Heavy Beam Loading and Collective Effects

D. Teytelman

Dimtel, Inc., San Jose, CA, USA

LLRF Workshop 2019

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and

Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Summary

▲□▶▲□▶▲≧▶▲≧▶ ≧ 釣�♡ 1/41

Outline

Introduction

The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Outline

Introduction The focus of this tutorial

Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

Beam loading and instabilities

Introduction

The focus of this tutorial

Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Looking at heavy beam loading in electron/positron storage rings;

- Two important effects in storage rings:
 - Coupled-bunch instabilities in the longitudinal plane;
 - Transient beam loading due to non-uniform fill patterns.
- In heavily loaded rings both of these will be driven by the fundamental impedance of the RF cavities:
 - Instabilities: beam interacts with the impedances at synchrotron sidebands of revolution harmonics;
 - Transient beam loading: driven by the impedance at revolution harmonics.

Introduction

The focus of this tutorial

Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Looking at heavy beam loading in electron/positron storage rings;
- Two important effects in storage rings:
 - Coupled-bunch instabilities in the longitudinal plane;
 - Transient beam loading due to non-uniform fill patterns.
- In heavily loaded rings both of these will be driven by the fundamental impedance of the RF cavities:
 - Instabilities: beam interacts with the impedances at synchrotron sidebands of revolution harmonics;
 - Transient beam loading: driven by the impedance at revolution harmonics.

Introduction

The focus of this tutorial

Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Looking at heavy beam loading in electron/positron storage rings;
- Two important effects in storage rings:
 - Coupled-bunch instabilities in the longitudinal plane;
 - Transient beam loading due to non-uniform fill patterns.
- In heavily loaded rings both of these will be driven by the fundamental impedance of the RF cavities:
 - Instabilities: beam interacts with the impedances at synchrotron sidebands of revolution harmonics;
 - Transient beam loading: driven by the impedance at revolution harmonics.

Introduction

The focus of this tutorial

Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Looking at heavy beam loading in electron/positron storage rings;
- Two important effects in storage rings:
 - Coupled-bunch instabilities in the longitudinal plane;
 - Transient beam loading due to non-uniform fill patterns.
- In heavily loaded rings both of these will be driven by the fundamental impedance of the RF cavities:
 - Instabilities: beam interacts with the impedances at synchrotron sidebands of revolution harmonics;
 - Transient beam loading: driven by the impedance at revolution harmonics.

Introduction

The focus of this tutorial

Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Looking at heavy beam loading in electron/positron storage rings;
- Two important effects in storage rings:
 - Coupled-bunch instabilities in the longitudinal plane;
 - Transient beam loading due to non-uniform fill patterns.
- In heavily loaded rings both of these will be driven by the fundamental impedance of the RF cavities:
 - Instabilities: beam interacts with the impedances at synchrotron sidebands of revolution harmonics;
 - Transient beam loading: driven by the impedance at revolution harmonics.

Introduction

The focus of this tutorial

Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and

Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Outline

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

Beam loading and instabilities

Introduction

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Bunch passing through a resonant structure excites a wakefield which is sampled by the following bunches — a coupling mechanism;
- In practice the wakefields have much longer damping times than illustrated here;
- ► Longitudinal bunch oscillation → phase modulation of the wakefield → slope of the wake voltage sampled by the following bunches determines the coupling.
- For certain combinations of wakefield amplitudes and frequencies the overall system becomes unstable.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへで 6/41

Beam loading and instabilities

Introduction The focus of this tutorial

Coupled-bunch Instabilitie:

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Bunch passing through a resonant structure excites a wakefield which is sampled by the following bunches — a coupling mechanism;
- In practice the wakefields have much longer damping times than illustrated here;
- ► Longitudinal bunch oscillation → phase modulation of the wakefield → slope of the wake voltage sampled by the following bunches determines the coupling.
- For certain combinations of wakefield amplitudes and frequencies the overall system becomes unstable.

Beam loading and instabilities

Introduction The focus of this tutorial

Coupled-bunch Instabilitie

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Bunch passing through a resonant structure excites a wakefield which is sampled by the following bunches — a coupling mechanism;
- In practice the wakefields have much longer damping times than illustrated here;
- ► Longitudinal bunch oscillation → phase modulation of the wakefield → slope of the wake voltage sampled by the following bunches determines the coupling.
- For certain combinations of wakefield amplitudes and frequencies the overall system becomes unstable.

Beam loading and instabilities

Introduction The focus of this tutorial

Coupled-bunch Instabilitie:

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Bunch passing through a resonant structure excites a wakefield which is sampled by the following bunches — a coupling mechanism;
- In practice the wakefields have much longer damping times than illustrated here;
- ► Longitudinal bunch oscillation → phase modulation of the wakefield → slope of the wake voltage sampled by the following bunches determines the coupling.
- For certain combinations of wakefield amplitudes and frequencies the overall system becomes unstable.

Beam loading and instabilities

Introduction The focus of this tutorial

Coupled-bunch Instabilitie:

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- A system of N bunches (coupled harmonic oscillators) has N eigenmodes;
- From symmetry considerations we find that the eigenmodes correspond to Fourier vectors;
- Mode number *m* describes the number of oscillation periods over one turn;
- Motion of bunch k oscillating in mode m is given by: $A_m e^{2\pi km/N} e^{\Lambda_m t}$
 - ► *A_m* modal amplitude;
 - Λ_m complex modal eigenvalue.
- Wakefields affect the modal eigenvalues in both real (growth rate) and imaginary (oscillation frequency) parts;

Beam loading and instabilities

Introduction The focus of this tutorial

Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and

Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- A system of N bunches (coupled harmonic oscillators) has N eigenmodes;
- From symmetry considerations we find that the eigenmodes correspond to Fourier vectors;
- Mode number m describes the number of oscillation periods over one turn;
- Motion of bunch k oscillating in mode m is given by: $A_m e^{2\pi km/N} e^{\Lambda_m t}$
 - ► *A_m* modal amplitude;
 - Λ_m complex modal eigenvalue.
- Wakefields affect the modal eigenvalues in both real (growth rate) and imaginary (oscillation frequency) parts;

Beam loading and instabilities

Introduction The focus of this tutorial

Coupled-bunch Instabilitie:

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- A system of N bunches (coupled harmonic oscillators) has N eigenmodes;
- From symmetry considerations we find that the eigenmodes correspond to Fourier vectors;
- Mode number *m* describes the number of oscillation periods over one turn;
- Motion of bunch k oscillating in mode m is given by: $A_m e^{2\pi km/N} e^{\Lambda_m t}$
 - ► *A_m* modal amplitude;
 - Λ_m complex modal eigenvalue.
- Wakefields affect the modal eigenvalues in both real (growth rate) and imaginary (oscillation frequency) parts;

Beam loading and instabilities

Introduction The focus of this tutorial

Coupled-bunch Instabilitie

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and

Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- A system of N bunches (coupled harmonic oscillators) has N eigenmodes;
- From symmetry considerations we find that the eigenmodes correspond to Fourier vectors;
- Mode number *m* describes the number of oscillation periods over one turn;
- Motion of bunch k oscillating in mode m is given by: $A_m e^{2\pi km/N} e^{\Lambda_m t}$
 - ► *A_m* modal amplitude;
 - Λ_m complex modal eigenvalue.
- Wakefields affect the modal eigenvalues in both real (growth rate) and imaginary (oscillation frequency) parts;

Beam loading and instabilities

Introduction The focus of this tutorial

Coupled-bunch Instabilitie

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- A system of N bunches (coupled harmonic oscillators) has N eigenmodes;
- From symmetry considerations we find that the eigenmodes correspond to Fourier vectors;
- Mode number *m* describes the number of oscillation periods over one turn;
- Motion of bunch k oscillating in mode m is given by: $A_m e^{2\pi km/N} e^{\Lambda_m t}$
 - ► *A_m* modal amplitude;
 - Λ_m complex modal eigenvalue.
- Wakefields affect the modal eigenvalues in both real (growth rate) and imaginary (oscillation frequency) parts;

Beam loading and instabilities

Introduction The focus of this tutorial

Coupled-bunch Instabilitie

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and

Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Modal Oscillation Example

- Harmonic number of 8;
- Top plot mode 1;
- Bottom mode 7;
- All bunches oscillate at the same amplitude and frequency, but different phases;
- Cannot distinguish modes m and N - m (or -m) from a single turn snapshot.

Beam loading and instabilities

Introduction

The focus of this tutorial

Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Modal Oscillation With Damping

Same modes with damping.

Beam loading and instabilities

Introduction The focus of this tutorial

Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and

Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Beam interacts with wakefields (impedances in frequency domain) at synchrotron sidebands of revolution harmonics;
- Impedance functions are aliased, since they are sampled by the beam;
- $\land \Lambda_m = (-\lambda_{\mathrm{rad}}^{\parallel} + i\omega_s) + \frac{\pi\alpha \sigma f_{\mathrm{rf}}^2 I_0}{E_0 h\omega_s} Z^{\parallel \mathrm{eff}}(m\omega_0 + \omega_s);$
- Effective impedance: $Z^{\parallel eff}(\omega) = \sum_{p=-\infty}^{\infty} \frac{p\omega_{rf}+\omega}{\omega_{rf}} Z^{\parallel}(p\omega_{rf}+\omega)$
- Normally, instabilities in the longitudinal plane are driven by higher order modes in RF cavities and other resonances;
- In case of heavy beam loading in machines with large circumference, situation is anything, but normal.

Beam loading and instabilities

Introduction The focus of this tutorial

Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Beam interacts with wakefields (impedances in frequency domain) at synchrotron sidebands of revolution harmonics;
- Impedance functions are aliased, since they are sampled by the beam;
- $\land \Lambda_m = (-\lambda_{\mathrm{rad}}^{\parallel} + i\omega_s) + \frac{\pi\alpha \sigma f_{\mathrm{rf}}^2 I_0}{E_0 h\omega_s} Z^{\parallel \mathrm{eff}}(m\omega_0 + \omega_s);$
- Effective impedance: $Z^{\parallel eff}(\omega) = \sum_{p=-\infty}^{\infty} \frac{p\omega_{rf}+\omega}{\omega_{rf}} Z^{\parallel}(p\omega_{rf}+\omega)$
- Normally, instabilities in the longitudinal plane are driven by higher order modes in RF cavities and other resonances;
- In case of heavy beam loading in machines with large circumference, situation is anything, but normal.

Introduction The focus of this tutorial

Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Beam interacts with wakefields (impedances in frequency domain) at synchrotron sidebands of revolution harmonics;
- Impedance functions are aliased, since they are sampled by the beam;

- Effective impedance: $Z^{\parallel \text{eff}}(\omega) = \sum_{p=-\infty}^{\infty} \frac{p\omega_{\text{rf}}+\omega}{\omega_{\text{rf}}} Z^{\parallel}(p\omega_{\text{rf}}+\omega)$
- Normally, instabilities in the longitudinal plane are driven by higher order modes in RF cavities and other resonances;
- In case of heavy beam loading in machines with large circumference, situation is anything, but normal.

Introduction The focus of this tutorial

Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Beam interacts with wakefields (impedances in frequency domain) at synchrotron sidebands of revolution harmonics;
- Impedance functions are aliased, since they are sampled by the beam;

- Effective impedance: $Z^{\parallel eff}(\omega) = \sum_{p=-\infty}^{\infty} \frac{p\omega_{rf}+\omega}{\omega_{rf}} Z^{\parallel}(p\omega_{rf}+\omega)$
- Normally, instabilities in the longitudinal plane are driven by higher order modes in RF cavities and other resonances;
- In case of heavy beam loading in machines with large circumference, situation is anything, but normal.

Beam loading and instabilities

Introduction The focus of this tutorial

Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Beam interacts with wakefields (impedances in frequency domain) at synchrotron sidebands of revolution harmonics;
- Impedance functions are aliased, since they are sampled by the beam;

- Effective impedance: $Z^{\parallel eff}(\omega) = \sum_{p=-\infty}^{\infty} \frac{p\omega_{rf}+\omega}{\omega_{rf}} Z^{\parallel}(p\omega_{rf}+\omega)$
- Normally, instabilities in the longitudinal plane are driven by higher order modes in RF cavities and other resonances;
- In case of heavy beam loading in machines with large circumference, situation is anything, but normal.

Beam loading and instabilities

Introduction The focus of this tutorial

Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Outline

Introduction

The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- RLC model of the accelerating cavity with two input currents: generator and beam;
- Cavity voltage V
 ^C is defined by the sum current;
- Low loading (*I_B* ≪ *I_G*) cavity voltage is mostly defined by the generator current;
- High loading cavity voltage is strongly affected by beam current;
- "Feedback loop" from cavity voltage to beam current and back to cavity voltage.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Bealistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- RLC model of the accelerating cavity with two input currents: generator and beam;
- Cavity voltage V
 C is defined by the sum current;
- Low loading (*l_B* ≪ *l_G*) cavity voltage is mostly defined by the generator current;
- High loading cavity voltage is strongly affected by beam current;
- "Feedback loop" from cavity voltage to beam current and back to cavity voltage.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Bealistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- RLC model of the accelerating cavity with two input currents: generator and beam;
- Cavity voltage V
 C is defined by the sum current;
- Low loading (*Î_B* ≪ *Î_G*) cavity voltage is mostly defined by the generator current;
- High loading cavity voltage is strongly affected by beam current;
- "Feedback loop" from cavity voltage to beam current and back to cavity voltage.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- RLC model of the accelerating cavity with two input currents: generator and beam;
- Cavity voltage V
 C is defined by the sum current;
- Low loading (*Î_B* ≪ *Î_G*) cavity voltage is mostly defined by the generator current;
- High loading cavity voltage is strongly affected by beam current;
- "Feedback loop" from cavity voltage to beam current and back to cavity voltage.

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Bealistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- RLC model of the accelerating cavity with two input currents: generator and beam;
- Cavity voltage V
 C is defined by the sum current;
- Low loading (*Î_B* ≪ *Î_G*) cavity voltage is mostly defined by the generator current;
- High loading cavity voltage is strongly affected by beam current;
- "Feedback loop" from cavity voltage to beam current and back to cavity voltage.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Phasors at RF frequency, cavity voltage on X axis;
- ► Synchronous phase φ_B is determined by RF voltage, energy loss per turn;
- For minimum generator power keep loading angle φ_L = 0;
- Cavity is detuned to maintain proper phase angle \(\phi_Z\) between the total current and the cavity voltage;
- The larger is \vec{I}_B , the higher is the detuning.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Bealistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Phasors at RF frequency, cavity voltage on X axis;
- Synchronous phase \(\phi_B\) is determined by RF voltage, energy loss per turn;
- For minimum generator power keep loading angle φ_L = 0;
- Cavity is detuned to maintain proper phase angle \(\phi_Z\) between the total current and the cavity voltage;
- The larger is \vec{l}_B , the higher is the detuning.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Phasors at RF frequency, cavity voltage on X axis;
- Synchronous phase \(\phi_B\) is determined by RF voltage, energy loss per turn;
- ► For minimum generator power keep loading angle φ_L = 0;
- Cavity is detuned to maintain proper phase angle \(\phi_Z\) between the total current and the cavity voltage;
- The larger is \vec{l}_B , the higher is the detuning.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Phasors at RF frequency, cavity voltage on X axis;
- Synchronous phase \(\phi_B\) is determined by RF voltage, energy loss per turn;
- ► For minimum generator power keep loading angle φ_L = 0;
- Cavity is detuned to maintain proper phase angle \(\phi_Z\) between the total current and the cavity voltage;
- The larger is \vec{l}_B , the higher is the detuning.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Phasors at RF frequency, cavity voltage on X axis;
- Synchronous phase \(\phi_B\) is determined by RF voltage, energy loss per turn;
- ► For minimum generator power keep loading angle φ_L = 0;
- Cavity is detuned to maintain proper phase angle \(\phi_Z\) between the total current and the cavity voltage;
- The larger is \vec{l}_B , the higher is the detuning.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops
Outline

Introduction

The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- A 20 kHz resonance ideally "hidden" between two revolution harmonics.
- 500 m ring;
- 1.5 km ring;
- ► 3 km ring;
- 10 km ring;
- 100 km ring;
- Narrow resonances cannot be "hidden" from the beam in large rings.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- A 20 kHz resonance ideally "hidden" between two revolution harmonics.
- 500 m ring;
- 1.5 km ring;
- S km ring;
- 10 km ring;
- 100 km ring;
- Narrow resonances cannot be "hidden" from the beam in large rings

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- A 20 kHz resonance ideally "hidden" between two revolution harmonics.
- 500 m ring;
- 1.5 km ring;
- 3 km ring;
- 10 km ring;
- 100 km ring;
- Narrow resonances cannot be "hidden" from the beam in large rings

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- A 20 kHz resonance ideally "hidden" between two revolution harmonics.
- 500 m ring;
- 1.5 km ring;
- 3 km ring;
- 10 km ring;
- 100 km ring;
- Narrow resonances cannot be "hidden" from the beam in large rings

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- A 20 kHz resonance ideally "hidden" between two revolution harmonics.
- 500 m ring;
- 1.5 km ring;
- 3 km ring;
- 10 km ring;
- 100 km ring;
- Narrow resonances cannot be "hidden" from the beam in large rings

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- A 20 kHz resonance ideally "hidden" between two revolution harmonics.
- 500 m ring;
- 1.5 km ring;
- 3 km ring;
- 10 km ring;
- 100 km ring;
- Narrow resonances cannot be "hidden" from the beam in large rings.

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Photo/image credit: CERN, SLAC

- People don't build multi-kilometer rings just to spend money;
- Large circumference very high energy;
- Or very high current;
- Or both.
- ► Large circumference means heavy beam loading of the RF system.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage

Rings Ring Circumference and

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Photo/image credit: CERN, SLAC

- People don't build multi-kilometer rings just to spend money;
- Large circumference very high energy;
- Or very high current;
- Or both.
- ► Large circumference means heavy beam loading of the RF system.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Bings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Photo/image credit: CERN, SLAC

- People don't build multi-kilometer rings just to spend money;
- Large circumference very high energy;
- Or very high current;
- Or both.
- ► Large circumference means heavy beam loading of the RF system.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage

Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- People don't build multi-kilometer rings just to spend money;
- Large circumference very high energy;
- Or very high current;
- Or both.
- ► Large circumference means heavy beam loading of the RF system.

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage

Rings Ring Circumference and

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- People don't build multi-kilometer rings just to spend money;
- Large circumference very high energy;
- Or very high current;
- Or both.
- Large circumference means heavy beam loading of the RF system.

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage

Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Growth rate for mode -1 is $\propto Z(\omega_{\rm rf}-\omega_{\rm rev}+\omega_s)-Z(\omega_{\rm rf}+\omega_{\rm rev}-\omega_s);$
- Symmetric on resonance;
- Growth rates peak when fundamental crosses upper synchrotron sidebands of revolution harmonics;
- Instability growth times very small relative to synchrotron period.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Growth rate for mode -1 is $\propto Z(\omega_{\rm rf}-\omega_{\rm rev}+\omega_s)-Z(\omega_{\rm rf}+\omega_{\rm rev}-\omega_s);$
- Symmetric on resonance;
- Growth rates peak when fundamental crosses upper synchrotron sidebands of revolution harmonics;
- Instability growth times very small relative to synchrotron period.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Bings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Growth rate for mode -1 is $\propto Z(\omega_{\rm rf}-\omega_{\rm rev}+\omega_s)-Z(\omega_{\rm rf}+\omega_{\rm rev}-\omega_s);$
- Symmetric on resonance;
- Growth rates peak when fundamental crosses upper synchrotron sidebands of revolution harmonics;
- Instability growth times very small relative to synchrotron period.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Bings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Growth rate for mode -1 is $\propto Z(\omega_{\rm rf}-\omega_{\rm rev}+\omega_s)-Z(\omega_{\rm rf}+\omega_{\rm rev}-\omega_s);$
- Symmetric on resonance;
- Growth rates peak when fundamental crosses upper synchrotron sidebands of revolution harmonics;
- Instability growth times very small relative to synchrotron period.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Growth rate for mode -1 is $\propto Z(\omega_{\rm rf}-\omega_{\rm rev}+\omega_s)-Z(\omega_{\rm rf}+\omega_{\rm rev}-\omega_s);$
- Symmetric on resonance;
- Growth rates peak when fundamental crosses upper synchrotron sidebands of revolution harmonics;
- Instability growth times very small relative to synchrotron period.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Growth rate for mode -1 is $\propto Z(\omega_{\rm rf}-\omega_{\rm rev}+\omega_s)-Z(\omega_{\rm rf}+\omega_{\rm rev}-\omega_s);$
- Symmetric on resonance;
- Growth rates peak when fundamental crosses upper synchrotron sidebands of revolution harmonics;
- Instability growth times very small relative to synchrotron period.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

FCC-ee; 88/0 powered/parked cavities; V ap = 255 MV; I = 1.39 A; 70760by1 fill

- Non-uniform fill pattern puts power at revolution harmonics, modulates cavity field;
- Single train is unphysical;
- At 300 mA it is slightly more realistic;
- Bunch length is all over the place;
- As is the synchrotron frequency.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

FCC-ee; 88/0 powered/parked cavities; V ap = 255 MV; I = 1.39 A; 70760by1 fill

- Non-uniform fill pattern puts power at revolution harmonics, modulates cavity field;
- Single train is unphysical;
- At 300 mA it is slightly more realistic;
- Bunch length is all over the place;
- As is the synchrotron frequency.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Non-uniform fill pattern puts power at revolution harmonics, modulates cavity field;
- Single train is unphysical;
- At 300 mA it is slightly more realistic;
- Bunch length is all over the place;
- As is the synchrotron frequency.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Non-uniform fill pattern puts power at revolution harmonics, modulates cavity field;
- Single train is unphysical;
- At 300 mA it is slightly more realistic;
- Bunch length is all over the place;
- As is the synchrotron frequency.

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Non-uniform fill pattern puts power at revolution harmonics, modulates cavity field;
- Single train is unphysical;
- At 300 mA it is slightly more realistic;
- Bunch length is all over the place;
- As is the synchrotron frequency.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Two main effects of heavy beam loading in large rings:

- Longitudinal coupled-bunch instabilities driven by the RF cavity fundamental impedance;
- Synchronous phase transients.
- Transient effects depend on
 - Total beam current;
 - Fill pattern.
- Fill patterns can be designed to mitigate transient effects;
- But longitudinal instabilities due to the fundamental impedance remain an issue even with completely uniform fills;
- Reducing beam loading in the RF system design helps both issues.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Bealistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Two main effects of heavy beam loading in large rings:

- Longitudinal coupled-bunch instabilities driven by the RF cavity fundamental impedance;
- Transient modulation of longitudinal optics.
- Transient effects depend on
 - Total beam current;
 - ► Fill pattern.
- Fill patterns can be designed to mitigate transient effects;
- But longitudinal instabilities due to the fundamental impedance remain an issue even with completely uniform fills;
- Reducing beam loading in the RF system design helps both issues.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Two main effects of heavy beam loading in large rings:

- Longitudinal coupled-bunch instabilities driven by the RF cavity fundamental impedance;
- Transient modulation of longitudinal optics.
- Transient effects depend on
 - Total beam current;
 - Fill pattern.
- Fill patterns can be designed to mitigate transient effects;
- But longitudinal instabilities due to the fundamental impedance remain an issue even with completely uniform fills;
- Reducing beam loading in the RF system design helps both issues.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Two main effects of heavy beam loading in large rings:

- Longitudinal coupled-bunch instabilities driven by the RF cavity fundamental impedance;
- Transient modulation of longitudinal optics.
- Transient effects depend on
 - Total beam current;
 - Fill pattern.

Fill patterns can be designed to mitigate transient effects;

- But longitudinal instabilities due to the fundamental impedance remain an issue even with completely uniform fills;
- Reducing beam loading in the RF system design helps both issues.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Two main effects of heavy beam loading in large rings:

- Longitudinal coupled-bunch instabilities driven by the RF cavity fundamental impedance;
- Transient modulation of longitudinal optics.
- Transient effects depend on
 - Total beam current;
 - Fill pattern.
- Fill patterns can be designed to mitigate transient effects;
- But longitudinal instabilities due to the fundamental impedance remain an issue even with completely uniform fills;
- Reducing beam loading in the RF system design helps both issues.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Bealistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Two main effects of heavy beam loading in large rings:

- Longitudinal coupled-bunch instabilities driven by the RF cavity fundamental impedance;
- Transient modulation of longitudinal optics.
- Transient effects depend on
 - Total beam current;
 - Fill pattern.
- Fill patterns can be designed to mitigate transient effects;
- But longitudinal instabilities due to the fundamental impedance remain an issue even with completely uniform fills;
- Reducing beam loading in the RF system design helps both issues.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Mitigating Beam Loading in Design Stage

Cavity detuning

$$\omega_{d} = \left| rac{\omega_{
m rf} \mathit{l}_0}{V_c} rac{R}{Q} \cos \phi_{\mathit{b}}
ight|$$

- Minimize the number of cavities:
 - Reduces fundamental impedance interacting with the beam;
 - Limited by the maximum coupler power and/or the maximum cavity voltage.
- Minimize detuning:
 - Cavities with low R/Q;
 - ▶ Lower RF frequencies are preferable, especially when coupler limited;
 - ► Low *R*/*Q* favors superconducting cavities.

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Mitigating Beam Loading in Design Stage

Cavity detuning

$$\omega_{d} = \left| rac{\omega_{
m rf} \mathit{l}_{0}}{V_{c}} rac{\mathit{R}}{\mathit{Q}} \cos \phi_{\mathit{b}}
ight|$$

- Minimize the number of cavities:
 - Reduces fundamental impedance interacting with the beam;
 - Limited by the maximum coupler power and/or the maximum cavity voltage.
- Minimize detuning:
 - Cavities with low R/Q;
 - ► Lower RF frequencies are preferable, especially when coupler limited;
 - ► Low *R*/*Q* favors superconducting cavities.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Outline

Introduction

The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading

Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- First idea phase modulate the generator to suppress the transients;
- ▶ PEP-II example: $I_B = 6$ A, $I_G = 1.7$ A;
- To compensate fill pattern modulation, when I_B goes to 0 in the gap, I_G would need to match I_T!
- Factor of 10 in peak power.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

LER; 8/0 powered/parked cavities; $V_{gap} = 4.5 \text{ MV}$; $I_0 = 3 \text{ A}$; 1722by2 fill

- First idea phase modulate the generator to suppress the transients;
- PEP-II example: $I_B = 6 \text{ A}$, $I_G = 1.7 \text{ A}$;
- To compensate fill pattern modulation, when I_B goes to 0 in the gap, I_G would need to match I_T!
- Factor of 10 in peak power.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

LER; 8/0 powered/parked cavities; $V_{gap} = 4.5 \text{ MV}$; $I_0 = 3 \text{ A}$; 1722by2 fill

- First idea phase modulate the generator to suppress the transients;
- PEP-II example: $I_B = 6 \text{ A}$, $I_G = 1.7 \text{ A}$;
- To compensate fill pattern modulation, when I_B goes to 0 in the gap, I_G would need to match I_T!
- Factor of 10 in peak power.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

LER; 8/0 powered/parked cavities; $V_{gap} = 4.5 \text{ MV}$; $I_0 = 3 \text{ A}$; 1722by2 fill

- First idea phase modulate the generator to suppress the transients;
- PEP-II example: $I_B = 6 \text{ A}$, $I_G = 1.7 \text{ A}$;
- To compensate fill pattern modulation, when *I_B* goes to 0 in the gap, *I_G* would need to match *I_T*!
- Factor of 10 in peak power.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops
Outline

Introduction

The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading

Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Single Bunch Train

0.3% gap (400 RF buckets, 1 μs);

- Uniform train of 65140 bunches with 5 ns spacing;
- Bunch length moves around by 3.4% (peak-to-peak).

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient

Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Single Bunch Train

- 0.3% gap (400 RF buckets, 1 μs);
- Uniform train of 65140 bunches with 5 ns spacing;
- Bunch length moves around by 3.4% (peak-to-peak).

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading

Realistic Mitigatio

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Single Bunch Train

- 0.3% gap (400 RF buckets, 1 μs);
- Uniform train of 65140 bunches with 5 ns spacing;
- Bunch length moves around by 3.4% (peak-to-peak).

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading

Realistic Mitigatio

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Idea from J. Byrd et al., Phys. Rev. ST Accel. Beams 5, 092001 (2002):
 - Charge removed from the gap is added symmetrically to both ends of the train;
- 200 bunches removed from the gap;
- Rather than double the charge, fill 200 buckets at the ends of the train in every bucket (2.5 ns) pattern;
- Phase transient peak-to-peak amplitude is unchanged.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Idea from J. Byrd et al., Phys. Rev. ST Accel. Beams 5, 092001 (2002):
 - Charge removed from the gap is added symmetrically to both ends of the train;
- 200 bunches removed from the gap;
- Rather than double the charge, fill 200 buckets at the ends of the train in every bucket (2.5 ns) pattern;
- Phase transient peak-to-peak amplitude is unchanged.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage

Rings Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Idea from J. Byrd et al., Phys. Rev. ST Accel. Beams 5, 092001 (2002):
 - Charge removed from the gap is added symmetrically to both ends of the train;
- 200 bunches removed from the gap;
- Rather than double the charge, fill 200 buckets at the ends of the train in every bucket (2.5 ns) pattern;
- Phase transient peak-to-peak amplitude is unchanged.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Bings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Idea from J. Byrd et al., Phys. Rev. ST Accel. Beams 5, 092001 (2002):
 - Charge removed from the gap is added symmetrically to both ends of the train;
- 200 bunches removed from the gap;
- Rather than double the charge, fill 200 buckets at the ends of the train in every bucket (2.5 ns) pattern;
- Phase transient peak-to-peak amplitude is unchanged.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage Bings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

How Does Fill Pattern Modulation Work?

- Two fill patterns used earlier:
 - 65140by2: one long train of 65140 bunches every other RF bucket and 400 bucket gap;
 - 65340 density mod: long train with density modulation.
- ▶ Both fill pattern spectra show notches at multiples of h/400 ≈ 327 revolution harmonics due to identical 400 bucket gaps;
- Density modulation suppresses low-frequency revolution harmonics where cavity impedance is large.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading

Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

How Does Fill Pattern Modulation Work?

- Two fill patterns used earlier:
 - 65140by2: one long train of 65140 bunches every other RF bucket and 400 bucket gap;
 - 65340 density mod: long train with density modulation.
- Both fill pattern spectra show notches at multiples of h/400 ≈ 327 revolution harmonics due to identical 400 bucket gaps;
- Density modulation suppresses low-frequency revolution harmonics where cavity impedance is large.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading

Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

How Does Fill Pattern Modulation Work?

- Two fill patterns used earlier:
 - 65140by2: one long train of 65140 bunches every other RF bucket and 400 bucket gap;
 - 65340 density mod: long train with density modulation.
- Both fill pattern spectra show notches at multiples of h/400 ≈ 327 revolution harmonics due to identical 400 bucket gaps;
- Density modulation suppresses low-frequency revolution harmonics where cavity impedance is large.

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading

Realistic Mitigatio

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Does Fill Pattern Modulation Work?

- Measurements from the Advanced Light Source in Berkeley:
 - A train of 296 buckets, 32 bucket gap;
 - Buckets 1–16 and 281–296 filled to twice the charge.
- A bit of first revolution harmonic due to the detuned harmonic cavities.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading

Realistic Mitigatio

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Does Fill Pattern Modulation Work?

- Measurements from the Advanced Light Source in Berkeley:
 - A train of 296 buckets, 32 bucket gap;
 - Buckets 1–16 and 281–296 filled to twice the charge.
- A bit of first revolution harmonic due to the detuned harmonic cavities.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading

Realistic Mitigatic

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Outline

Introduction

The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback

Impedance Control Loops

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

Summary

◆□ → < □ → < Ξ → < Ξ → Ξ · の Q @ 28/41</p>

Bunch-by-bunch Feedback

Definition

In bunch-by-bunch feedback approach the actuator signal for a given bunch depends only on the past motion of that bunch.

- Bunches are processed sequentially.
- Correction kicks are applied one turn later.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading

Realistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

- Measure longitudinal position (time of arrival);
- Correct energy;
- To generate required 90° phase shift the feedback must observe at least half a synchrotron period;
- Fastest controllable growth times on the order of 1–2 synchrotron periods.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

- Measure longitudinal position (time of arrival);
- Correct energy;
- To generate required 90° phase shift the feedback must observe at least half a synchrotron period;
- Fastest controllable growth times on the order of 1–2 synchrotron periods.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

- Measure longitudinal position (time of arrival);
- Correct energy;
- To generate required 90° phase shift the feedback must observe at least half a synchrotron period;
- Fastest controllable growth times on the order of 1–2 synchrotron periods.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

- Measure longitudinal position (time of arrival);
- Correct energy;
- To generate required 90° phase shift the feedback must observe at least half a synchrotron period;
- Fastest controllable growth times on the order of 1–2 synchrotron periods.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

- Measured while cavity tuning walks an HOM onto a synchrotron sideband;
- Growth time is $2.3T_s$, damping time is T_s
- Actual modal oscillation trajectory;
- ▶ Filter is 2/3 of a synchrotron period.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading

Realistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

- Measured while cavity tuning walks an HOM onto a synchrotron sideband;
- Growth time is $2.3T_s$, damping time is T_s ;
- Actual modal oscillation trajectory;
- ▶ Filter is 2/3 of a synchrotron period.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Bealistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

- Measured while cavity tuning walks an HOM onto a synchrotron sideband;
- Growth time is $2.3T_s$, damping time is T_s ;
- Actual modal oscillation trajectory;
- Filter is 2/3 of a synchrotron period.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Bealistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

- Measured while cavity tuning walks an HOM onto a synchrotron sideband;
- Growth time is $2.3T_s$, damping time is T_s ;
- Actual modal oscillation trajectory;
- ► Filter is 2/3 of a synchrotron period.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Bealistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

Outline

Introduction

The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities

Bunch-by-bunch Feedback Impedance Control Loops

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Fundamental impedances at a synchrotron sideband — instability growth times below T_s/10;
- Beam feedback cannot control such instabilities;
- RF feedback stabilizes cavity field low effective impedance as seen by the beam;

$$\blacktriangleright \ \frac{dV_C}{dI_B} \approx 0;$$

 Use wideband loops to lower the impedance at multiple revolution harmonics around the RF.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading

Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Fundamental impedances at a synchrotron sideband — instability growth times below T_s/10;
- Beam feedback cannot control such instabilities;
- RF feedback stabilizes cavity field low effective impedance as seen by the beam;

$$\blacktriangleright \ \frac{dV_C}{dI_B} \approx 0;$$

 Use wideband loops to lower the impedance at multiple revolution harmonics around the RF.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Bealistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Fundamental impedances at a synchrotron sideband — instability growth times below T_s/10;
- Beam feedback cannot control such instabilities;
- RF feedback stabilizes cavity field low effective impedance as seen by the beam;

•
$$\frac{dV_C}{dI_B} \approx 0;$$

 Use wideband loops to lower the impedance at multiple revolution harmonics around the RF.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Fundamental impedances at a synchrotron sideband — instability growth times below T_s/10;
- Beam feedback cannot control such instabilities;
- RF feedback stabilizes cavity field low effective impedance as seen by the beam;

•
$$\frac{dV_C}{dI_B} \approx 0$$

 Use wideband loops to lower the impedance at multiple revolution harmonics around the RF.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

PEP-II Collider

Parameter	HER	LER
Circumference	2.2 km	
Energy	9 GeV	3.1 GeV
Beam current	2.1 A	3.2 A
Cavities	28	8
RF power	11 MW	4 MW

- Copper HOM damped cavity;
- Cavity with the HOM loads;
- Two and four cavity stations, vector sum control, 1 MW klystrons.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage

Rings Ring Circumference and

Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

PEP-II Collider

		-
1	The second second	

Parameter	HER	LER
Circumference	2.2 km	
Energy	9 GeV	3.1 GeV
Beam current	2.1 A	3.2 A
Cavities	28	8
RF power	11 MW	4 MW

- Copper HOM damped cavity;
- Cavity with the HOM loads;
- ▶ Two and four cavity stations,

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage

Rings Ring Circumference and Fundamental Impedance

Transient Loading How Not To Fix Transient Loading **Realistic Mitigation**

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback

PEP-II Collider

Parameter	HER	LER
Circumference	2.2 km	
Energy	9 GeV	3.1 GeV
Beam current	2.1 A	3.2 A
Cavities	28	8
RF power	11 MW	4 MW

- Copper HOM damped cavity;
- Cavity with the HOM loads;
- Two and four cavity stations, vector sum control, 1 MW klystrons.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects Beam Loading in Storage

Rings Ring Circumference and

Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Two feedback loops: direct and comb;
- Open loop: 33 µs growth time;
- Direct loop only: 333 µs growth time;
- Direct and comb: 3.3 ms growth time.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Two feedback loops: direct and comb;
- Open loop: 33 µs growth time;
- Direct loop only: 333 µs growth time;
- Direct and comb: 3.3 ms growth time.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Two feedback loops: direct and comb;
- Open loop: 33 µs growth time;
- Direct loop only: 333 µs growth time;
- Direct and comb: 3.3 ms growth time.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Two feedback loops: direct and comb;
- Open loop: 33 µs growth time;
- Direct loop only: 333 µs growth time;
- Direct and comb: 3.3 ms growth time.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Why Two Loops

- Direct loop gain is limited by delay;
- ► OK at 11 dB;
- and 14 dB;
- At 17 dB we are stop impedance reduction;

Worse at 20 dB

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Direct loop gain is limited by delay;
 OK at 11 dB:
- and 14 dB;
- At 17 dB we are stop impedance reduction;

Worse at 20 dB.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Direct loop gain is limited by delay;
- OK at 11 dB;
- and 14 dB;
- At 17 dB we are stop impedance reduction;

Worse at 20 dB

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Direct loop gain is limited by delay;
- OK at 11 dB;
- and 14 dB;
- At 17 dB we are stop impedance reduction;

Worse at 20 dB.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Direct loop gain is limited by delay;
- OK at 11 dB;
- and 14 dB;
- At 17 dB we are stop impedance reduction;

Worse at 20 dB.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Trade Bandwidth for Gain

- Double peaked comb filter at synchrotron sidebands;
- No response at revolution harmonics;
- Almost 20 dB of gain at synchrotron sidebands.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Trade Bandwidth for Gain

- Double peaked comb filter at synchrotron sidebands;
- No response at revolution harmonics;
- Almost 20 dB of gain at synchrotron sidebands.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Trade Bandwidth for Gain

- Double peaked comb filter at synchrotron sidebands;
- No response at revolution harmonics;
- Almost 20 dB of gain at synchrotron sidebands.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

A Word About Technology: RF Processing Module

- Analog direct loop: I/Q demodulation/modulation, op-amp feedback processing;
- 86 ns delay, 3 MHz bandwidth, 450 ns total loop delay;
- Vector sum, multiple gain/phase blocks, lead/lag compensation, ripple loop DSP.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

A Word About Technology: RF Processing Module

- 86 ns delay, 3 MHz bandwidth, 450 ns total loop delay;
- Vector sum, multiple gain/phase blocks, lead/lag compensation, ripple loop DSP.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

A Word About Technology: Comb Module

- Baseband digital processor clocked at 9.8 MHz (72f_{rev});
- Identical I/Q channels;
- Second order IIR for comb response, FIR group delay equalizer and lowpass;

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

Summary

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ ∽ � (~ 39/41

A Word About Technology: Comb Module

- ▶ Baseband digital processor clocked at 9.8 MHz (72*f*_{rev});
- Identical I/Q channels;
- Second order IIR for comb response, FIR group delay equalizer and lowpass;

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings Ring Circumference and

Fundamental Impedance

Transient Loading How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Upper sideband of comb filter reduces growth rates;
- Lower sideband removes damping impedance;
- Single sideband comb idea;
- Never implemented, only simulated;
- Used comb phase offset to reduce growth rates;
- Trade-off between LLRF and beam stability.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

SSB Comb Filters

- Upper sideband of comb filter reduces growth rates;
- Lower sideband removes damping impedance;
- Single sideband comb idea;
- Never implemented, only simulated;
- Used comb phase offset to reduce growth rates;
- Trade-off between LLRF and beam stability.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Large ring circumference and high beam currents make for a challenging combination;
- RF system design should be driven by the beam loading and longitudinal stability considerations;
- Fundamental impedance is large, but very tightly controlled, so driving impedance reduction is feasible;
- Cavity HOMs are relatively unpredictable, need to be damped to levels manageable by the bunch-by-bunch feedback;
- Gap transient response cannot be controlled by RF feedback (high peak power), need to manage fill pattern gaps.

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Large ring circumference and high beam currents make for a challenging combination;
- RF system design should be driven by the beam loading and longitudinal stability considerations;
- Fundamental impedance is large, but very tightly controlled, so driving impedance reduction is feasible;
- Cavity HOMs are relatively unpredictable, need to be damped to levels manageable by the bunch-by-bunch feedback;
- Gap transient response cannot be controlled by RF feedback (high peak power), need to manage fill pattern gaps.

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Large ring circumference and high beam currents make for a challenging combination;
- RF system design should be driven by the beam loading and longitudinal stability considerations;
- Fundamental impedance is large, but very tightly controlled, so driving impedance reduction is feasible;
- Cavity HOMs are relatively unpredictable, need to be damped to levels manageable by the bunch-by-bunch feedback;
- Gap transient response cannot be controlled by RF feedback (high peak power), need to manage fill pattern gaps.

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Large ring circumference and high beam currents make for a challenging combination;
- RF system design should be driven by the beam loading and longitudinal stability considerations;
- Fundamental impedance is large, but very tightly controlled, so driving impedance reduction is feasible;
- Cavity HOMs are relatively unpredictable, need to be damped to levels manageable by the bunch-by-bunch feedback;
- Gap transient response cannot be controlled by RF feedback (high peak power), need to manage fill pattern gaps.

Beam loading and instabilities

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops

- Large ring circumference and high beam currents make for a challenging combination;
- RF system design should be driven by the beam loading and longitudinal stability considerations;
- Fundamental impedance is large, but very tightly controlled, so driving impedance reduction is feasible;
- Cavity HOMs are relatively unpredictable, need to be damped to levels manageable by the bunch-by-bunch feedback;
- Gap transient response cannot be controlled by RF feedback (high peak power), need to manage fill pattern gaps.

Introduction The focus of this tutorial Coupled-bunch Instabilities

Beam Loading Effects

Beam Loading in Storage Rings

Ring Circumference and Fundamental Impedance

Transient Loading

How Not To Fix Transient Loading Realistic Mitigation

Fundamental Impedance and Instabilities Bunch-by-bunch Feedback Impedance Control Loops