For minimum generator power keep
loading angle ¢, = 0;

Cavity is detuned to maintain proper
phase angle ¢z between the total
current and the cavity voltage;
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Resonant Modes and Revolution Harmonics
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» A 20 kHz resonance ideally “hidden”
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Resonant Modes and Revolution Harmonics

» A 20 kHz resonance ideally “hidden”
between two revolution harmonics.

» 500 m ring;
» 1.5 km ring;
» 3 km ring;
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I » Narrow resonances cannot be
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Ring Circumference and Beam Loading
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» People don’t build multi-kilometer
rings just to spend money;
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Ring Circumference and Beam Loading

» People don’t build multi-kilometer
rings just to spend money;

» Large circumference — very high
energy;
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Ring Circumference and Beam Loading
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80 - 100 km
¢ long tunnel
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People don’t build multi-kilometer
rings just to spend money;

Large circumference — very high
energy;

Or very high current;
Or both.
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Ring Circumference and Beam Loading

» People don’t build multi-kilometer
rings just to spend money;

» Large circumference — very high
energy;

» Or very high current;

'
u
s Schematic of an
1

80 - 100 km
¢ long tunnel
. » Or both.
., » Large circumference means heavy
e beam loading of the RF system.
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Cavity Detuning and Longitudinal Stability
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Cavity Detuning and Longitudinal Stability
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Growth rate for mode -1 is
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Growth rates peak when
fundamental crosses upper
synchrotron sidebands of
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Instability growth times very small
relative to synchrotron period.
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Single Bunch Train in FCC-ee (2) e etablitos

FCC-ee; 88/0 powered/parked cavities; Vgap =255 MV; |, = 1.39 A; 70760by1 fill
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Single Bunch Train in FCC-ee (2) e etablitos

FCC-ee; 88/0 powered/parked cavities; Vgap =255 MV; |, = 1.39 A; 70760by1 fill
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Single Bunch Train in FCC-ee (2) e etablitos

FCC—1e0e4h88/0 powered/parked cavities; \/gap =255 MV; |, = 0.3 A; 70760by1 fill
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Single Bunch Train in FCC-ee (£)

Peak-to-peak bunch length spead 40.69%
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Non-uniform fill pattern puts power at
revolution harmonics, modulates
cavity field;

Single train is unphysical;
At 300 mA it is slightly more realistic;
Bunch length is all over the place;
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Single Bunch Train in FCC-ee (2) e etablitos
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Dealing With Beam Loading

» Two main effects of heavy beam loading in large rings:
» Longitudinal coupled-bunch instabilities driven by the RF cavity
fundamental impedance;
» Synchronous phase transients.
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Dealing With Beam Loading

» Two main effects of heavy beam loading in large rings:
» Longitudinal coupled-bunch instabilities driven by the RF cavity

fundamental impedance;
» Transient modulation of longitudinal optics.
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Dealing With Beam Loading

» Two main effects of heavy beam loading in large rings:
» Longitudinal coupled-bunch instabilities driven by the RF cavity
fundamental impedance;
» Transient modulation of longitudinal optics.
» Transient effects depend on

» Total beam current;
» Fill pattern.
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Dealing With Beam Loading

» Two main effects of heavy beam loading in large rings:
» Longitudinal coupled-bunch instabilities driven by the RF cavity
fundamental impedance;
» Transient modulation of longitudinal optics.
» Transient effects depend on
» Total beam current;
» Fill pattern.

» Fill patterns can be designed to mitigate transient effects;
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Dealing With Beam Loading
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Two main effects of heavy beam loading in large rings:
» Longitudinal coupled-bunch instabilities driven by the RF cavity
fundamental impedance;
» Transient modulation of longitudinal optics.
Transient effects depend on
» Total beam current;
» Fill pattern.
Fill patterns can be designed to mitigate transient effects;

But longitudinal instabilities due to the fundamental impedance remain
an issue even with completely uniform fills;
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Dealing With Beam Loading
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Two main effects of heavy beam loading in large rings:
» Longitudinal coupled-bunch instabilities driven by the RF cavity
fundamental impedance;
» Transient modulation of longitudinal optics.

Transient effects depend on

» Total beam current;
» Fill pattern.

Fill patterns can be designed to mitigate transient effects;

But longitudinal instabilities due to the fundamental impedance remain
an issue even with completely uniform fills;

Reducing beam loading in the RF system design helps both issues.
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Mitigating Beam Loading in Design Stage

Cavity detuning

wy = |42 8 cos gbb‘

» Minimize the number of cavities:
» Reduces fundamental impedance interacting with the beam;
» Limited by the maximum coupler power and/or the maximum cavity
voltage.

Beam loading and
instabilities

Introduction
The focus of this tutorial
Coupled-bunch Instabilities

Beam Loading
Effects
Beam Loading in Storage
Rings
Ring Circumference and
Fundamental Impedance

Transient Loading

How Not To Fix Transient
Loading

Realistic Mitigation

Fundamental

Impedance and

Instabilities
Bunch-by-bunch Feedback
Impedance Control Loops

Summary




Mitigating Beam Loading in Design Stage

Cavity detuning

wy = |42 8 cos gbb‘

» Minimize the number of cavities:
» Reduces fundamental impedance interacting with the beam;
» Limited by the maximum coupler power and/or the maximum cavity
voltage.
» Minimize detuning:
» Cavities with low R/Q;
» Lower RF frequencies are preferable, especially when coupler limited;
» Low R/Q favors superconducting cavities.
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Phasor Argument

» First idea — phase modulate the
generator to suppress the transients;
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Phasor Argument e etablitos
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Phasor Argument

LER; 8/0 powered/parked cavities; Vgap =45MV; I0 =3 A; 1722by2 fill
90 4

» First idea — phase modulate the
generator to suppress the transients;

» PEP-ll example: I =6 A, Ig=1.7 A;

» To compensate fill pattern
modulation, when /g goes to 0 in the
gap, /g would need to match /7!
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Single Bunch Train e etablitos

FCC-ee; 88/0 powered/parked cavities; Vgap =255 MV; |, = 1.39 A; 65140by2 fill
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Single Bunch Train

FCC-ee; 88/0 powered/parked cavities; Vgap =255 MV; |, = 1.39 A; 65140by2 fill
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Fill Pattern Density Modulation e etablitos
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Fill Pattern Density Modulation

FCC-ee; 88/0 powered/parked cavities; \lgap =255 MV; IU =1.39 A; 65340 density mod fill
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£ ST Accel. Beams 5, 092001 (2002):
g o » Charge removed from the gap is

e
o
S
&

added symmetrically to both ends
of the train;

» 200 bunches removed from the gap;

100 250

150 200
Time (us)

Transient is 3.0291 degrees peak-to-peak
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instabilities

FCC-ee; 88/0 powered/parked cavities; \lgap =255 MV; IU =1.39 A; 65340 density mod fill
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Fill Pattern Density Modulation e etablitos
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The focus of this tutorial

Coupled-bunch Instabilities

, » Idea from J. Byrd et al., Phys. Rev. Beam Loading
o) ST Accel. Beams 5, 092001 (2002): [t
1.5H — 65340 density mod (3.03°), i Rings
Bl ; | » Charge removed from the gap is Airg Cromrrc 1o
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__ 05 . Transient Loading
g of the train; How Not o Fix Tansiert
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e ] 200 buckets at the ends of the train in  EESEIEIEES
° 1 every bucket (2.5 ns) pattern; Ep—
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How Does Fill Pattern Modulation Work?

» Two fill patterns used earlier:

» 65140by2: one long train of
iy 65140 bunches every other RF
09 \w bucket and 400 bucket gap;

o » 65340 density mod: long train
with density modulation.

Magnitude (A)
S
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How Does Fill Pattern Modulation Work? e

» Two fill patterns used earlier: Introduction
The focus of this tutorial
» 65140by2: one long train of Goupled-bunch Instabites
10 i i 65140 bunches every other RF  [Eiels
s \—-**- 65340 density modl) bucket and 400 bucket gap;
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with density modulation.
— . Transient Loading
< » Both fill pattern spectra show How Not T Fix ransie
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< . Fundamental
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. . . Instabiliti
harmonics due to identical 400 o e P
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Summary
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How Does Fill Pattern Modulation Work? e

» Two fill patterns used earlier: Introduction
The focus of this tutorial
» 65140by2: one long train of Couplecbunch Insabiltis
o \ﬂ 65140 bunches every other RF  ESIECIE
! EE bucket and 400 bucket gap;

Rings

» 65340 density mod: long train G aeaa
. . . Fundamental Impedance
with density modulation. ?

Transient Loading

s » Both fill pattern spectra show Loy

g notches at multiples of R

= h/400 ~ 327 revolution Impedance and
harmonics due to identical 400 o s s
bucket gaps; e s

Summary
10l . - - 1 » Density modulation suppresses
Revolution harmonic low-frequency revolution

harmonics where cavity
impedance is large.




Does Fill Pattern Modulation Work? e
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Source in Berkeley: Transient Loading

250 300 350 How Not To Fix Transient
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» Buckets 1—16 and 281-296 filled to )

Current (mA)
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Fundamental

twice the Charge. Impedance and
. . . i Instabilities
» A bit of first revolution harmonic due to Bunc by bunch Feedback

Impedance Control Loops
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Bunch-by-bunch Feedback e relabliiss

Introduction

Definition
In bunch-by-bunch feedback approach the actuator signal for a given bunch Couled et nsaotis

Beam Loading

depends only on the past motion of that bunch. Effects

Beam Loading in Storage
Rings

Ring Circumference and

””””””””” | I . |
BPM Sensor Beam 1 Actuator Kicker structure | Fundamental Impedance
- - - - . é%---.’-}:- Transient Loading
- : How Not To Fix Transient
A Loading
Realistic Mitigation
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Impedance Control Loops.

» Back-end

»| Controller

= Front-end

\
|
I
|
! Fundamental
|
|
I
|
|
: Summary
I

» Bunches are processed sequentially.
» Correction kicks are applied one turn later.




Feedback Control Limits: Longitudinal

» Measure longitudinal position (time of arrival);
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Feedback Control Limits: Longitudinal

» Measure longitudinal position (time of arrival);
» Correct energy;
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Feedback Control Limits: Longitudinal

» Measure longitudinal position (time of arrival);
» Correct energy;

» To generate required 90° phase shift the feedback must observe at least
half a synchrotron period,;
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Feedback Control Limits: Longitudinal

v

v

v

v

Measure longitudinal position (time of arrival);

Correct energy;

To generate required 90° phase shift the feedback must observe at least
half a synchrotron period,;

Fastest controllable growth times on the order of 1-2 synchrotron
periods.
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Longitudinal Example from ANKA

) Osc. Envelopes in Time Domain b) Evolution of Modes

05 50
Bunch No, o Time (ms) Time (ms)

¢) Oscillation freqs (pre-brkpt) d) Growth Rates (pre-brkpt)
36.22 15.455
15.455
§36.21 _
3:" E 15.455
g 362 < 15.455
2 3 15455
g &
w 36.19 15.455
15.455
36.18
445 45 455 44 445 45 455 46
Mode No. Mode No.
e) Oscillation fregs (post-brkpt) f) Growth Rates (post-brkpt)
36.
-34.5623
5 385 -34.5823
I @
2 3645 € sase2
g = _34.5823
3 364 S -34.5823
g &
€ sas -34.5623
-34.5623
36.
445 45 455 44 445 45 455 46
Mode No.

Mode No.
ANKA: mar0516/143812: |,=138.1, Dsamp=2, ShiftGain=4, Nbun=184.
Atv: G1=119.06, G2=0.00, Ph1=-76.6, Ph2=0.0, Brkpt=390, Calib=34.3

» Measured while cavity tuning walks an
HOM onto a synchrotron sideband;
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Longitudinal Example from ANKA e etblce
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Longitudinal Example from ANKA

mar0516/143812: mode 45
T

005 01 015 02 025 03 035 04 045 05
Time (ms)

» Measured while cavity tuning walks an
HOM onto a synchrotron sideband;

» Growth time is 2.3 T, damping time is Tg;
» Actual modal oscillation trajectory;
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Longitudinal Example from ANKA

Coefficient

20 30
Time (tums)
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50

v

v

v

v

Measured while cavity tuning walks an
HOM onto a synchrotron sideband;

Growth time is 2.3 T, damping time is Tg;
Actual modal oscillation trajectory;
Filter is 2/3 of a synchrotron period.
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Beam loading and

Low Level RF to the Rescue instabilies
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» Fundamental impedances at a Covplecbunc Insabiies
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Low Level RF to the Rescue

RF feedback Longitudinal
loops dynamics
I Iy
Generator [ Beam
VG C L

» Fundamental impedances at a
synchrotron sideband — instability
growth times below T5/10;

» Beam feedback cannot control such
instabilities;
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Beam loading and

Low Level RF to the Rescue instabilies
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Low Level RF to the Rescue

RF feedback Longitudinal
loops dynamics
I Iy

Generator [ Beam
VG C R L

Fundamental impedances at a
synchrotron sideband — instability
growth times below T5/10;

Beam feedback cannot control such
instabilities;

RF feedback stabilizes cavity field —
low effective impedance as seen by

the beam;

dVe Q-

as ~ Y%

Use wideband loops to lower the
impedance at multiple revolution
harmonics around the RF.
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PEP-1I Collider e etabiiles
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Beam Loading

Circumference 2.2 km Effects

Beam Loading in Storage

Energy 9GeV | 3.1 GeV

Ring Circumference and

Beam Cu rre nt 2 . 1 A 3 . 2 A Fundamental Impedance

yr Tr i Loadil
Cavities 28 8 i
Loadin:
RF power 11 MW | 4 MW

Fundamental
Impedance and
Instabilities

» Copper HOM damped cavity; T

Impedance Control Loops

Summary

CAV_13 PEP- Il RF Cavity 8-19-97




Beam loading and

PEP" | CO”Ider instabilities
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PEP-II Collider

Parameter HER \ LER

Circumference 2.2 km
Energy 9GeV | 3.1 GeV
Beam current 2.1 A 3.2A
Cavities 28 8
RF power 11 MW | 4 MW

» Copper HOM damped cavity;
» Cavity with the HOM loads;

» Two and four cavity stations,
vector sum control, 1 MW
klystrons.

Beam loading and
instabilities

Introduction
The focus of this

Coupled-bunch Instabilities

Beam Loading
Effects

Beam Loading in Storage
Rings

Ring Circumference and
Fundamental Impedance

Transient Loading

How Not To Fix Transient
Loading

Realistic Mitigation

Fundamental
Impedance and
Instabilities
Bunch-by-bunch Feedback
Impedance Control Loops

Summary




PEP-II Fast Impedance Control

Station reference

Direct loop output

Klystron

1
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Viotal

Direct loop gain and phase
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-— - -

» Two feedback loops: direct

and comb;
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PEP-II Fast Impedance Control
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time;
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PEP-II Fast Impedance Control e etblce
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Beam loading and

PEP-II Fast Impedance Control inetapliios
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Loop phase (deg)

Why Two Loops st

Direct loop gain 8.0 dB
T T T
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—~ 1ob i Introduction
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Loop phase (deg)

Loop gain (dB)
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T

Loops

Direct loop gain 11.0 dB
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Loop phase (deg)

Why Two Loops e

Direct loop gain 14.0 dB
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Loop phase (deg)

Loop gain (dB)
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T

Loops

Direct loop gain 17.0 dB
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Direct loop gain
OK at 11 dB;
and 14 dB;

is limited by delay;

At 17 dB we are stop impedance

reduction;
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Why Two Loops

Direct loop gain 20.0 dB
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Direct loop gain is limited by delay;

OK at 11 dB;
and 14 dB;

At 17 dB we are stop impedance
reduction;

Worse at 20 dB.
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» Analog direct loop: I/Q demodulation/modulation, op-amp feedback STk
processing;

» 86 ns delay, 3 MHz bandwidth, 450 ns total loop delay;
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10 MHz 10 MHz

ond order IIR comb filter Group delay equalizer
and low-pass filter

2nd order IIR comb filter  Group delay equalizer
and low-pass filter

» Baseband digital processor clocked at 9.8 MHz (72f..,);
» Identical I/Q channels;

» Second order IIR for comb response, FIR group delay equalizer and
lowpass;
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» Large ring circumference and high beam currents make for a
challenging combination;
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» Large ring circumference and high beam currents make for a
challenging combination;

» RF system design should be driven by the beam loading and
longitudinal stability considerations;
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» Large ring circumference and high beam currents make for a
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» Fundamental impedance is large, but very tightly controlled, so driving
impedance reduction is feasible;
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» Large ring circumference and high beam currents make for a
challenging combination;

» RF system design should be driven by the beam loading and
longitudinal stability considerations;

» Fundamental impedance is large, but very tightly controlled, so driving
impedance reduction is feasible;

» Cavity HOMs are relatively unpredictable, need to be damped to levels
manageable by the bunch-by-bunch feedback;
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Summary

» Large ring circumference and high beam currents make for a
challenging combination;

» RF system design should be driven by the beam loading and
longitudinal stability considerations;

» Fundamental impedance is large, but very tightly controlled, so driving
impedance reduction is feasible;

» Cavity HOMs are relatively unpredictable, need to be damped to levels
manageable by the bunch-by-bunch feedback;

» Gap transient response cannot be controlled by RF feedback (high peak
power), need to manage fill pattern gaps.
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